65 Search Results for "Stephan, Frank"


Document
Languages of Words of Low Automatic Complexity Are Hard to Compute

Authors: Joey Chen, Bjørn Kjos-Hanssen, Ivan Koswara, Linus Richter, and Frank Stephan

Published in: LIPIcs, Volume 360, 45th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2025)


Abstract
The automatic complexity of a finite word (string) is an analogue for finite automata of Sipser’s distinguishing complexity (1983) and was introduced by Shallit and Wang (2001). For a finite alphabet Σ of at least two elements, we consider the non-deterministic automatic complexity given by exactly - yet not necessarily uniquely - accepting automata: a word x ∈ Σ^* has exact non-deterministic automatic complexity k ∈ ℕ if there exists a non-deterministic automaton of k states which accepts x while rejecting every other word of the same length as x, and no automaton of fewer states has this property. Importantly, and in contrast to the classical notion, the witnessing automaton may have multiple paths of computation accepting x. We denote this measure of complexity by A_{Ne}, and study a class of languages of low A_{Ne}-complexity defined as L_q = {x ∈ Σ^* : A_{Ne}(x) < q|x|}, which is parameterised by rationals q ∈ (0,1/2) (generalising a class of sets first studied by Kjos-Hanssen). We show that for every q ∈ (0,1/2), this class is neither context-free nor recognisable by certain Boolean circuits. In the process, we answer an open question of Kjos-Hanssen quantifying the complexity of L_{1/3} in terms of Boolean circuits, and also prove the Shannon effect for A_{Ne}.

Cite as

Joey Chen, Bjørn Kjos-Hanssen, Ivan Koswara, Linus Richter, and Frank Stephan. Languages of Words of Low Automatic Complexity Are Hard to Compute. In 45th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 360, pp. 24:1-24:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.FSTTCS.2025.24,
  author =	{Chen, Joey and Kjos-Hanssen, Bj{\o}rn and Koswara, Ivan and Richter, Linus and Stephan, Frank},
  title =	{{Languages of Words of Low Automatic Complexity Are Hard to Compute}},
  booktitle =	{45th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2025)},
  pages =	{24:1--24:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-406-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{360},
  editor =	{Aiswarya, C. and Mehta, Ruta and Roy, Subhajit},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2025.24},
  URN =		{urn:nbn:de:0030-drops-251055},
  doi =		{10.4230/LIPIcs.FSTTCS.2025.24},
  annote =	{Keywords: Automatic complexity, automata theory, formal languages, Boolean circuits, Shannon effect}
}
Document
Going Beyond Surfaces in Diameter Approximation

Authors: Michał Włodarczyk

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Calculating the diameter of an undirected graph requires quadratic running time under the Strong Exponential Time Hypothesis and this barrier works even against any approximation better than 3/2. For planar graphs with positive edge weights, there are known (1+ε)-approximation algorithms with running time poly(1/ε, log n)⋅ n. However, these algorithms rely on shortest path separators and this technique falls short to yield efficient algorithms beyond graphs of bounded genus. In this work we depart from embedding-based arguments and obtain diameter approximations relying on VC set systems and the local treewidth property. We present two orthogonal extensions of the planar case by giving (1+ε)-approximation algorithms with the following running times: - 𝒪_h((1/ε)^𝒪(h) ⋅ nlog² n)-time algorithm for graphs excluding an apex graph of size h as a minor, - 𝒪_d((1/ε)^𝒪(d) ⋅ nlog² n)-time algorithm for the class of d-apex graphs. As a stepping stone, we obtain efficient (1+ε)-approximate distance oracles for graphs excluding an apex graph of size h as a minor. Our oracle has preprocessing time 𝒪_h((1/ε)⁸⋅ nlog nlog W) and query time 𝒪_h((1/ε)²⋅log n log W), where W is the metric stretch. Such oracles have been so far only known for bounded genus graphs. All our algorithms are deterministic.

Cite as

Michał Włodarczyk. Going Beyond Surfaces in Diameter Approximation. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 39:1-39:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{wlodarczyk:LIPIcs.ESA.2025.39,
  author =	{W{\l}odarczyk, Micha{\l}},
  title =	{{Going Beyond Surfaces in Diameter Approximation}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{39:1--39:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.39},
  URN =		{urn:nbn:de:0030-drops-245076},
  doi =		{10.4230/LIPIcs.ESA.2025.39},
  annote =	{Keywords: diameter, approximation, distance oracles, graph minors, treewidth}
}
Document
Buffered Partially-Persistent External-Memory Search Trees

Authors: Gerth Stølting Brodal, Casper Moldrup Rysgaard, and Rolf Svenning

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We present an optimal partially-persistent external-memory search tree with amortized I/O bounds matching those achieved by the non-persistent B^{ε}-tree by Brodal and Fagerberg [SODA 2003]. In a partially-persistent data structure, each update creates a new version. All past versions can be queried, but only the current version can be updated. Operations should be efficient with respect to the size N_v of the accessed version v. For any parameter 0 < ε < 1, our data structure supports insertions and deletions in amortized 𝒪(1/(ε B^{1 - ε}) log_B N_v) I/Os, where B is the external-memory block size. It also supports successor and range reporting queries in amortized 𝒪(1/ε log_B N_v + K/B) I/Os, where K is the number of keys reported. The space usage of the data structure is linear in the total number of updates. We make the standard and minimal assumption that the internal memory has size M ≥ 2B. The previous state-of-the-art external-memory partially-persistent search tree by Arge, Danner and Teh [JEA 2003] supports all operations in worst-case 𝒪(log_B N_v + K/B) I/Os, matching the bounds achieved by the classical B-tree by Bayer and McCreight [Acta Informatica 1972]. Our data structure successfully combines buffering updates with partial persistence. The I/O bounds can also be achieved in the worst-case sense, by slightly modifying our data structure and under the requirement that the memory size M = Ω(B^{1-ε} log₂(max_v N_v)). For updates, where the I/O bound is o(1), we assume that the I/Os are performed evenly spread out among the updates (by performing buffer-overflows incrementally). The worst-case result slightly improves the memory requirement over the previous ephemeral external-memory dictionary by Das, Iacono, and Nekrich (ISAAC 2022), who achieved matching worst-case I/O bounds but required M = Ω(B log_B N), where N is the size of the current dictionary.

Cite as

Gerth Stølting Brodal, Casper Moldrup Rysgaard, and Rolf Svenning. Buffered Partially-Persistent External-Memory Search Trees. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 82:1-82:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{brodal_et_al:LIPIcs.ESA.2025.82,
  author =	{Brodal, Gerth St{\o}lting and Rysgaard, Casper Moldrup and Svenning, Rolf},
  title =	{{Buffered Partially-Persistent External-Memory Search Trees}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{82:1--82:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.82},
  URN =		{urn:nbn:de:0030-drops-245507},
  doi =		{10.4230/LIPIcs.ESA.2025.82},
  annote =	{Keywords: B-tree, buffered updates, partial persistence, external memory}
}
Document
Nondeterministic Asynchronous Dataflow in Isabelle/HOL

Authors: Rafael Castro Gonçalves Silva, Laouen Fernet, and Dmitriy Traytel

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
We formalize nondeterministic asynchronous dataflow networks in Isabelle/HOL. Dataflow networks are comprised of operators that are capable of communicating with the network, performing silent computations, and making nondeterministic choices. We represent operators using a shallow embedding as codatatypes. Using this representation, we define standard asynchronous dataflow primitives, including sequential and parallel composition and a feedback operator. These primitives adhere to a number of laws from the literature, which we prove by coinduction using weak bisimilarity as our equality. Albeit coinductive and nondeterministic, our model is executable via code extraction to Haskell.

Cite as

Rafael Castro Gonçalves Silva, Laouen Fernet, and Dmitriy Traytel. Nondeterministic Asynchronous Dataflow in Isabelle/HOL. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 30:1-30:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{silva_et_al:LIPIcs.ITP.2025.30,
  author =	{Silva, Rafael Castro Gon\c{c}alves and Fernet, Laouen and Traytel, Dmitriy},
  title =	{{Nondeterministic Asynchronous Dataflow in Isabelle/HOL}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{30:1--30:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.30},
  URN =		{urn:nbn:de:0030-drops-246280},
  doi =		{10.4230/LIPIcs.ITP.2025.30},
  annote =	{Keywords: dataflow, verification, coinduction, Isabelle/HOL}
}
Document
Canonical for Automated Theorem Proving in Lean

Authors: Chase Norman and Jeremy Avigad

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
Canonical is a solver for type inhabitation in dependent type theory, that is, the problem of producing a term of a given type. We present a Lean tactic which invokes Canonical to generate proof terms and synthesize programs. The tactic supports higher-order and dependently-typed goals, structural recursion over indexed inductive types, and definitional equality. Canonical finds proofs for 84% of Natural Number Game problems in 51 seconds total.

Cite as

Chase Norman and Jeremy Avigad. Canonical for Automated Theorem Proving in Lean. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 14:1-14:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{norman_et_al:LIPIcs.ITP.2025.14,
  author =	{Norman, Chase and Avigad, Jeremy},
  title =	{{Canonical for Automated Theorem Proving in Lean}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{14:1--14:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.14},
  URN =		{urn:nbn:de:0030-drops-246128},
  doi =		{10.4230/LIPIcs.ITP.2025.14},
  annote =	{Keywords: Automated Reasoning, Interactive Theorem Proving, Dependent Type Theory, Inhabitation, Unification, Program Synthesis, Formal Methods}
}
Document
Link Diameter, Radius and 2-Point Link Distance Queries in Polygonal Domains

Authors: Mart Hagedoorn and Valentin Polishchuk

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
We show how to preprocess a polygonal domain with holes so that the link distance (the number of links in a minimum-link path) between two query points in the domain can be reported efficiently. Using our data structures, the link diameter of the domain (i.e., the maximum number of links that may be required in a minimum-link path between two points in the domain) as well as the link center and radius of the domain (i.e., the point minimizing the maximum link distance to the furthest point in the domain and this maximum link distance) can be found in polynomial time. We also give a simpler algorithm for finding the link diameter, not using the link distance query structures. Answering 2-point link distance queries and computing the link diameter/radius/center in polygonal domains have been open questions since these problems were studied for simple polygons in the 90’s.

Cite as

Mart Hagedoorn and Valentin Polishchuk. Link Diameter, Radius and 2-Point Link Distance Queries in Polygonal Domains. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 34:1-34:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{hagedoorn_et_al:LIPIcs.WADS.2025.34,
  author =	{Hagedoorn, Mart and Polishchuk, Valentin},
  title =	{{Link Diameter, Radius and 2-Point Link Distance Queries in Polygonal Domains}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{34:1--34:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.34},
  URN =		{urn:nbn:de:0030-drops-242659},
  doi =		{10.4230/LIPIcs.WADS.2025.34},
  annote =	{Keywords: Minimum-link paths, link distance, diameter, center, radius, 2-point distance queries}
}
Document
Solving Partial Dominating Set and Related Problems Using Twin-Width

Authors: Jakub Balabán, Daniel Mock, and Peter Rossmanith

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
Partial vertex cover and partial dominating set are two well-investigated optimization problems. While they are W[1]-hard on general graphs, they have been shown to be fixed-parameter tractable on many sparse graph classes, including nowhere-dense classes. In this paper, we demonstrate that these problems are also fixed-parameter tractable with respect to the twin-width of a graph. Indeed, we establish a more general result: every graph property that can be expressed by a logical formula of the form ϕ≡∃ x₁⋯ ∃ x_k ∑_{α ∈ I} #y ψ_α(x₁,…,x_k,y) ≥ t, where ψ_α is a quantifier-free formula for each α ∈ I, t is an arbitrary number, and #y is a counting quantifier, can be evaluated in time f(d,k)n, where n is the number of vertices and d is the width of a contraction sequence that is part of the input. In addition to the aforementioned problems, this includes also connected partial dominating set and independent partial dominating set.

Cite as

Jakub Balabán, Daniel Mock, and Peter Rossmanith. Solving Partial Dominating Set and Related Problems Using Twin-Width. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 13:1-13:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{balaban_et_al:LIPIcs.MFCS.2025.13,
  author =	{Balab\'{a}n, Jakub and Mock, Daniel and Rossmanith, Peter},
  title =	{{Solving Partial Dominating Set and Related Problems Using Twin-Width}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{13:1--13:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.13},
  URN =		{urn:nbn:de:0030-drops-241203},
  doi =		{10.4230/LIPIcs.MFCS.2025.13},
  annote =	{Keywords: Partial Dominating Set, Partial Vertex Cover, meta-algorithm, counting logic, twin-width}
}
Document
Word Structures and Their Automatic Presentations

Authors: Xiaoyang Gong, Bakh Khoussainov, and Yuyang Zhuge

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
We study automatic presentations of the structures (ℕ; S), (ℕ; E_S), (ℕ; ≤), and their expansions by a unary predicate U. Here S is the successor function, E_S is the undirected version of S, and ≤ is the natural order. We call these structures word structures. Our goal is three-fold. First, we study the isomorphism problem for automatic word structures by focusing on the following three problems. The first problem asks to design an algorithm that, given an automatic structure A, decides if A is isomorphic to (ℕ; S). The second asks to design an algorithm that, given two automatic presentations of (ℕ; S, U₁) and (ℕ; S, U₂), where U₁ and U₂ are unary predicates, decides if these structures are isomorphic. The third problem investigates if there is an algorithm that, given two automatic presentations of (ℕ; ≤, U₁) and (ℕ; ≤, U₂), decides whether U₁ ∩ U₂ ≠ ∅. We show that these problems are undecidable. Next, we study intrinsic regularity of the function S in the structure Path_ω = (ℕ; E_S). We build an automatic presentation of Path_ω in which S is not regular. This implies that S is not intrinsically regular in Path_ω. For U ⊆ ℕ, let d_U be the function that computes the distances between the consecutive elements of U. We build automatic presentations of (ℕ; ≤, U) where d_U can realise logarithmic, radical, intermediate, and exponential functions.

Cite as

Xiaoyang Gong, Bakh Khoussainov, and Yuyang Zhuge. Word Structures and Their Automatic Presentations. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 51:1-51:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gong_et_al:LIPIcs.MFCS.2025.51,
  author =	{Gong, Xiaoyang and Khoussainov, Bakh and Zhuge, Yuyang},
  title =	{{Word Structures and Their Automatic Presentations}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{51:1--51:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.51},
  URN =		{urn:nbn:de:0030-drops-241581},
  doi =		{10.4230/LIPIcs.MFCS.2025.51},
  annote =	{Keywords: Automatic structures, the isomorphism problem, decidability, undecidability, regular relations}
}
Document
Guarding Offices with Maximum Dispersion

Authors: Sándor P. Fekete, Kai Kobbe, Dominik Krupke, Joseph S. B. Mitchell, Christian Rieck, and Christian Scheffer

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
We investigate the Dispersive Art Gallery Problem with vertex guards and rectangular visibility (r-visibility) for a class of orthogonal polygons that reflect the properties of real-world floor plans: these office-like polygons consist of rectangular rooms and corridors. In the dispersive variant of the Art Gallery Problem, the objective is not to minimize the number of guards but to maximize the minimum geodesic L₁-distance between any two guards, called the dispersion distance. Our main contributions are as follows. We prove that determining whether a vertex guard set can achieve a dispersion distance of 4 in office-like polygons is NP-complete, where vertices of the polygon are restricted to integer coordinates. Additionally, we present a simple worst-case optimal algorithm that guarantees a dispersion distance of 3 in polynomial time. Our complexity result extends to polyominoes, resolving an open question posed by Rieck and Scheffer [Christian Rieck and Christian Scheffer, 2024]. When vertex coordinates are allowed to be rational, we establish analogous results, proving that achieving a dispersion distance of 2+ε is NP-hard for any ε > 0, while the classic Art Gallery Problem remains solvable in polynomial time for this class of polygons. Furthermore, we give a straightforward polynomial-time algorithm that computes worst-case optimal solutions with a dispersion distance 2. On the other hand, for the more restricted class of hole-free independent office-like polygons, we propose a dynamic programming approach that computes optimal solutions. Moreover, we demonstrate that the problem is practically tractable for arbitrary orthogonal polygons. To this end, we compare solvers based on SAT, CP, and MIP formulations. Notably, SAT solvers efficiently compute optimal solutions for randomly generated instances with up to 1600 vertices in under 15s.

Cite as

Sándor P. Fekete, Kai Kobbe, Dominik Krupke, Joseph S. B. Mitchell, Christian Rieck, and Christian Scheffer. Guarding Offices with Maximum Dispersion. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 46:1-46:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{fekete_et_al:LIPIcs.MFCS.2025.46,
  author =	{Fekete, S\'{a}ndor P. and Kobbe, Kai and Krupke, Dominik and Mitchell, Joseph S. B. and Rieck, Christian and Scheffer, Christian},
  title =	{{Guarding Offices with Maximum Dispersion}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{46:1--46:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.46},
  URN =		{urn:nbn:de:0030-drops-241530},
  doi =		{10.4230/LIPIcs.MFCS.2025.46},
  annote =	{Keywords: Dispersive Art Gallery Problem, vertex guards, office-like polygons, orthogonal polygons, polyominoes, NP-completeness, worst-case optimality, dynamic programming, SAT solver}
}
Document
Elimination Distance to Dominated Clusters

Authors: Nicole Schirrmacher, Sebastian Siebertz, and Alexandre Vigny

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
In the Dominated Cluster Deletion problem, we are given an undirected graph G and integers k and d and the question is to decide whether there exists a set of at most k vertices whose removal results in a graph in which each connected component has a dominating set of size at most d. In the Elimination Distance to Dominated Clusters problem, we are again given an undirected graph G and integers k and d and the question is to decide whether we can recursively delete vertices up to depth k such that each remaining connected component has a dominating set of size at most d. Bentert et al. [Bentert et al., MFCS 2024] recently provided an almost complete classification of the parameterized complexity of Dominated Cluster Deletion with respect to the parameters k, d, c, and Δ, where c and Δ are the degeneracy, and the maximum degree of the input graph, respectively. In particular, they provided a non-uniform algorithm with running time f(k,d)⋅ n^{𝒪(d)}. They left as an open problem whether the problem is fixed-parameter tractable with respect to the parameter k + d + c. We provide a uniform algorithm running in time f(k,d)⋅ n^{𝒪(d)} for both Dominated Cluster Deletion and Elimination Distance to Dominated Clusters. We furthermore show that both problems are FPT when parameterized by k+d+𝓁, where 𝓁 is the semi-ladder index of the input graph, a parameter that is upper bounded and may be much smaller than the degeneracy c, positively answering the open question of Bentert et al. We further complete the picture by providing an almost full classification for the parameterized complexity and kernelization complexity of Elimination Distance to Dominated Clusters. The one difficult base case that remains open is whether Treedepth (the case d = 0) is NP-hard on graphs of bounded maximum degree.

Cite as

Nicole Schirrmacher, Sebastian Siebertz, and Alexandre Vigny. Elimination Distance to Dominated Clusters. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 90:1-90:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{schirrmacher_et_al:LIPIcs.MFCS.2025.90,
  author =	{Schirrmacher, Nicole and Siebertz, Sebastian and Vigny, Alexandre},
  title =	{{Elimination Distance to Dominated Clusters}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{90:1--90:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.90},
  URN =		{urn:nbn:de:0030-drops-241978},
  doi =		{10.4230/LIPIcs.MFCS.2025.90},
  annote =	{Keywords: Graph theory, Fixed-parameter algorithms, Dominated cluster, Elimination distance}
}
Document
Deciding Regular Games: a Playground for Exponential Time Algorithms

Authors: Zihui Liang, Bakh Khoussainov, and Mingyu Xiao

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
Regular games form a well-established class of games for analysis and synthesis of reactive systems. They include colored Muller games, McNaughton games, Muller games, Rabin games, and Streett games. These games are played on directed graphs G where Player 0 and Player 1 play by generating an infinite path ρ through the graph. The winner is determined by specifications put on the set X of vertices in ρ that occur infinitely often. These games are determined, enabling the partitioning of G into two sets Win₀ and Win₁ of winning positions for Player 0 and Player 1, respectively. Numerous algorithms exist that decide instances of regular games, e.g., Muller games, by computing Win₀ and Win₁. In this paper we aim to find general principles for designing uniform algorithms that decide all regular games. For this we utilize various recursive and dynamic programming algorithms that leverage standard notions such as subgames and traps. Importantly, we show that our techniques improve or match the performances of existing algorithms for many instances of regular games.

Cite as

Zihui Liang, Bakh Khoussainov, and Mingyu Xiao. Deciding Regular Games: a Playground for Exponential Time Algorithms. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 66:1-66:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{liang_et_al:LIPIcs.MFCS.2025.66,
  author =	{Liang, Zihui and Khoussainov, Bakh and Xiao, Mingyu},
  title =	{{Deciding Regular Games: a Playground for Exponential Time Algorithms}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{66:1--66:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.66},
  URN =		{urn:nbn:de:0030-drops-241732},
  doi =		{10.4230/LIPIcs.MFCS.2025.66},
  annote =	{Keywords: Regular games, colored Muller games, Rabin games, McNaughton games, Muller games, deciding games}
}
Document
The Non-Cooperative Rational Synthesis Problem for SPEs and ω-Regular Objectives

Authors: Véronique Bruyère, Jean-François Raskin, Alexis Reynouard, and Marie Van Den Bogaard

Published in: LIPIcs, Volume 348, 36th International Conference on Concurrency Theory (CONCUR 2025)


Abstract
This paper studies the rational synthesis problem for multi-player games played on graphs when rational players are following subgame perfect equilibria. In these games, one player, the system, declares his strategy upfront, and the other players, composing the environment, then rationally respond by playing strategies forming a subgame perfect equilibrium. We study the complexity of the rational synthesis problem when the players have ω-regular objectives encoded as parity objectives. Our algorithm is based on an encoding into a three-player game with imperfect information, showing that the problem is in 2ExpTime. When the number of environment players is fixed, the problem is in ExpTime and is NP- and coNP-hard. Moreover, for a fixed number of players and reachability objectives, we get a polynomial algorithm.

Cite as

Véronique Bruyère, Jean-François Raskin, Alexis Reynouard, and Marie Van Den Bogaard. The Non-Cooperative Rational Synthesis Problem for SPEs and ω-Regular Objectives. In 36th International Conference on Concurrency Theory (CONCUR 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 348, pp. 12:1-12:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bruyere_et_al:LIPIcs.CONCUR.2025.12,
  author =	{Bruy\`{e}re, V\'{e}ronique and Raskin, Jean-Fran\c{c}ois and Reynouard, Alexis and Van Den Bogaard, Marie},
  title =	{{The Non-Cooperative Rational Synthesis Problem for SPEs and \omega-Regular Objectives}},
  booktitle =	{36th International Conference on Concurrency Theory (CONCUR 2025)},
  pages =	{12:1--12:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-389-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{348},
  editor =	{Bouyer, Patricia and van de Pol, Jaco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2025.12},
  URN =		{urn:nbn:de:0030-drops-239622},
  doi =		{10.4230/LIPIcs.CONCUR.2025.12},
  annote =	{Keywords: non-zero-sum games, subgame perfect equilibria, rational synthesis}
}
Document
A Direct Reduction from Stochastic Parity Games to Simple Stochastic Games

Authors: Raphaël Berthon, Joost-Pieter Katoen, and Zihan Zhou

Published in: LIPIcs, Volume 348, 36th International Conference on Concurrency Theory (CONCUR 2025)


Abstract
Significant progress has been recently achieved in developing efficient solutions for simple stochastic games (SSGs), focusing on reachability objectives. While reductions from stochastic parity games (SPGs) to SSGs have been presented in the literature through the use of multiple intermediate game models, a direct and simple reduction has been notably absent. This paper introduces a novel and direct polynomial-time reduction from quantitative SPGs to quantitative SSGs. By leveraging a gadget-based transformation that effectively removes the priority function, we construct an SSG that simulates the behavior of a given SPG. We formally establish the correctness of our direct reduction. Furthermore, we demonstrate that under binary encoding this reduction is polynomial, thereby directly corroborating the known NP ∩ coNP complexity of SPGs and providing new understanding in the relationship between parity and reachability objectives in turn-based stochastic games.

Cite as

Raphaël Berthon, Joost-Pieter Katoen, and Zihan Zhou. A Direct Reduction from Stochastic Parity Games to Simple Stochastic Games. In 36th International Conference on Concurrency Theory (CONCUR 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 348, pp. 9:1-9:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{berthon_et_al:LIPIcs.CONCUR.2025.9,
  author =	{Berthon, Rapha\"{e}l and Katoen, Joost-Pieter and Zhou, Zihan},
  title =	{{A Direct Reduction from Stochastic Parity Games to Simple Stochastic Games}},
  booktitle =	{36th International Conference on Concurrency Theory (CONCUR 2025)},
  pages =	{9:1--9:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-389-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{348},
  editor =	{Bouyer, Patricia and van de Pol, Jaco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2025.9},
  URN =		{urn:nbn:de:0030-drops-239595},
  doi =		{10.4230/LIPIcs.CONCUR.2025.9},
  annote =	{Keywords: stochastic games, parity, reduction}
}
Document
Large Multi-Modal Model Cartographic Map Comprehension for Textual Locality Georeferencing

Authors: Kalana Wijegunarathna, Kristin Stock, and Christopher B. Jones

Published in: LIPIcs, Volume 346, 13th International Conference on Geographic Information Science (GIScience 2025)


Abstract
Millions of biological sample records collected in the last few centuries archived in natural history collections are un-georeferenced. Georeferencing complex locality descriptions associated with these collection samples is a highly labour-intensive task collection agencies struggle with. None of the existing automated methods exploit maps that are an essential tool for georeferencing complex relations. We present preliminary experiments and results of a novel method that exploits multi-modal capabilities of recent Large Multi-Modal Models (LMM). This method enables the model to visually contextualize spatial relations it reads in the locality description. We use a grid-based approach to adapt these auto-regressive models for this task in a zero-shot setting. Our experiments conducted on a small manually annotated dataset show impressive results for our approach (∼1 km Average distance error) compared to uni-modal georeferencing with Large Language Models and existing georeferencing tools. The paper also discusses the findings of the experiments in light of an LMM’s ability to comprehend fine-grained maps. Motivated by these results, a practical framework is proposed to integrate this method into a georeferencing workflow.

Cite as

Kalana Wijegunarathna, Kristin Stock, and Christopher B. Jones. Large Multi-Modal Model Cartographic Map Comprehension for Textual Locality Georeferencing. In 13th International Conference on Geographic Information Science (GIScience 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 346, pp. 12:1-12:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{wijegunarathna_et_al:LIPIcs.GIScience.2025.12,
  author =	{Wijegunarathna, Kalana and Stock, Kristin and Jones, Christopher B.},
  title =	{{Large Multi-Modal Model Cartographic Map Comprehension for Textual Locality Georeferencing}},
  booktitle =	{13th International Conference on Geographic Information Science (GIScience 2025)},
  pages =	{12:1--12:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-378-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{346},
  editor =	{Sila-Nowicka, Katarzyna and Moore, Antoni and O'Sullivan, David and Adams, Benjamin and Gahegan, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2025.12},
  URN =		{urn:nbn:de:0030-drops-238412},
  doi =		{10.4230/LIPIcs.GIScience.2025.12},
  annote =	{Keywords: Large Multi-Modal Models, Large Language Models, LLM, Georeferencing, Natural History collections}
}
Document
Analysis of Points of Interests Recommended for Leisure Walk Descriptions

Authors: Ehsan Hamzei, Thi Minh Hoai Bui, Martin Tomko, and Stephan Winter

Published in: LIPIcs, Volume 346, 13th International Conference on Geographic Information Science (GIScience 2025)


Abstract
Leisure walking is a physical activity where locomotion through a natural or even urban environment is the goal in itself, e.g., in pursuit of health and wellbeing. In contrast to destination-oriented walks that are focused on navigation efficiency (i.e., shortest or simplest walk from source to destination), leisure walks emphasize experiencing the environment, engaging in activities, and discovering places that may be off route, or intermediate destinations en-route, summarily called points of interest (POIs). POIs are key for recommending leisure walks, yet a detailed analysis of POIs in the context of leisure walking is missing in the literature. This study extracts and annotates POIs of leisure walking recommendations available in WalkingMaps.com.au, creating an annotated dataset to address this research gap and provide a first analysis of leisure walking descriptions. We classify POIs using the verbal description provided in the dataset, match them with data available in OpenStreetMap (OSM), and compare the POIs with nearby alternatives in OSM. Our analysis reveals thematic and spatial patterns in POI selection, offering a machine learning approach to model POI choices for leisure walks. We further evaluate the availability of rich data in OSM for future automated leisure walking recommendation. This study contributes to automated systems for recommending leisure walks, tailoring suggestions based on available information in the spatial open data, and presents an annotated dataset to facilitate future research in this field.

Cite as

Ehsan Hamzei, Thi Minh Hoai Bui, Martin Tomko, and Stephan Winter. Analysis of Points of Interests Recommended for Leisure Walk Descriptions. In 13th International Conference on Geographic Information Science (GIScience 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 346, pp. 5:1-5:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{hamzei_et_al:LIPIcs.GIScience.2025.5,
  author =	{Hamzei, Ehsan and Bui, Thi Minh Hoai and Tomko, Martin and Winter, Stephan},
  title =	{{Analysis of Points of Interests Recommended for Leisure Walk Descriptions}},
  booktitle =	{13th International Conference on Geographic Information Science (GIScience 2025)},
  pages =	{5:1--5:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-378-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{346},
  editor =	{Sila-Nowicka, Katarzyna and Moore, Antoni and O'Sullivan, David and Adams, Benjamin and Gahegan, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2025.5},
  URN =		{urn:nbn:de:0030-drops-238341},
  doi =		{10.4230/LIPIcs.GIScience.2025.5},
  annote =	{Keywords: leisure walks, points of interest, places, platial information}
}
  • Refine by Type
  • 65 Document/PDF
  • 43 Document/HTML

  • Refine by Publication Year
  • 35 2025
  • 8 2024
  • 5 2023
  • 1 2022
  • 1 2020
  • Show More...

  • Refine by Author
  • 11 Stephan, Frank
  • 5 Jain, Sanjay
  • 3 Calbimonte, Jean-Paul
  • 3 Hoi, Gordon
  • 2 Bonifati, Angela
  • Show More...

  • Refine by Series/Journal
  • 43 LIPIcs
  • 2 OASIcs
  • 8 LITES
  • 11 TGDK
  • 1 DagSemProc

  • Refine by Classification
  • 5 Theory of computation → Design and analysis of algorithms
  • 4 Information systems → Semantic web description languages
  • 4 Theory of computation → Parameterized complexity and exact algorithms
  • 3 Computing methodologies → Knowledge representation and reasoning
  • 3 Computing methodologies → Ontology engineering
  • Show More...

  • Refine by Keyword
  • 2 Exponential Time Algorithms
  • 2 Knowledge Graphs
  • 2 Large Language Models
  • 2 OWL
  • 2 Real-time systems
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail