67 Search Results for "Trevisan, Luca"


Document
Testing Sumsets Is Hard

Authors: Xi Chen, Shivam Nadimpalli, Tim Randolph, Rocco A. Servedio, and Or Zamir

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A subset S of the Boolean hypercube 𝔽₂ⁿ is a sumset if S = {a + b : a, b ∈ A} for some A ⊆ 𝔽₂ⁿ. Sumsets are central objects of study in additive combinatorics, where they play a role in several of the field’s most important results. We prove a lower bound of Ω(2^{n/2}) for the number of queries needed to test whether a Boolean function f:𝔽₂ⁿ → {0,1} is the indicator function of a sumset, ruling out an efficient testing algorithm for sumsets. Our lower bound for testing sumsets follows from sharp bounds on the related problem of shift testing, which may be of independent interest. We also give a near-optimal {2^{n/2} ⋅ poly(n)}-query algorithm for a smoothed analysis formulation of the sumset refutation problem. Finally, we include a simple proof that the number of different sumsets in 𝔽₂ⁿ is 2^{(1±o(1))2^{n-1}}.

Cite as

Xi Chen, Shivam Nadimpalli, Tim Randolph, Rocco A. Servedio, and Or Zamir. Testing Sumsets Is Hard. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 14:1-14:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ESA.2025.14,
  author =	{Chen, Xi and Nadimpalli, Shivam and Randolph, Tim and Servedio, Rocco A. and Zamir, Or},
  title =	{{Testing Sumsets Is Hard}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{14:1--14:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.14},
  URN =		{urn:nbn:de:0030-drops-244822},
  doi =		{10.4230/LIPIcs.ESA.2025.14},
  annote =	{Keywords: Sumsets, additive combinatorics, property testing, Boolean functions}
}
Document
Courcelle’s Theorem for Lipschitz Continuity

Authors: Tatsuya Gima, Soh Kumabe, and Yuichi Yoshida

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Lipschitz continuity of algorithms, introduced by Kumabe and Yoshida (FOCS'23), measures the stability of an algorithm against small input perturbations. Algorithms with small Lipschitz continuity are desirable, as they ensure reliable decision-making and reproducible scientific research. Several studies have proposed Lipschitz continuous algorithms for various combinatorial optimization problems, but these algorithms are problem-specific, requiring a separate design for each problem. To address this issue, we provide the first algorithmic meta-theorem in the field of Lipschitz continuous algorithms. Our result can be seen as a Lipschitz continuous analogue of Courcelle’s theorem, which offers Lipschitz continuous algorithms for problems on bounded-treewidth graphs. Specifically, we consider the problem of finding a vertex set in a graph that maximizes or minimizes the total weight, subject to constraints expressed in monadic second-order logic (MSO₂). We show that for any ε > 0, there exists a (1±ε)-approximation algorithm for the problem with a polylogarithmic Lipschitz constant on bounded treewidth graphs. On such graphs, our result outperforms most existing Lipschitz continuous algorithms in terms of approximability and/or Lipschitz continuity. Further, we provide similar results for problems on bounded-clique-width graphs subject to constraints expressed in MSO₁. Additionally, we construct a Lipschitz continuous version of Baker’s decomposition using our meta-theorem as a subroutine.

Cite as

Tatsuya Gima, Soh Kumabe, and Yuichi Yoshida. Courcelle’s Theorem for Lipschitz Continuity. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 11:1-11:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gima_et_al:LIPIcs.ESA.2025.11,
  author =	{Gima, Tatsuya and Kumabe, Soh and Yoshida, Yuichi},
  title =	{{Courcelle’s Theorem for Lipschitz Continuity}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{11:1--11:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.11},
  URN =		{urn:nbn:de:0030-drops-244793},
  doi =		{10.4230/LIPIcs.ESA.2025.11},
  annote =	{Keywords: Fixed-Parameter Tractability, Algorithmic Meta-Theorem, Lipschitz Continuity}
}
Document
Fine-Grained Classification of Detecting Dominating Patterns

Authors: Jonathan Dransfeld, Marvin Künnemann, and Mirza Redzic

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We consider the following generalization of dominating sets: Let G be a host graph and P be a pattern graph P. A dominating P-pattern in G is a subset S of vertices in G that (1) forms a dominating set in G and (2) induces a subgraph isomorphic to P. The graph theory literature studies the properties of dominating P-patterns for various patterns P, including cliques, matchings, independent sets, cycles and paths. Previous work (Kunnemann, Redzic 2024) obtains algorithms and conditional lower bounds for detecting dominating P-patterns particularly for P being a k-clique, a k-independent set and a k-matching. Their results give conditionally tight lower bounds if k is sufficiently large (where the bound depends the matrix multiplication exponent ω). We ask: Can we obtain a classification of the fine-grained complexity for all patterns P? Indeed, we define a graph parameter ρ(P) such that if ω = 2, then (n^ρ(P) m^{(|V(P)|-ρ(P))/2})^{1±o(1)} is the optimal running time assuming the Orthogonal Vectors Hypothesis, for all patterns P except the triangle K₃. Here, the host graph G has n vertices and m = Θ(n^α) edges, where 1 ≤ α ≤ 2. The parameter ρ(P) is closely related (but sometimes different) to a parameter δ(P) = max_{S ⊆ V(P)} |S|-|N(S)| studied in (Alon 1981) to tightly quantify the maximum number of occurrences of induced subgraphs isomorphic to P. Our results stand in contrast to the lack of a full fine-grained classification of detecting an arbitrary (not necessarily dominating) induced P-pattern.

Cite as

Jonathan Dransfeld, Marvin Künnemann, and Mirza Redzic. Fine-Grained Classification of Detecting Dominating Patterns. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 98:1-98:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dransfeld_et_al:LIPIcs.ESA.2025.98,
  author =	{Dransfeld, Jonathan and K\"{u}nnemann, Marvin and Redzic, Mirza},
  title =	{{Fine-Grained Classification of Detecting Dominating Patterns}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{98:1--98:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.98},
  URN =		{urn:nbn:de:0030-drops-245679},
  doi =		{10.4230/LIPIcs.ESA.2025.98},
  annote =	{Keywords: fine-grained complexity theory, domination in graphs, subgraph isomorphism, classification theorem, parameterized algorithms}
}
Document
Semi-Streaming Algorithms for Hypergraph Matching

Authors: Henrik Reinstädtler, S M Ferdous, Alex Pothen, Bora Uçar, and Christian Schulz

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We propose two one-pass streaming algorithms for the NP-hard hypergraph matching problem. The first algorithm stores a small subset of potential matching edges in a stack using dual variables to select edges. It has an approximation guarantee of 1/(d(1+ε)) and requires 𝒪((n/ε)log²n) bits of memory, where n is the number of vertices in the hypergraph, d is the maximum number of vertices in a hyperedge, and ε > 0 is a parameter to be chosen. The second algorithm computes, stores, and updates a single matching as the edges stream, with an approximation ratio dependent on a parameter α. Its best approximation guarantee is 1/((2d-1) + 2 √{d(d-1)}), and it requires only 𝒪(n) memory. We have implemented both algorithms and compared them with respect to solution quality, memory consumption, and running times on two diverse sets of hypergraphs with a non-streaming greedy and a naive streaming algorithm. Our results show that the streaming algorithms achieve much better solution quality than naive algorithms when facing adverse orderings. Furthermore, these algorithms reduce the memory required by a factor of 13 in the geometric mean on our test problems, and also outperform the offline Greedy algorithm in running time.

Cite as

Henrik Reinstädtler, S M Ferdous, Alex Pothen, Bora Uçar, and Christian Schulz. Semi-Streaming Algorithms for Hypergraph Matching. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 79:1-79:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{reinstadtler_et_al:LIPIcs.ESA.2025.79,
  author =	{Reinst\"{a}dtler, Henrik and Ferdous, S M and Pothen, Alex and U\c{c}ar, Bora and Schulz, Christian},
  title =	{{Semi-Streaming Algorithms for Hypergraph Matching}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{79:1--79:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.79},
  URN =		{urn:nbn:de:0030-drops-245478},
  doi =		{10.4230/LIPIcs.ESA.2025.79},
  annote =	{Keywords: hypergraph, matching, semi-streaming}
}
Document
Improved Parallel Derandomization via Finite Automata with Applications

Authors: Jeff Giliberti and David G. Harris

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A central approach to algorithmic derandomization is the construction of small-support probability distributions that "fool” randomized algorithms, often enabling efficient parallel (NC) implementations. An abstraction of this idea is fooling polynomial-space statistical tests computed via finite automata [Sivakumar STOC'02]; this encompasses a wide range of properties including k-wise independence and sums of random variables. We present new parallel algorithms to fool finite-state automata, with significantly reduced processor complexity. Briefly, our approach is to iteratively sparsify distributions using a work-efficient lattice rounding routine and maintain accuracy by tracking an aggregate weighted error that is determined by the Lipschitz value of the statistical tests being fooled. We illustrate with improved applications to the Gale-Berlekamp Switching Game and to approximate MAX-CUT via SDP rounding. These involve further several optimizations, such as the truncation of the state space of the automata and FFT-based convolutions to compute transition probabilities efficiently.

Cite as

Jeff Giliberti and David G. Harris. Improved Parallel Derandomization via Finite Automata with Applications. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 70:1-70:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{giliberti_et_al:LIPIcs.ESA.2025.70,
  author =	{Giliberti, Jeff and Harris, David G.},
  title =	{{Improved Parallel Derandomization via Finite Automata with Applications}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{70:1--70:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.70},
  URN =		{urn:nbn:de:0030-drops-245381},
  doi =		{10.4230/LIPIcs.ESA.2025.70},
  annote =	{Keywords: Parallel Algorithms, Derandomization, MAX-CUT, Gale-Berlekamp Switching Game}
}
Document
Tolerant Testers for Subgraph-Freeness

Authors: Reut Levi and Jonathan Meiri

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
In this paper we study the problem of tolerantly testing the property of being H-free (which also implies distance approximation from being H-free). In the general-graphs model, we show that for tolerant K_k-freeness testing can be achieved with query complexity that is polynomial in the arboricity of the input graph G, arb(G), and independent of the size of G (for graphs in which the average degree is Ω(1)). Specifically for triangles, our algorithm distinguished graphs which are ε-close to being triangle-free from graphs that 3ε(1+η)-far from being triangle-free with expected query complexity which is Õ(arb³(G)) (for constant η and ε). For general k-cliques our algorithm distinguishes graphs which are ε-close to being K_k-free from graphs which are binom(k,2)ε(1+η)-far from being K_k-free with expected query complexity which is polynomial in k, ε, γ and arb(G). We then generalize our result and provide a similar result for any motif H which is 2-connected of radius 1. This includes for example the wheel-graph. Finally, we show that our tester can be applied to the bounded-degree model for tolerantly testing H-freeness for any motif H. The query complexity of the algorithm is polynomial in the degree bound, d, improving the previous state-of-the-art by Marko and Ron (TALG 2009) that obtained quasi-polynomial query complexity in d.

Cite as

Reut Levi and Jonathan Meiri. Tolerant Testers for Subgraph-Freeness. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 77:1-77:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{levi_et_al:LIPIcs.ESA.2025.77,
  author =	{Levi, Reut and Meiri, Jonathan},
  title =	{{Tolerant Testers for Subgraph-Freeness}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{77:1--77:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.77},
  URN =		{urn:nbn:de:0030-drops-245456},
  doi =		{10.4230/LIPIcs.ESA.2025.77},
  annote =	{Keywords: Tolerant Testing, Property Testing, Subgraph freeness, distance approximation, arboricity}
}
Document
Bandwidth vs BFS Width in Matrix Reordering, Graph Reconstruction, and Graph Drawing

Authors: David Eppstein, Michael T. Goodrich, and Songyu (Alfred) Liu

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We provide the first approximation quality guarantees for the Cuthull-McKee heuristic for reordering symmetric matrices to have low bandwidth, and we provide an algorithm for reconstructing bounded-bandwidth graphs from distance oracles with near-linear query complexity. To prove these results we introduce a new width parameter, BFS width, and we prove polylogarithmic upper and lower bounds on the BFS width of graphs of bounded bandwidth. Unlike other width parameters, such as bandwidth, pathwidth, and treewidth, BFS width can easily be computed in polynomial time. Bounded BFS width implies bounded bandwidth, pathwidth, and treewidth, which in turn imply fixed-parameter tractable algorithms for many problems that are NP-hard for general graphs. In addition to their applications to matrix ordering, we also provide applications of BFS width to graph reconstruction, to reconstruct graphs from distance queries, and graph drawing, to construct arc diagrams of small height.

Cite as

David Eppstein, Michael T. Goodrich, and Songyu (Alfred) Liu. Bandwidth vs BFS Width in Matrix Reordering, Graph Reconstruction, and Graph Drawing. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 69:1-69:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{eppstein_et_al:LIPIcs.ESA.2025.69,
  author =	{Eppstein, David and Goodrich, Michael T. and Liu, Songyu (Alfred)},
  title =	{{Bandwidth vs BFS Width in Matrix Reordering, Graph Reconstruction, and Graph Drawing}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{69:1--69:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.69},
  URN =		{urn:nbn:de:0030-drops-245373},
  doi =		{10.4230/LIPIcs.ESA.2025.69},
  annote =	{Keywords: Graph algorithms, graph theory, graph width, bandwidth, treewidth}
}
Document
Constructing Long Paths in Graph Streams

Authors: Christian Konrad and Chhaya Trehan

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
In the graph stream model of computation, an algorithm processes the edges of an n-vertex input graph in one or more sequential passes while using a memory that is sublinear in the input size. The streaming model poses significant challenges for algorithmically constructing long paths. Many known algorithms that are tasked with extending an existing path as a subroutine require an entire pass over the input to add a single additional edge. This raises a fundamental question: Are multiple passes inherently necessary to construct paths of non-trivial lengths, or can a single pass suffice? To address this question, we systematically study the Longest Path problem in the one-pass streaming model. In this problem, given a desired approximation factor α, the objective is to compute a path of length at least lp(G)/α, where lp(G) is the length of a longest path in the input graph G. We study the problem in the insertion-only and the insertion-deletion streaming models, and we give algorithms as well as space lower bounds for both undirected and directed graphs. Our results are: 1) We show that for undirected graphs, in both the insertion-only and the insertion-deletion models, there are semi-streaming algorithms, i.e., algorithms that use space O(n poly log n), that compute a path of length at least d/3 with high probability, where d is the average degree of the input graph. These algorithms can also yield an α-approximation to Longest Path using space Õ(n²/α). 2) Next, we show that such a result cannot be achieved for directed graphs, even in the insertion-only model. We show that computing a (n^{1-o(1)})-approximation to Longest Path in directed graphs in the insertion-only model requires space Ω(n²). This result is in line with recent results that demonstrate that processing directed graphs is often significantly harder than undirected graphs in the streaming model. 3) We further complement our results with two additional lower bounds. First, we show that semi-streaming space is insufficient for small constant factor approximations to Longest Path for undirected graphs in the insertion-only model. Last, in undirected graphs in the insertion-deletion model, we show that computing an α-approximation requires space Ω(n²/α³).

Cite as

Christian Konrad and Chhaya Trehan. Constructing Long Paths in Graph Streams. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 22:1-22:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{konrad_et_al:LIPIcs.ESA.2025.22,
  author =	{Konrad, Christian and Trehan, Chhaya},
  title =	{{Constructing Long Paths in Graph Streams}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{22:1--22:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.22},
  URN =		{urn:nbn:de:0030-drops-244902},
  doi =		{10.4230/LIPIcs.ESA.2025.22},
  annote =	{Keywords: Longest Path Problem, Streaming Algorithms, One-way Two-party Communication Complexity}
}
Document
Property Testing of Curve Similarity

Authors: Peyman Afshani, Maike Buchin, Anne Driemel, Marena Richter, and Sampson Wong

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We propose sublinear algorithms for probabilistic testing of the discrete and continuous Fréchet distance - a standard similarity measure for curves. We assume the algorithm is given access to the input curves via a query oracle: a query returns the set of vertices of the curve that lie within a radius δ of a specified vertex of the other curve. The goal is to use a small number of queries to determine with constant probability whether the two curves are similar (i.e., their discrete Fréchet distance is at most δ) or they are "ε-far" (for 0 < ε < 2) from being similar, i.e., more than an ε-fraction of the two curves must be ignored for them to become similar. We present two algorithms which are sublinear assuming that the curves are t-approximate shortest paths in the ambient metric space, for some t ≪ n. The first algorithm uses O(t/ε log t/ε) queries and is given the value of t in advance. The second algorithm does not have explicit knowledge of the value of t and therefore needs to gain implicit knowledge of the straightness of the input curves through its queries. We show that the discrete Fréchet distance can still be tested using roughly O({t³+t² log n}/ε) queries ignoring logarithmic factors in t. Our algorithms work in a matrix representation of the input and may be of independent interest to matrix testing. Our algorithms use a mild uniform sampling condition that constrains the edge lengths of the curves, similar to a polynomially bounded aspect ratio. Applied to testing the continuous Fréchet distance of t-straight curves, our algorithms can be used for (1+ε')-approximate testing using essentially the same bounds as stated above with an additional factor of poly(1/(ε')).

Cite as

Peyman Afshani, Maike Buchin, Anne Driemel, Marena Richter, and Sampson Wong. Property Testing of Curve Similarity. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 84:1-84:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{afshani_et_al:LIPIcs.ESA.2025.84,
  author =	{Afshani, Peyman and Buchin, Maike and Driemel, Anne and Richter, Marena and Wong, Sampson},
  title =	{{Property Testing of Curve Similarity}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{84:1--84:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.84},
  URN =		{urn:nbn:de:0030-drops-245522},
  doi =		{10.4230/LIPIcs.ESA.2025.84},
  annote =	{Keywords: Fr\'{e}chet distance, Trajectory Analysis, Curve Similarity, Property Testing, Monotonicity Testing}
}
Document
RANDOM
Eigenvalue Bounds for Symmetric Markov Chains on Multislices with Applications

Authors: Prashanth Amireddy, Amik Raj Behera, Srikanth Srinivasan, and Madhu Sudan

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We consider random walks on "balanced multislices" of any "grid" that respects the "symmetries" of the grid, and show that a broad class of such walks are good spectral expanders. (A grid is a set of points of the form 𝒮ⁿ for finite 𝒮, and a balanced multi-slice is the subset that contains an equal number of coordinates taking every value in 𝒮. A walk respects symmetries if the probability of going from u = (u_1,…,u_n) to v = (v_1,…,v_n) is invariant under simultaneous permutations of the coordinates of u and v.) Our main theorem shows that, under some technical conditions, every such walk where a single step leads to an almost 𝒪(1)-wise independent distribution on the next state, conditioned on the previous state, satisfies a non-trivially small singular value bound. We give two applications of our theorem to error-correcting codes: (1) We give an analog of the Ore-DeMillo-Lipton-Schwartz-Zippel lemma for polynomials, and junta-sums, over balanced multislices. (2) We also give a local list-correction algorithm for d-junta-sums mapping an arbitrary grid 𝒮ⁿ to an Abelian group, correcting from a near-optimal (1/|𝒮|^d - ε) fraction of errors for every ε > 0, where a d-junta-sum is a sum of (arbitrarily many) d-juntas (and a d-junta is a function that depends on only d of the n variables). Our proofs are obtained by exploring the representation theory of the symmetric group and merging it with some careful spectral analysis.

Cite as

Prashanth Amireddy, Amik Raj Behera, Srikanth Srinivasan, and Madhu Sudan. Eigenvalue Bounds for Symmetric Markov Chains on Multislices with Applications. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 34:1-34:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{amireddy_et_al:LIPIcs.APPROX/RANDOM.2025.34,
  author =	{Amireddy, Prashanth and Behera, Amik Raj and Srinivasan, Srikanth and Sudan, Madhu},
  title =	{{Eigenvalue Bounds for Symmetric Markov Chains on Multislices with Applications}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{34:1--34:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.34},
  URN =		{urn:nbn:de:0030-drops-244004},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.34},
  annote =	{Keywords: Markov Chains, Random Walk, Multislices, Representation Theory of Symmetric Group, Local Correction, Low-degree Polynomials, Polynomial Distance Lemma}
}
Document
RANDOM
Fooling Near-Maximal Decision Trees

Authors: William M. Hoza and Zelin Lv

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
For any constant α > 0, we construct an explicit pseudorandom generator (PRG) that fools n-variate decision trees of size m with error ε and seed length (1 + α) ⋅ log₂ m + O(log(1/ε) + log log n). For context, one can achieve seed length (2 + o(1)) ⋅ log₂ m + O(log(1/ε) + log log n) using well-known constructions and analyses of small-bias distributions, but such a seed length is trivial when m ≥ 2^{n/2}. Our approach is to develop a new variant of the classic concept of almost k-wise independence, which might be of independent interest. We say that a distribution X over {0, 1}ⁿ is k-wise ε-probably uniform if every Boolean function f that depends on only k variables satisfies 𝔼[f(X)] ≥ (1 - ε) ⋅ 𝔼[f]. We show how to sample a k-wise ε-probably uniform distribution using a seed of length (1 + α) ⋅ k + O(log(1/ε) + log log n). Meanwhile, we also show how to construct a set H ⊆ 𝔽₂ⁿ such that every feasible system of k linear equations in n variables over 𝔽₂ has a solution in H. The cardinality of H and the time complexity of enumerating H are at most 2^{k + o(k) + polylog n}, whereas small-bias distributions would give a bound of 2^{2k + O(log(n/k))}. By combining our new constructions with work by Chen and Kabanets (TCS 2016), we obtain nontrivial PRGs and hitting sets for linear-size Boolean circuits. Specifically, we get an explicit PRG with seed length (1 - Ω(1)) ⋅ n that fools circuits of size 2.99 ⋅ n over the U₂ basis, and we get a hitting set with time complexity 2^{(1 - Ω(1)) ⋅ n} for circuits of size 2.49 ⋅ n over the B₂ basis.

Cite as

William M. Hoza and Zelin Lv. Fooling Near-Maximal Decision Trees. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 35:1-35:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{hoza_et_al:LIPIcs.APPROX/RANDOM.2025.35,
  author =	{Hoza, William M. and Lv, Zelin},
  title =	{{Fooling Near-Maximal Decision Trees}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{35:1--35:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.35},
  URN =		{urn:nbn:de:0030-drops-244019},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.35},
  annote =	{Keywords: almost k-wise independence, decision trees, pseudorandom generators}
}
Document
RANDOM
Bit-Fixing Extractors for Almost-Logarithmic Entropy

Authors: Dean Doron and Ori Fridman

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
An oblivious bit-fixing source is a distribution over {0,1}ⁿ, where k bits are uniform and independent and the rest n-k are fixed a priori to some constant value. Extracting (close to) true randomness from an oblivious bit-fixing source has been studied since the 1980s, with applications in cryptography and complexity theory. We construct explicit extractors for oblivious bit-fixing source that support k = Õ(log n), outputting almost all the entropy with low error. The previous state-of-the-art construction that outputs many bits is due to Rao [Rao, CCC '09], and requires entropy k ≥ log^{c} n for some large constant c. The two key components in our constructions are new low-error affine condensers for poly-logarithmic entropies (that we achieve using techniques from the nonmalleable extractors literature), and a dual use of linear condensers for OBF sources.

Cite as

Dean Doron and Ori Fridman. Bit-Fixing Extractors for Almost-Logarithmic Entropy. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 33:1-33:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{doron_et_al:LIPIcs.APPROX/RANDOM.2025.33,
  author =	{Doron, Dean and Fridman, Ori},
  title =	{{Bit-Fixing Extractors for Almost-Logarithmic Entropy}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{33:1--33:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.33},
  URN =		{urn:nbn:de:0030-drops-243994},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.33},
  annote =	{Keywords: Seedless extractors, oblivious bit-fixing sources}
}
Document
RANDOM
Quantum Property Testing in Sparse Directed Graphs

Authors: Simon Apers, Frédéric Magniez, Sayantan Sen, and Dániel Szabó

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We initiate the study of quantum property testing in sparse directed graphs, and more particularly in the unidirectional model, where the algorithm is allowed to query only the outgoing edges of a vertex. In the classical unidirectional model, the problem of testing k-star-freeness, and more generally k-source-subgraph-freeness, is almost maximally hard for large k. We prove that this problem has almost quadratic advantage in the quantum setting. Moreover, we show that this advantage is nearly tight, by showing a quantum lower bound using the method of dual polynomials on an intermediate problem for a new, property testing version of the k-collision problem that was not studied before. To illustrate that not all problems in graph property testing admit such a quantum speedup, we consider the problem of 3-colorability in the related undirected bounded-degree model, when graphs are now undirected. This problem is maximally hard to test classically, and we show that also quantumly it requires a linear number of queries.

Cite as

Simon Apers, Frédéric Magniez, Sayantan Sen, and Dániel Szabó. Quantum Property Testing in Sparse Directed Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 32:1-32:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{apers_et_al:LIPIcs.APPROX/RANDOM.2025.32,
  author =	{Apers, Simon and Magniez, Fr\'{e}d\'{e}ric and Sen, Sayantan and Szab\'{o}, D\'{a}niel},
  title =	{{Quantum Property Testing in Sparse Directed Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{32:1--32:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.32},
  URN =		{urn:nbn:de:0030-drops-243987},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.32},
  annote =	{Keywords: property testing, quantum computing, bounded-degree directed graphs, dual polynomial method, collision finding}
}
Document
APPROX
Triangles Improve 0.878 Approximation for Maxcut

Authors: Fredie George, Anand Louis, and Rameesh Paul

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
Maxcut is a fundamental problem in graph algorithms, extensively studied for its theoretical and practical significance. The goal is to partition the vertex set of a graph G = (V, E) into disjoint subsets S and V⧵S so as to maximize the number of edges crossing the cut (S,V⧵S). The seminal work of Goemans and Williamson [Goemans and Williamson, 1995] introduced a semidefinite programming (SDP) based algorithm achieving a α_{GW} ≈ 0.87856-approximation for general graphs, guaranteed to be optimal under the Unique Games Conjecture [Khot, 2002; Khot et al., 2007]. We revisit the Goemans–Williamson SDP and prove that the standard Maxcut SDP achieves a (α_{GW} + Ω(1))-approximation whenever the input graph contains Ω(|E|) edge-disjoint triangles. Our analysis builds on classical rounding techniques studied in [Goemans and Williamson, 1995; Zwick, 1999] and introduces a refined understanding of the SDP solution structure in regimes where the previous guarantees are tight. Our result identifies a simple combinatorial property that may be satisfied by many natural graph classes. As applications, we show that unit ball graphs and graphs satisfying a spectral transitivity condition (as studied in [Gupta et al., 2016; Basu et al., 2024]) meet our structural criterion, and therefore we get better than α_{GW} approximation guarantees for them. Our algorithm runs in nearly linear time 𝒪̃(|E|), offering a more practical alternative to the PTAS of [Jansen et al., 2005] for unit ball graphs, which has exponential dependence on the approximation parameter.

Cite as

Fredie George, Anand Louis, and Rameesh Paul. Triangles Improve 0.878 Approximation for Maxcut. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 27:1-27:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{george_et_al:LIPIcs.APPROX/RANDOM.2025.27,
  author =	{George, Fredie and Louis, Anand and Paul, Rameesh},
  title =	{{Triangles Improve 0.878 Approximation for Maxcut}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{27:1--27:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.27},
  URN =		{urn:nbn:de:0030-drops-243931},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.27},
  annote =	{Keywords: Approximation Algorithms, Maxcut, Semidefinite Programming, Edge-disjoint Triangles, Unit Ball Graphs, Spectral Triadic Graphs}
}
Document
RANDOM
Implications of Better PRGs for Permutation Branching Programs

Authors: Dean Doron and William M. Hoza

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We study the challenge of derandomizing constant-width standard-order read-once branching programs (ROBPs). Let c ∈ [1, 2) be any constant. We prove that if there are explicit pseudorandom generators (PRGs) for width-6 length-n permutation ROBPs with error 1/n and seed length Õ(log^c n), then there are explicit hitting set generators (HSGs) for width-4 length-n ROBPs with threshold 1/polylog(n) and seed length Õ(log^c n). For context, there are known explicit PRGs that fool constant-width permutation ROBPs with error ε and seed length O(log(n)⋅log(1/ε)) (Koucký, Nimbhorkar, and Pudlák STOC 2011; De CCC 2011; Steinke ECCC 2012). When ε = 1/n, there are known constructions of weighted pseudorandom generators (WPRGs) that fool polynomial-width permutation ROBPs with seed length Õ(log^{3/2} n) (Pyne and Vadhan CCC 2021; Chen, Hoza, Lyu, Tal, and Wu FOCS 2023; Chattopadhyay and Liao ITCS 2024), but unweighted PRGs with seed length o(log² n) remain elusive. Meanwhile, for width-4 ROBPs, there are no known explicit PRGs, WPRGs, or HSGs with seed length o(log²n). Our reduction can be divided into two parts. First, we show that explicit low-error PRGs for width-6 permutation ROBPs with seed length Õ(log^c n) would imply explicit low-error PRGs for width-3 ROBPs with seed length Õ(log^c n). This would improve Meka, Reingold, and Tal’s PRG (STOC 2019), which has seed length o(log²n) only when the error parameter is relatively large. Second, we show that for any w, n, s, and ε, an explicit PRG for width-w ROBPs with error 0.01/n and seed length s would imply an explicit ε-HSG for width-(w + 1) ROBPs with seed length O(s + log(n)⋅log(1/ε)).

Cite as

Dean Doron and William M. Hoza. Implications of Better PRGs for Permutation Branching Programs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 28:1-28:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{doron_et_al:LIPIcs.APPROX/RANDOM.2025.28,
  author =	{Doron, Dean and Hoza, William M.},
  title =	{{Implications of Better PRGs for Permutation Branching Programs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{28:1--28:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.28},
  URN =		{urn:nbn:de:0030-drops-243946},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.28},
  annote =	{Keywords: hitting set generators, pseudorandom generators, read-once branching programs}
}
  • Refine by Type
  • 67 Document/PDF
  • 53 Document/HTML

  • Refine by Publication Year
  • 53 2025
  • 1 2024
  • 3 2023
  • 1 2022
  • 3 2020
  • Show More...

  • Refine by Author
  • 7 Trevisan, Luca
  • 3 Clementi, Andrea
  • 3 Doron, Dean
  • 3 Lee, Euiwoong
  • 3 Manurangsi, Pasin
  • Show More...

  • Refine by Series/Journal
  • 67 LIPIcs

  • Refine by Classification
  • 12 Theory of computation → Approximation algorithms analysis
  • 8 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 6 Theory of computation → Graph algorithms analysis
  • 6 Theory of computation → Pseudorandomness and derandomization
  • 5 Theory of computation → Problems, reductions and completeness
  • Show More...

  • Refine by Keyword
  • 5 Approximation Algorithms
  • 3 pseudorandom generators
  • 2 Approximation algorithms
  • 2 Coding theory
  • 2 Derandomization
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail