Search Results

Documents authored by Björklund, Andreas


Document
Track A: Algorithms, Complexity and Games
Another Hamiltonian Cycle in Bipartite Pfaffian Graphs

Authors: Andreas Björklund, Petteri Kaski, and Jesper Nederlof

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Finding a Hamiltonian cycle in a given graph is computationally challenging, and in general remains so even when one is further given one Hamiltonian cycle in the graph and asked to find another. In fact, no significantly faster algorithms are known for finding another Hamiltonian cycle than for finding a first one even in the setting where another Hamiltonian cycle is structurally guaranteed to exist, such as for odd-degree graphs. We identify a graph class - the bipartite Pfaffian graphs of minimum degree three - where it is NP-complete to decide whether a given graph in the class is Hamiltonian, but when presented with a Hamiltonian cycle as part of the input, another Hamiltonian cycle can be found efficiently. We prove that Thomason’s lollipop method [Ann. Discrete Math., 1978], a well-known algorithm for finding another Hamiltonian cycle, runs in a linear number of steps in cubic bipartite Pfaffian graphs. This was conjectured for cubic bipartite planar graphs by Haddadan [MSc thesis, Waterloo, 2015]; in contrast, examples are known of both cubic bipartite graphs and cubic planar graphs where the lollipop method takes exponential time. Beyond the reach of the lollipop method, we address a slightly more general graph class and present two algorithms, one running in linear-time and one operating in logarithmic space, that take as input (i) a bipartite Pfaffian graph G of minimum degree three, (ii) a Hamiltonian cycle H in G, and (iii) an edge e in H, and output at least three other Hamiltonian cycles through the edge e in G. We also present further improved algorithms for finding optimal traveling salesperson tours and counting Hamiltonian cycles in bipartite planar graphs with running times that are not achieved yet in general planar graphs. Our technique also has purely graph-theoretical consequences; for example, we show that every cubic bipartite Pfaffian graph has either zero or at least six distinct Hamiltonian cycles; the latter case is tight for the cube graph.

Cite as

Andreas Björklund, Petteri Kaski, and Jesper Nederlof. Another Hamiltonian Cycle in Bipartite Pfaffian Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 26:1-26:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bjorklund_et_al:LIPIcs.ICALP.2024.26,
  author =	{Bj\"{o}rklund, Andreas and Kaski, Petteri and Nederlof, Jesper},
  title =	{{Another Hamiltonian Cycle in Bipartite Pfaffian Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{26:1--26:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.26},
  URN =		{urn:nbn:de:0030-drops-201692},
  doi =		{10.4230/LIPIcs.ICALP.2024.26},
  annote =	{Keywords: Another Hamiltonian cycle, Pfaffian graph, planar graph, Thomason’s lollipop method}
}
Document
Track A: Algorithms, Complexity and Games
Counting Short Vector Pairs by Inner Product and Relations to the Permanent

Authors: Andreas Björklund and Petteri Kaski

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
Given as input two n-element sets A, B ⊆ {0,1}^d with d = clog n ≤ (log n)²/(log log n)⁴ and a target t ∈ {0,1,…,d}, we show how to count the number of pairs (x,y) ∈ A× B with integer inner product ⟨ x,y ⟩ = t deterministically, in n²/2^{Ω(√{log nlog log n/(clog² c)})} time. This demonstrates that one can solve this problem in deterministic subquadratic time almost up to log² n dimensions, nearly matching the dimension bound of a subquadratic randomized detection algorithm of Alman and Williams [FOCS 2015]. We also show how to modify their randomized algorithm to count the pairs w.h.p., to obtain a fast randomized algorithm. Our deterministic algorithm builds on a novel technique of reconstructing a function from sum-aggregates by prime residues, or modular tomography, which can be seen as an additive analog of the Chinese Remainder Theorem. As our second contribution, we relate the fine-grained complexity of the task of counting of vector pairs by inner product to the task of computing a zero-one matrix permanent over the integers.

Cite as

Andreas Björklund and Petteri Kaski. Counting Short Vector Pairs by Inner Product and Relations to the Permanent. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 29:1-29:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bjorklund_et_al:LIPIcs.ICALP.2021.29,
  author =	{Bj\"{o}rklund, Andreas and Kaski, Petteri},
  title =	{{Counting Short Vector Pairs by Inner Product and Relations to the Permanent}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{29:1--29:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.29},
  URN =		{urn:nbn:de:0030-drops-140988},
  doi =		{10.4230/LIPIcs.ICALP.2021.29},
  annote =	{Keywords: additive reconstruction, Chinese Remainder Theorem, counting, inner product, modular tomography, orthogonal vectors, permanent}
}
Document
An Asymptotically Fast Polynomial Space Algorithm for Hamiltonicity Detection in Sparse Directed Graphs

Authors: Andreas Björklund

Published in: LIPIcs, Volume 187, 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)


Abstract
We present a polynomial space Monte Carlo algorithm that given a directed graph on n vertices and average outdegree δ, detects if the graph has a Hamiltonian cycle in 2^{n-Ω(n/δ)} time. This asymptotic scaling of the savings in the running time matches the fastest known exponential space algorithm by Björklund and Williams ICALP 2019. By comparison, the previously best polynomial space algorithm by Kowalik and Majewski IPEC 2020 guarantees a 2^{n-Ω(n/(2^δ))} time bound. Our algorithm combines for the first time the idea of obtaining a fingerprint of the presence of a Hamiltonian cycle through an inclusion-exclusion summation over the Laplacian of the graph from Björklund, Kaski, and Koutis ICALP 2017, with the idea of sieving for the non-zero terms in an inclusion-exclusion summation by listing solutions to systems of linear equations over ℤ₂ from Björklund and Husfeldt FOCS 2013.

Cite as

Andreas Björklund. An Asymptotically Fast Polynomial Space Algorithm for Hamiltonicity Detection in Sparse Directed Graphs. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 15:1-15:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bjorklund:LIPIcs.STACS.2021.15,
  author =	{Bj\"{o}rklund, Andreas},
  title =	{{An Asymptotically Fast Polynomial Space Algorithm for Hamiltonicity Detection in Sparse Directed Graphs}},
  booktitle =	{38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)},
  pages =	{15:1--15:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-180-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{187},
  editor =	{Bl\"{a}ser, Markus and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2021.15},
  URN =		{urn:nbn:de:0030-drops-136601},
  doi =		{10.4230/LIPIcs.STACS.2021.15},
  annote =	{Keywords: Hamiltonian cycle, directed graph, worst case analysis algorithm}
}
Document
Track A: Algorithms, Complexity and Games
Approximate Counting of k-Paths: Deterministic and in Polynomial Space

Authors: Andreas Björklund, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
A few years ago, Alon et al. [ISMB 2008] gave a simple randomized O((2e)^km epsilon^{-2})-time exponential-space algorithm to approximately compute the number of paths on k vertices in a graph G up to a multiplicative error of 1 +/- epsilon. Shortly afterwards, Alon and Gutner [IWPEC 2009, TALG 2010] gave a deterministic exponential-space algorithm with running time (2e)^{k+O(log^3k)}m log n whenever epsilon^{-1}=k^{O(1)}. Recently, Brand et al. [STOC 2018] provided a speed-up at the cost of reintroducing randomization. Specifically, they gave a randomized O(4^km epsilon^{-2})-time exponential-space algorithm. In this article, we revisit the algorithm by Alon and Gutner. We modify the foundation of their work, and with a novel twist, obtain the following results. - We present a deterministic 4^{k+O(sqrt{k}(log^2k+log^2 epsilon^{-1}))}m log n-time polynomial-space algorithm. This matches the running time of the best known deterministic polynomial-space algorithm for deciding whether a given graph G has a path on k vertices. - Additionally, we present a randomized 4^{k+O(log k(log k + log epsilon^{-1}))}m log n-time polynomial-space algorithm. While Brand et al. make non-trivial use of exterior algebra, our algorithm is very simple; we only make elementary use of the probabilistic method. Thus, the algorithm by Brand et al. runs in time 4^{k+o(k)}m whenever epsilon^{-1}=2^{o(k)}, while our deterministic and randomized algorithms run in time 4^{k+o(k)}m log n whenever epsilon^{-1}=2^{o(k^{1/4})} and epsilon^{-1}=2^{o(k/(log k))}, respectively. Prior to our work, no 2^{O(k)}n^{O(1)}-time polynomial-space algorithm was known. Additionally, our approach is embeddable in the classic framework of divide-and-color, hence it immediately extends to approximate counting of graphs of bounded treewidth; in comparison, Brand et al. note that their approach is limited to graphs of bounded pathwidth.

Cite as

Andreas Björklund, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Approximate Counting of k-Paths: Deterministic and in Polynomial Space. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 24:1-24:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bjorklund_et_al:LIPIcs.ICALP.2019.24,
  author =	{Bj\"{o}rklund, Andreas and Lokshtanov, Daniel and Saurabh, Saket and Zehavi, Meirav},
  title =	{{Approximate Counting of k-Paths: Deterministic and in Polynomial Space}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{24:1--24:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.24},
  URN =		{urn:nbn:de:0030-drops-106001},
  doi =		{10.4230/LIPIcs.ICALP.2019.24},
  annote =	{Keywords: parameterized complexity, approximate counting, \{ k\}-Path}
}
Document
Track A: Algorithms, Complexity and Games
Computing Permanents and Counting Hamiltonian Cycles by Listing Dissimilar Vectors

Authors: Andreas Björklund and Ryan Williams

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
We show that the permanent of an n x n matrix over any finite ring of r <= n elements can be computed with a deterministic 2^{n-Omega(n/r)} time algorithm. This improves on a Las Vegas algorithm running in expected 2^{n-Omega(n/(r log r))} time, implicit in [Björklund, Husfeldt, and Lyckberg, IPL 2017]. For the permanent over the integers of a 0/1-matrix with exactly d ones per row and column, we provide a deterministic 2^{n-Omega(n/(d^{3/4)})} time algorithm. This improves on a 2^{n-Omega(n/d)} time algorithm in [Cygan and Pilipczuk ICALP 2013]. We also show that the number of Hamiltonian cycles in an n-vertex directed graph of average degree delta can be computed by a deterministic 2^{n-Omega(n/(delta))} time algorithm. This improves on a Las Vegas algorithm running in expected 2^{n-Omega(n/poly(delta))} time in [Björklund, Kaski, and Koutis, ICALP 2017]. A key tool in our approach is a reduction from computing the permanent to listing pairs of dissimilar vectors from two sets of vectors, i.e., vectors over a finite set that differ in each coordinate, building on an observation of [Bax and Franklin, Algorithmica 2002]. We propose algorithms that can be used both to derandomise the construction of Bax and Franklin, and efficiently list dissimilar pairs using several algorithmic tools. We also give a simple randomised algorithm resulting in Monte Carlo algorithms within the same time bounds. Our new fast algorithms for listing dissimilar vector pairs from two sets of vectors are inspired by recent algorithms for detecting and counting orthogonal vectors by [Abboud, Williams, and Yu, SODA 2015] and [Chan and Williams, SODA 2016].

Cite as

Andreas Björklund and Ryan Williams. Computing Permanents and Counting Hamiltonian Cycles by Listing Dissimilar Vectors. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 25:1-25:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bjorklund_et_al:LIPIcs.ICALP.2019.25,
  author =	{Bj\"{o}rklund, Andreas and Williams, Ryan},
  title =	{{Computing Permanents and Counting Hamiltonian Cycles by Listing Dissimilar Vectors}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{25:1--25:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.25},
  URN =		{urn:nbn:de:0030-drops-106018},
  doi =		{10.4230/LIPIcs.ICALP.2019.25},
  annote =	{Keywords: permanent, Hamiltonian cycle, orthogonal vectors}
}
Document
Track A: Algorithms, Complexity and Games
Solving Systems of Polynomial Equations over GF(2) by a Parity-Counting Self-Reduction

Authors: Andreas Björklund, Petteri Kaski, and Ryan Williams

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
We consider the problem of finding solutions to systems of polynomial equations over a finite field. Lokshtanov et al. [SODA'17] recently obtained the first worst-case algorithms that beat exhaustive search for this problem. In particular for degree-d equations modulo two in n variables, they gave an O^*(2^{(1-1/(5d))n}) time algorithm, and for the special case d=2 they gave an O^*(2^{0.876n}) time algorithm. We modify their approach in a way that improves these running times to O^*(2^{(1-1/(2.7d))n}) and O^*{2^{0.804n}), respectively. In particular, our latter bound - that holds for all systems of quadratic equations modulo 2 - comes close to the O^*(2^{0.792n}) expected time bound of an algorithm empirically found to hold for random equation systems in Bardet et al. [J. Complexity, 2013]. Our improvement involves three observations: 1) The Valiant-Vazirani lemma can be used to reduce the solution-finding problem to that of counting solutions modulo 2. 2) The monomials in the probabilistic polynomials used in this solution-counting modulo 2 have a special form that we exploit to obtain better bounds on their number than in Lokshtanov et al. [SODA'17]. 3) The problem of solution-counting modulo 2 can be "embedded" in a smaller instance of the original problem, which enables us to apply the algorithm as a subroutine to itself.

Cite as

Andreas Björklund, Petteri Kaski, and Ryan Williams. Solving Systems of Polynomial Equations over GF(2) by a Parity-Counting Self-Reduction. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 26:1-26:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bjorklund_et_al:LIPIcs.ICALP.2019.26,
  author =	{Bj\"{o}rklund, Andreas and Kaski, Petteri and Williams, Ryan},
  title =	{{Solving Systems of Polynomial Equations over GF(2) by a Parity-Counting Self-Reduction}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{26:1--26:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.26},
  URN =		{urn:nbn:de:0030-drops-106023},
  doi =		{10.4230/LIPIcs.ICALP.2019.26},
  annote =	{Keywords: equation systems, polynomial method}
}
Document
Exploiting Sparsity for Bipartite Hamiltonicity

Authors: Andreas Björklund

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
We present a Monte Carlo algorithm that detects the presence of a Hamiltonian cycle in an n-vertex undirected bipartite graph of average degree delta >= 3 almost surely and with no false positives, in (2-2^{1-delta})^{n/2}poly(n) time using only polynomial space. With the exception of cubic graphs, this is faster than the best previously known algorithms. Our method is a combination of a variant of Björklund's 2^{n/2}poly(n) time Monte Carlo algorithm for Hamiltonicity detection in bipartite graphs, SICOMP 2014, and a simple fast solution listing algorithm for very sparse CNF-SAT formulas.

Cite as

Andreas Björklund. Exploiting Sparsity for Bipartite Hamiltonicity. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 3:1-3:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bjorklund:LIPIcs.ISAAC.2018.3,
  author =	{Bj\"{o}rklund, Andreas},
  title =	{{Exploiting Sparsity for Bipartite Hamiltonicity}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{3:1--3:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.3},
  URN =		{urn:nbn:de:0030-drops-99510},
  doi =		{10.4230/LIPIcs.ISAAC.2018.3},
  annote =	{Keywords: Hamiltonian cycle, bipartite graph}
}
Document
Counting Connected Subgraphs with Maximum-Degree-Aware Sieving

Authors: Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
We study the problem of counting the isomorphic occurrences of a k-vertex pattern graph P as a subgraph in an n-vertex host graph G. Our specific interest is on algorithms for subgraph counting that are sensitive to the maximum degree Delta of the host graph. Assuming that the pattern graph P is connected and admits a vertex balancer of size b, we present an algorithm that counts the occurrences of P in G in O ((2 Delta-2)^{(k+b)/2} 2^{-b} n/(Delta) k^2 log n) time. We define a balancer as a vertex separator of P that can be represented as an intersection of two equal-size vertex subsets, the union of which is the vertex set of P, and both of which induce connected subgraphs of P. A corollary of our main result is that we can count the number of k-vertex paths in an n-vertex graph in O((2 Delta-2)^{floor[k/2]} n k^2 log n) time, which for all moderately dense graphs with Delta <= n^{1/3} improves on the recent breakthrough work of Curticapean, Dell, and Marx [STOC 2017], who show how to count the isomorphic occurrences of a q-edge pattern graph as a subgraph in an n-vertex host graph in time O(q^q n^{0.17q}) for all large enough q. Another recent result of Brand, Dell, and Husfeldt [STOC 2018] shows that k-vertex paths in a bounded-degree graph can be approximately counted in O(4^kn) time. Our result shows that the exact count can be recovered at least as fast for Delta<10. Our algorithm is based on the principle of inclusion and exclusion, and can be viewed as a sparsity-sensitive version of the "counting in halves"-approach explored by Björklund, Husfeldt, Kaski, and Koivisto [ESA 2009].

Cite as

Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Counting Connected Subgraphs with Maximum-Degree-Aware Sieving. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 17:1-17:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bjorklund_et_al:LIPIcs.ISAAC.2018.17,
  author =	{Bj\"{o}rklund, Andreas and Husfeldt, Thore and Kaski, Petteri and Koivisto, Mikko},
  title =	{{Counting Connected Subgraphs with Maximum-Degree-Aware Sieving}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{17:1--17:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.17},
  URN =		{urn:nbn:de:0030-drops-99655},
  doi =		{10.4230/LIPIcs.ISAAC.2018.17},
  annote =	{Keywords: graph embedding, k-path, subgraph counting, maximum degree}
}
Document
Counting Shortest Two Disjoint Paths in Cubic Planar Graphs with an NC Algorithm

Authors: Andreas Björklund and Thore Husfeldt

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
Given an undirected graph and two disjoint vertex pairs s_1,t_1 and s_2,t_2, the Shortest two disjoint paths problem (S2DP) asks for the minimum total length of two vertex disjoint paths connecting s_1 with t_1, and s_2 with t_2, respectively. We show that for cubic planar graphs there are NC algorithms, uniform circuits of polynomial size and polylogarithmic depth, that compute the S2DP and moreover also output the number of such minimum length path pairs. Previously, to the best of our knowledge, no deterministic polynomial time algorithm was known for S2DP in cubic planar graphs with arbitrary placement of the terminals. In contrast, the randomized polynomial time algorithm by Björklund and Husfeldt, ICALP 2014, for general graphs is much slower, is serial in nature, and cannot count the solutions. Our results are built on an approach by Hirai and Namba, Algorithmica 2017, for a generalisation of S2DP, and fast algorithms for counting perfect matchings in planar graphs.

Cite as

Andreas Björklund and Thore Husfeldt. Counting Shortest Two Disjoint Paths in Cubic Planar Graphs with an NC Algorithm. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 19:1-19:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bjorklund_et_al:LIPIcs.ISAAC.2018.19,
  author =	{Bj\"{o}rklund, Andreas and Husfeldt, Thore},
  title =	{{Counting Shortest Two Disjoint Paths in Cubic Planar Graphs with an NC Algorithm}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{19:1--19:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.19},
  URN =		{urn:nbn:de:0030-drops-99670},
  doi =		{10.4230/LIPIcs.ISAAC.2018.19},
  annote =	{Keywords: Shortest disjoint paths, Cubic planar graph}
}
Document
Generalized Kakeya Sets for Polynomial Evaluation and Faster Computation of Fermionants

Authors: Andreas Björklund, Petteri Kaski, and Ryan Williams

Published in: LIPIcs, Volume 89, 12th International Symposium on Parameterized and Exact Computation (IPEC 2017)


Abstract
We present two new data structures for computing values of an n-variate polynomial P of degree at most d over a finite field of q elements. Assuming that d divides q-1, our first data structure relies on (d+1)^{n+2} tabulated values of P to produce the value of P at any of the q^n points using O(nqd^2) arithmetic operations in the finite field. Assuming that s divides d and d/s divides q-1, our second data structure assumes that P satisfies a degree-separability condition and relies on (d/s+1)^{n+s} tabulated values to produce the value of P at any point using O(nq^ssq) arithmetic operations. Our data structures are based on generalizing upper-bound constructions due to Mockenhaupt and Tao (2004), Saraf and Sudan (2008), and Dvir (2009) for Kakeya sets in finite vector spaces from linear to higher-degree polynomial curves. As an application we show that the new data structures enable a faster algorithm for computing integer-valued fermionants, a family of self-reducible polynomial functions introduced by Chandrasekharan and Wiese (2011) that captures numerous fundamental algebraic and combinatorial invariants such as the determinant, the permanent, the number of Hamiltonian cycles in a directed multigraph, as well as certain partition functions of strongly correlated electron systems in statistical physics. In particular, a corollary of our main theorem for fermionants is that the permanent of an m-by-m integer matrix with entries bounded in absolute value by a constant can be computed in time 2^{m-Omega(sqrt(m/log log m))}, improving an earlier algorithm of Bjorklund (2016) that runs in time 2^{m-Omega(sqrt(m/log m))}.

Cite as

Andreas Björklund, Petteri Kaski, and Ryan Williams. Generalized Kakeya Sets for Polynomial Evaluation and Faster Computation of Fermionants. In 12th International Symposium on Parameterized and Exact Computation (IPEC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 89, pp. 6:1-6:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bjorklund_et_al:LIPIcs.IPEC.2017.6,
  author =	{Bj\"{o}rklund, Andreas and Kaski, Petteri and Williams, Ryan},
  title =	{{Generalized Kakeya Sets for Polynomial Evaluation and Faster Computation of Fermionants}},
  booktitle =	{12th International Symposium on Parameterized and Exact Computation (IPEC 2017)},
  pages =	{6:1--6:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-051-4},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{89},
  editor =	{Lokshtanov, Daniel and Nishimura, Naomi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2017.6},
  URN =		{urn:nbn:de:0030-drops-85728},
  doi =		{10.4230/LIPIcs.IPEC.2017.6},
  annote =	{Keywords: Besicovitch set, fermionant, finite field, finite vector space, Hamiltonian cycle, homogeneous polynomial, Kakeya set, permanent, polynomial evaluatio}
}
Document
Directed Hamiltonicity and Out-Branchings via Generalized Laplacians

Authors: Andreas Björklund, Petteri Kaski, and Ioannis Koutis

Published in: LIPIcs, Volume 80, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)


Abstract
We are motivated by a tantalizing open question in exact algorithms: can we detect whether an n-vertex directed graph G has a Hamiltonian cycle in time significantly less than 2^n? We present new randomized algorithms that improve upon several previous works: 1. We show that for any constant 0<lambda<1 and prime p we can count the Hamiltonian cycles modulo p^((1-lambda)n/(3p)) in expected time less than c^n for a constant c<2 that depends only on p and lambda. Such an algorithm was previously known only for the case of counting modulo two [Bj\"orklund and Husfeldt, FOCS 2013]. 2. We show that we can detect a Hamiltonian cycle in O^*(3^(n-alpha(G))) time and polynomial space, where alpha(G) is the size of the maximum independent set in G. In particular, this yields an O^*(3^(n/2)) time algorithm for bipartite directed graphs, which is faster than the exponential-space algorithm in [Cygan et al., STOC 2013]. Our algorithms are based on the algebraic combinatorics of "incidence assignments" that we can capture through evaluation of determinants of Laplacian-like matrices, inspired by the Matrix--Tree Theorem for directed graphs. In addition to the novel algorithms for directed Hamiltonicity, we use the Matrix--Tree Theorem to derive simple algebraic algorithms for detecting out-branchings. Specifically, we give an O^*(2^k)-time randomized algorithm for detecting out-branchings with at least k internal vertices, improving upon the algorithms of [Zehavi, ESA 2015] and [Bj\"orklund et al., ICALP 2015]. We also present an algebraic algorithm for the directed k-Leaf problem, based on a non-standard monomial detection problem.

Cite as

Andreas Björklund, Petteri Kaski, and Ioannis Koutis. Directed Hamiltonicity and Out-Branchings via Generalized Laplacians. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 91:1-91:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{bjorklund_et_al:LIPIcs.ICALP.2017.91,
  author =	{Bj\"{o}rklund, Andreas and Kaski, Petteri and Koutis, Ioannis},
  title =	{{Directed Hamiltonicity and Out-Branchings via Generalized Laplacians}},
  booktitle =	{44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)},
  pages =	{91:1--91:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-041-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{80},
  editor =	{Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.91},
  URN =		{urn:nbn:de:0030-drops-74208},
  doi =		{10.4230/LIPIcs.ICALP.2017.91},
  annote =	{Keywords: counting, directed Hamiltonicity, graph Laplacian, independent set, k-internal out-branching}
}
Document
Invited Talk
Determinant Sums for Hamiltonicity (Invited Talk)

Authors: Andreas Björklund

Published in: LIPIcs, Volume 63, 11th International Symposium on Parameterized and Exact Computation (IPEC 2016)


Abstract
The best worst case guarantee algorithm to see if a graph has a Hamiltonian cycle, a closed tour visiting every vertex exactly once, for a long time was based on dynamic programming over all the vertex subsets of the graph. In this talk we will show some algebraic techniques that can be used to see if a graph has a Hamiltonian cycle much faster. These techniques utilize sums over determinants of matrices. In particular we will show how you can find out if an undirected graph has a Hamiltonian cycle much faster, but we will also talk about some partial results for the directed case and modular counting.

Cite as

Andreas Björklund. Determinant Sums for Hamiltonicity (Invited Talk). In 11th International Symposium on Parameterized and Exact Computation (IPEC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 63, p. 1:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{bjorklund:LIPIcs.IPEC.2016.1,
  author =	{Bj\"{o}rklund, Andreas},
  title =	{{Determinant Sums for Hamiltonicity}},
  booktitle =	{11th International Symposium on Parameterized and Exact Computation (IPEC 2016)},
  pages =	{1:1--1:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-023-1},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{63},
  editor =	{Guo, Jiong and Hermelin, Danny},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2016.1},
  URN =		{urn:nbn:de:0030-drops-69485},
  doi =		{10.4230/LIPIcs.IPEC.2016.1},
  annote =	{Keywords: Hamiltonian cycle, exact algorithms, matrix determinant, algebraic techniques}
}
Document
Coloring Graphs Having Few Colorings Over Path Decompositions

Authors: Andreas Björklund

Published in: LIPIcs, Volume 53, 15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016)


Abstract
Lokshtanov, Marx, and Saurabh SODA 2011 proved that there is no (k-epsilon)^pw(G)poly(n) time algorithm for deciding if an n-vertex graph G with pathwidth pw admits a proper vertex coloring with k colors unless the Strong Exponential Time Hypothesis (SETH) is false, for any constant epsilon>0. We show here that nevertheless, when k>lfloor Delta/2 rfloor + 1, where Delta is the maximum degree in the graph G, there is a better algorithm, at least when there are few colorings. We present a Monte Carlo algorithm that given a graph G along with a path decomposition of G with pathwidth pw(G) runs in (lfloor Delta/2 rfloor + 1)^pw(G)poly(n)s time, that distinguishes between k-colorable graphs having at most s proper k-colorings and non-k-colorable graphs. We also show how to obtain a k-coloring in the same asymptotic running time. Our algorithm avoids violating SETH for one since high degree vertices still cost too much and the mentioned hardness construction uses a lot of them. We exploit a new variation of the famous Alon--Tarsi theorem that has an algorithmic advantage over the original form. The original theorem shows a graph has an orientation with outdegree less than k at every vertex, with a different number of odd and even Eulerian subgraphs only if the graph is k-colorable, but there is no known way of efficiently finding such an orientation. Our new form shows that if we instead count another difference of even and odd subgraphs meeting modular degree constraints at every vertex picked uniformly at random, we have a fair chance of getting a non-zero value if the graph has few k-colorings. Yet every non-k-colorable graph gives a zero difference, so a random set of constraints stands a good chance of being useful for separating the two cases.

Cite as

Andreas Björklund. Coloring Graphs Having Few Colorings Over Path Decompositions. In 15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 53, pp. 13:1-13:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{bjorklund:LIPIcs.SWAT.2016.13,
  author =	{Bj\"{o}rklund, Andreas},
  title =	{{Coloring Graphs Having Few Colorings Over Path Decompositions}},
  booktitle =	{15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016)},
  pages =	{13:1--13:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-011-8},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{53},
  editor =	{Pagh, Rasmus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2016.13},
  URN =		{urn:nbn:de:0030-drops-60353},
  doi =		{10.4230/LIPIcs.SWAT.2016.13},
  annote =	{Keywords: Graph vertex coloring, path decomposition, Alon-Tarsi theorem}
}
Document
Below All Subsets for Some Permutational Counting Problems

Authors: Andreas Björklund

Published in: LIPIcs, Volume 53, 15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016)


Abstract
We show that the two problems of computing the permanent of an n*n matrix of poly(n)-bit integers and counting the number of Hamiltonian cycles in a directed n-vertex multigraph with exp(poly(n)) edges can be reduced to relatively few smaller instances of themselves. In effect we derive the first deterministic algorithms for these two problems that run in o(2^n) time in the worst case. Classic poly(n)2^n time algorithms for the two problems have been known since the early 1960's. Our algorithms run in 2^{n-Omega(sqrt{n/log(n)})} time.

Cite as

Andreas Björklund. Below All Subsets for Some Permutational Counting Problems. In 15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 53, pp. 17:1-17:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{bjorklund:LIPIcs.SWAT.2016.17,
  author =	{Bj\"{o}rklund, Andreas},
  title =	{{Below All Subsets for Some Permutational Counting Problems}},
  booktitle =	{15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016)},
  pages =	{17:1--17:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-011-8},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{53},
  editor =	{Pagh, Rasmus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2016.17},
  URN =		{urn:nbn:de:0030-drops-60399},
  doi =		{10.4230/LIPIcs.SWAT.2016.17},
  annote =	{Keywords: Matrix Permanent, Hamiltonian Cycles, Asymmetric TSP}
}
Document
Probably Optimal Graph Motifs

Authors: Andreas Björklund, Petteri Kaski, and Lukasz Kowalik

Published in: LIPIcs, Volume 20, 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)


Abstract
We show an O^*(2^k)-time polynomial space algorithm for the k-sized Graph Motif problem. We also introduce a new optimization variant of the problem, called Closest Graph Motif and solve it within the same time bound. The Closest Graph Motif problem encompasses several previously studied optimization variants, like Maximum Graph Motif, Min-Substitute, and Min-Add. Moreover, we provide a piece of evidence that our result might be essentially tight: the existence of an O^*((2-epsilon)^k)-time algorithm for the Graph Motif problem implies an ((2-epsilon')^n)-time algorithm for Set Cover.

Cite as

Andreas Björklund, Petteri Kaski, and Lukasz Kowalik. Probably Optimal Graph Motifs. In 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 20, pp. 20-31, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{bjorklund_et_al:LIPIcs.STACS.2013.20,
  author =	{Bj\"{o}rklund, Andreas and Kaski, Petteri and Kowalik, Lukasz},
  title =	{{Probably Optimal Graph Motifs}},
  booktitle =	{30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)},
  pages =	{20--31},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-50-7},
  ISSN =	{1868-8969},
  year =	{2013},
  volume =	{20},
  editor =	{Portier, Natacha and Wilke, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2013.20},
  URN =		{urn:nbn:de:0030-drops-39196},
  doi =		{10.4230/LIPIcs.STACS.2013.20},
  annote =	{Keywords: graph motif, FPT algorithm}
}
Document
Exact Covers via Determinants

Authors: Andreas Björklund

Published in: LIPIcs, Volume 5, 27th International Symposium on Theoretical Aspects of Computer Science (2010)


Abstract
Given a $k$-uniform hypergraph on $n$ vertices, partitioned in $k$ equal parts such that every hyperedge includes one vertex from each part, the $k$-Dimensional Matching problem asks whether there is a disjoint collection of the hyperedges which covers all vertices. We show it can be solved by a randomized polynomial space algorithm in $O^*(2^{n(k-2)/k})$ time. The $O^*()$ notation hides factors polynomial in $n$ and $k$. The general Exact Cover by $k$-Sets problem asks the same when the partition constraint is dropped and arbitrary hyperedges of cardinality $k$ are permitted. We show it can be solved by a randomized polynomial space algorithm in $O^*(c_k^n)$ time, where $c_3=1.496, c_4=1.642, c_5=1.721$, and provide a general bound for larger $k$. Both results substantially improve on the previous best algorithms for these problems, especially for small $k$. They follow from the new observation that Lov\'asz' perfect matching detection via determinants (Lov\'asz, 1979) admits an embedding in the recently proposed inclusion--exclusion counting scheme for set covers, \emph{despite} its inability to count the perfect matchings.

Cite as

Andreas Björklund. Exact Covers via Determinants. In 27th International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 5, pp. 95-106, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{bjorklund:LIPIcs.STACS.2010.2447,
  author =	{Bj\"{o}rklund, Andreas},
  title =	{{Exact Covers via Determinants}},
  booktitle =	{27th International Symposium on Theoretical Aspects of Computer Science},
  pages =	{95--106},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-16-3},
  ISSN =	{1868-8969},
  year =	{2010},
  volume =	{5},
  editor =	{Marion, Jean-Yves and Schwentick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2010.2447},
  URN =		{urn:nbn:de:0030-drops-24474},
  doi =		{10.4230/LIPIcs.STACS.2010.2447},
  annote =	{Keywords: Moderately Exponential Time Algorithms, Exact Set Cover, \$k\$-Dimensional Matching}
}
Document
Trimmed Moebius Inversion and Graphs of Bounded Degree

Authors: Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto

Published in: LIPIcs, Volume 1, 25th International Symposium on Theoretical Aspects of Computer Science (2008)


Abstract
We study ways to expedite Yates's algorithm for computing the zeta and Moebius transforms of a function defined on the subset lattice. We develop a trimmed variant of Moebius inversion that proceeds point by point, finishing the calculation at a subset before considering its supersets. For an $n$-element universe $U$ and a family $scr F$ of its subsets, trimmed Moebius inversion allows us to compute the number of packings, coverings, and partitions of $U$ with $k$ sets from $scr F$ in time within a polynomial factor (in $n$) of the number of supersets of the members of $scr F$. Relying on an intersection theorem of Chung et al. (1986) to bound the sizes of set families, we apply these ideas to well-studied combinatorial optimisation problems on graphs of maximum degree $Delta$. In particular, we show how to compute the Domatic Number in time within a polynomial factor of $(2^{Delta+1-2)^{n/(Delta+1)$ and the Chromatic Number in time within a polynomial factor of $(2^{Delta+1-Delta-1)^{n/(Delta+1)$. For any constant $Delta$, these bounds are $O bigl((2-epsilon)^n bigr)$ for $epsilon>0$ independent of the number of vertices $n$.

Cite as

Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Trimmed Moebius Inversion and Graphs of Bounded Degree. In 25th International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 1, pp. 85-96, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{bjorklund_et_al:LIPIcs.STACS.2008.1336,
  author =	{Bj\"{o}rklund, Andreas and Husfeldt, Thore and Kaski, Petteri and Koivisto, Mikko},
  title =	{{Trimmed Moebius Inversion and Graphs of Bounded Degree}},
  booktitle =	{25th International Symposium on Theoretical Aspects of Computer Science},
  pages =	{85--96},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-06-4},
  ISSN =	{1868-8969},
  year =	{2008},
  volume =	{1},
  editor =	{Albers, Susanne and Weil, Pascal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2008.1336},
  URN =		{urn:nbn:de:0030-drops-13369},
  doi =		{10.4230/LIPIcs.STACS.2008.1336},
  annote =	{Keywords: }
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail