50 Search Results for "Chan, Timothy M."


Document
Baby PIH: Parameterized Inapproximability of Min CSP

Authors: Venkatesan Guruswami, Xuandi Ren, and Sai Sandeep

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
The Parameterized Inapproximability Hypothesis (PIH) is the analog of the PCP theorem in the world of parameterized complexity. It asserts that no FPT algorithm can distinguish a satisfiable 2CSP instance from one which is only (1-ε)-satisfiable (where the parameter is the number of variables) for some constant 0 < ε < 1. We consider a minimization version of CSPs (Min-CSP), where one may assign r values to each variable, and the goal is to ensure that every constraint is satisfied by some choice among the r × r pairs of values assigned to its variables (call such a CSP instance r-list-satisfiable). We prove the following strong parameterized inapproximability for Min CSP: For every r ≥ 1, it is W[1]-hard to tell if a 2CSP instance is satisfiable or is not even r-list-satisfiable. We refer to this statement as "Baby PIH", following the recently proved Baby PCP Theorem (Barto and Kozik, 2021). Our proof adapts the combinatorial arguments underlying the Baby PCP theorem, overcoming some basic obstacles that arise in the parameterized setting. Furthermore, our reduction runs in time polynomially bounded in both the number of variables and the alphabet size, and thus implies the Baby PCP theorem as well.

Cite as

Venkatesan Guruswami, Xuandi Ren, and Sai Sandeep. Baby PIH: Parameterized Inapproximability of Min CSP. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 27:1-27:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{guruswami_et_al:LIPIcs.CCC.2024.27,
  author =	{Guruswami, Venkatesan and Ren, Xuandi and Sandeep, Sai},
  title =	{{Baby PIH: Parameterized Inapproximability of Min CSP}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{27:1--27:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.27},
  URN =		{urn:nbn:de:0030-drops-204237},
  doi =		{10.4230/LIPIcs.CCC.2024.27},
  annote =	{Keywords: Parameterized Inapproximability Hypothesis, Constraint Satisfaction Problems}
}
Document
Track A: Algorithms, Complexity and Games
Finer-Grained Reductions in Fine-Grained Hardness of Approximation

Authors: Elie Abboud and Noga Ron-Zewi

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We investigate the relation between δ and ε required for obtaining a (1+δ)-approximation in time N^{2-ε} for closest pair problems under various distance metrics, and for other related problems in fine-grained complexity. Specifically, our main result shows that if it is impossible to (exactly) solve the (bichromatic) inner product (IP) problem for vectors of dimension c log N in time N^{2-ε}, then there is no (1+δ)-approximation algorithm for (bichromatic) Euclidean Closest Pair running in time N^{2-2ε}, where δ ≈ (ε/c)² (where ≈ hides polylog factors). This improves on the prior result due to Chen and Williams (SODA 2019) which gave a smaller polynomial dependence of δ on ε, on the order of δ ≈ (ε/c)⁶. Our result implies in turn that no (1+δ)-approximation algorithm exists for Euclidean closest pair for δ ≈ ε⁴, unless an algorithmic improvement for IP is obtained. This in turn is very close to the approximation guarantee of δ ≈ ε³ for Euclidean closest pair, given by the best known algorithm of Almam, Chan, and Williams (FOCS 2016). By known reductions, a similar result follows for a host of other related problems in fine-grained hardness of approximation. Our reduction combines the hardness of approximation framework of Chen and Williams, together with an MA communication protocol for IP over a small alphabet, that is inspired by the MA protocol of Chen (Theory of Computing, 2020).

Cite as

Elie Abboud and Noga Ron-Zewi. Finer-Grained Reductions in Fine-Grained Hardness of Approximation. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 7:1-7:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{abboud_et_al:LIPIcs.ICALP.2024.7,
  author =	{Abboud, Elie and Ron-Zewi, Noga},
  title =	{{Finer-Grained Reductions in Fine-Grained Hardness of Approximation}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{7:1--7:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.7},
  URN =		{urn:nbn:de:0030-drops-201507},
  doi =		{10.4230/LIPIcs.ICALP.2024.7},
  annote =	{Keywords: Fine-grained complexity, conditional lower bound, fine-grained reduction, Approximation algorithms, Analysis of algorithms, Computational geometry, Computational and structural complexity theory}
}
Document
Track A: Algorithms, Complexity and Games
Approximation Schemes for Geometric Knapsack for Packing Spheres and Fat Objects

Authors: Pritam Acharya, Sujoy Bhore, Aaryan Gupta, Arindam Khan, Bratin Mondal, and Andreas Wiese

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study the geometric knapsack problem in which we are given a set of d-dimensional objects (each with associated profits) and the goal is to find the maximum profit subset that can be packed non-overlappingly into a given d-dimensional (unit hypercube) knapsack. Even if d = 2 and all input objects are disks, this problem is known to be NP-hard [Demaine, Fekete, Lang, 2010]. In this paper, we give polynomial time (1+ε)-approximation algorithms for the following types of input objects in any constant dimension d: - disks and hyperspheres, - a class of fat convex polygons that generalizes regular k-gons for k ≥ 5 (formally, polygons with a constant number of edges, whose lengths are in a bounded range, and in which each angle is strictly larger than π/2), - arbitrary fat convex objects that are sufficiently small compared to the knapsack. We remark that in our PTAS for disks and hyperspheres, we output the computed set of objects, but for a O_ε(1) of them we determine their coordinates only up to an exponentially small error. However, it is not clear whether there always exists a (1+ε)-approximate solution that uses only rational coordinates for the disks' centers. We leave this as an open problem which is related to well-studied geometric questions in the realm of circle packing.

Cite as

Pritam Acharya, Sujoy Bhore, Aaryan Gupta, Arindam Khan, Bratin Mondal, and Andreas Wiese. Approximation Schemes for Geometric Knapsack for Packing Spheres and Fat Objects. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 8:1-8:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{acharya_et_al:LIPIcs.ICALP.2024.8,
  author =	{Acharya, Pritam and Bhore, Sujoy and Gupta, Aaryan and Khan, Arindam and Mondal, Bratin and Wiese, Andreas},
  title =	{{Approximation Schemes for Geometric Knapsack for Packing Spheres and Fat Objects}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{8:1--8:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.8},
  URN =		{urn:nbn:de:0030-drops-201511},
  doi =		{10.4230/LIPIcs.ICALP.2024.8},
  annote =	{Keywords: Approximation Algorithms, Polygon Packing, Circle Packing, Sphere Packing, Geometric Knapsack, Resource Augmentation}
}
Document
Track A: Algorithms, Complexity and Games
The Bit Complexity of Dynamic Algebraic Formulas and Their Determinants

Authors: Emile Anand, Jan van den Brand, Mehrdad Ghadiri, and Daniel J. Zhang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Many iterative algorithms in computer science require repeated computation of some algebraic expression whose input varies slightly from one iteration to the next. Although efficient data structures have been proposed for maintaining the solution of such algebraic expressions under low-rank updates, most of these results are only analyzed under exact arithmetic (real-RAM model and finite fields) which may not accurately reflect the more limited complexity guarantees of real computers. In this paper, we analyze the stability and bit complexity of such data structures for expressions that involve the inversion, multiplication, addition, and subtraction of matrices under the word-RAM model. We show that the bit complexity only increases linearly in the number of matrix operations in the expression. In addition, we consider the bit complexity of maintaining the determinant of a matrix expression. We show that the required bit complexity depends on the logarithm of the condition number of matrices instead of the logarithm of their determinant. Finally, we discuss rank maintenance and its connections to determinant maintenance. Our results have wide applications ranging from computational geometry (e.g., computing the volume of a polytope) to optimization (e.g., solving linear programs using the simplex algorithm).

Cite as

Emile Anand, Jan van den Brand, Mehrdad Ghadiri, and Daniel J. Zhang. The Bit Complexity of Dynamic Algebraic Formulas and Their Determinants. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 10:1-10:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{anand_et_al:LIPIcs.ICALP.2024.10,
  author =	{Anand, Emile and van den Brand, Jan and Ghadiri, Mehrdad and Zhang, Daniel J.},
  title =	{{The Bit Complexity of Dynamic Algebraic Formulas and Their Determinants}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{10:1--10:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.10},
  URN =		{urn:nbn:de:0030-drops-201538},
  doi =		{10.4230/LIPIcs.ICALP.2024.10},
  annote =	{Keywords: Data Structures, Online Algorithms, Bit Complexity}
}
Document
Track A: Algorithms, Complexity and Games
On the Streaming Complexity of Expander Decomposition

Authors: Yu Chen, Michael Kapralov, Mikhail Makarov, and Davide Mazzali

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we study the problem of finding (ε, ϕ)-expander decompositions of a graph in the streaming model, in particular for dynamic streams of edge insertions and deletions. The goal is to partition the vertex set so that every component induces a ϕ-expander, while the number of inter-cluster edges is only an ε fraction of the total volume. It was recently shown that there exists a simple algorithm to construct a (O(ϕ log n), ϕ)-expander decomposition of an n-vertex graph using Õ(n/ϕ²) bits of space [Filtser, Kapralov, Makarov, ITCS'23]. This result calls for understanding the extent to which a dependence in space on the sparsity parameter ϕ is inherent. We move towards answering this question on two fronts. We prove that a (O(ϕ log n), ϕ)-expander decomposition can be found using Õ(n) space, for every ϕ. At the core of our result is the first streaming algorithm for computing boundary-linked expander decompositions, a recently introduced strengthening of the classical notion [Goranci et al., SODA'21]. The key advantage is that a classical sparsifier [Fung et al., STOC'11], with size independent of ϕ, preserves the cuts inside the clusters of a boundary-linked expander decomposition within a multiplicative error. Notable algorithmic applications use sequences of expander decompositions, in particular one often repeatedly computes a decomposition of the subgraph induced by the inter-cluster edges (e.g., the seminal work of Spielman and Teng on spectral sparsifiers [Spielman, Teng, SIAM Journal of Computing 40(4)], or the recent maximum flow breakthrough [Chen et al., FOCS'22], among others). We prove that any streaming algorithm that computes a sequence of (O(ϕ log n), ϕ)-expander decompositions requires Ω̃(n/ϕ) bits of space, even in insertion only streams.

Cite as

Yu Chen, Michael Kapralov, Mikhail Makarov, and Davide Mazzali. On the Streaming Complexity of Expander Decomposition. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 46:1-46:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2024.46,
  author =	{Chen, Yu and Kapralov, Michael and Makarov, Mikhail and Mazzali, Davide},
  title =	{{On the Streaming Complexity of Expander Decomposition}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{46:1--46:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.46},
  URN =		{urn:nbn:de:0030-drops-201890},
  doi =		{10.4230/LIPIcs.ICALP.2024.46},
  annote =	{Keywords: Graph Sketching, Dynamic Streaming, Expander Decomposition}
}
Document
Track A: Algorithms, Complexity and Games
Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time

Authors: Nick Fischer and Leo Wennmann

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this work we revisit the elementary scheduling problem 1||∑ p_j U_j. The goal is to select, among n jobs with processing times and due dates, a subset of jobs with maximum total processing time that can be scheduled in sequence without violating their due dates. This problem is NP-hard, but a classical algorithm by Lawler and Moore from the 60s solves this problem in pseudo-polynomial time O(nP), where P is the total processing time of all jobs. With the aim to develop best-possible pseudo-polynomial-time algorithms, a recent wave of results has improved Lawler and Moore’s algorithm for 1||∑ p_j U_j: First to time Õ(P^{7/4}) [Bringmann, Fischer, Hermelin, Shabtay, Wellnitz; ICALP'20], then to time Õ(P^{5/3}) [Klein, Polak, Rohwedder; SODA'23], and finally to time Õ(P^{7/5}) [Schieber, Sitaraman; WADS'23]. It remained an exciting open question whether these works can be improved further. In this work we develop an algorithm in near-linear time Õ(P) for the 1||∑ p_j U_j problem. This running time not only significantly improves upon the previous results, but also matches conditional lower bounds based on the Strong Exponential Time Hypothesis or the Set Cover Hypothesis and is therefore likely optimal (up to subpolynomial factors). Our new algorithm also extends to the case of m machines in time Õ(P^m). In contrast to the previous improvements, we take a different, more direct approach inspired by the recent reductions from Modular Subset Sum to dynamic string problems. We thereby arrive at a satisfyingly simple algorithm.

Cite as

Nick Fischer and Leo Wennmann. Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 64:1-64:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{fischer_et_al:LIPIcs.ICALP.2024.64,
  author =	{Fischer, Nick and Wennmann, Leo},
  title =	{{Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{64:1--64:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.64},
  URN =		{urn:nbn:de:0030-drops-202079},
  doi =		{10.4230/LIPIcs.ICALP.2024.64},
  annote =	{Keywords: Scheduling, Fine-Grained Complexity, Dynamic Strings}
}
Document
Track A: Algorithms, Complexity and Games
Almost-Tight Bounds on Preserving Cuts in Classes of Submodular Hypergraphs

Authors: Sanjeev Khanna, Aaron (Louie) Putterman, and Madhu Sudan

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Recently, a number of variants of the notion of cut-preserving hypergraph sparsification have been studied in the literature. These variants include directed hypergraph sparsification, submodular hypergraph sparsification, general notions of approximation including spectral approximations, and more general notions like sketching that can answer cut queries using more general data structures than just sparsifiers. In this work, we provide reductions between these different variants of hypergraph sparsification and establish new upper and lower bounds on the space complexity of preserving their cuts. Specifically, we show that: 1) (1 ± ε) directed hypergraph spectral (respectively cut) sparsification on n vertices efficiently reduces to (1 ± ε) undirected hypergraph spectral (respectively cut) sparsification on n² + 1 vertices. Using the work of Lee and Jambulapati, Liu, and Sidford (STOC 2023) this gives us directed hypergraph spectral sparsifiers with O(n² log²(n) / ε²) hyperedges and directed hypergraph cut sparsifiers with O(n² log(n)/ ε²) hyperedges by using the work of Chen, Khanna, and Nagda (FOCS 2020), both of which improve upon the work of Oko, Sakaue, and Tanigawa (ICALP 2023). 2) Any cut sketching scheme which preserves all cuts in any directed hypergraph on n vertices to a (1 ± ε) factor (for ε = 1/(2^{O(√{log(n)})})) must have worst-case bit complexity n^{3 - o(1)}. Because directed hypergraphs are a subclass of submodular hypergraphs, this also shows a worst-case sketching lower bound of n^{3 - o(1)} bits for sketching cuts in general submodular hypergraphs. 3) (1 ± ε) monotone submodular hypergraph cut sparsification on n vertices efficiently reduces to (1 ± ε) symmetric submodular hypergraph sparsification on n+1 vertices. Using the work of Jambulapati et. al. (FOCS 2023) this gives us monotone submodular hypergraph sparsifiers with Õ(n / ε²) hyperedges, improving on the O(n³ / ε²) hyperedge bound of Kenneth and Krauthgamer (arxiv 2023). At a high level, our results use the same general principle, namely, by showing that cuts in one class of hypergraphs can be simulated by cuts in a simpler class of hypergraphs, we can leverage sparsification results for the simpler class of hypergraphs.

Cite as

Sanjeev Khanna, Aaron (Louie) Putterman, and Madhu Sudan. Almost-Tight Bounds on Preserving Cuts in Classes of Submodular Hypergraphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 98:1-98:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{khanna_et_al:LIPIcs.ICALP.2024.98,
  author =	{Khanna, Sanjeev and Putterman, Aaron (Louie) and Sudan, Madhu},
  title =	{{Almost-Tight Bounds on Preserving Cuts in Classes of Submodular Hypergraphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{98:1--98:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.98},
  URN =		{urn:nbn:de:0030-drops-202410},
  doi =		{10.4230/LIPIcs.ICALP.2024.98},
  annote =	{Keywords: Sparsification, sketching, hypergraphs}
}
Document
Track A: Algorithms, Complexity and Games
On the Space Usage of Approximate Distance Oracles with Sub-2 Stretch

Authors: Tsvi Kopelowitz, Ariel Korin, and Liam Roditty

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
For an undirected unweighted graph G = (V,E) with n vertices and m edges, let d(u,v) denote the distance from u ∈ V to v ∈ V in G. An (α,β)-stretch approximate distance oracle (ADO) for G is a data structure that given u,v ∈ V returns in constant (or near constant) time a value dˆ(u,v) such that d(u,v) ≤ dˆ(u,v) ≤ α⋅ d(u,v) + β, for some reals α > 1, β. Thorup and Zwick [Mikkel Thorup and Uri Zwick, 2005] showed that one cannot beat stretch 3 with subquadratic space (in terms of n) for general graphs. Pǎtraşcu and Roditty [Mihai Pǎtraşcu and Liam Roditty, 2010] showed that one can obtain stretch 2 using O(m^{1/3}n^{4/3}) space, and so if m is subquadratic in n then the space usage is also subquadratic. Moreover, Pǎtraşcu and Roditty [Mihai Pǎtraşcu and Liam Roditty, 2010] showed that one cannot beat stretch 2 with subquadratic space even for graphs where m = Õ(n), based on the set-intersection hypothesis. In this paper we explore the conditions for which an ADO can beat stretch 2 while using subquadratic space. In particular, we show that if the maximum degree in G is Δ_G ≤ O(n^{1/k-ε}) for some 0 < ε ≤ 1/k, then there exists an ADO for G that uses Õ(n^{2-(kε)/3) space and has a (2,1-k)-stretch. For k = 2 this result implies a subquadratic sub-2 stretch ADO for graphs with Δ_G ≤ O(n^{1/2-ε}). Moreover, we prove a conditional lower bound, based on the set intersection hypothesis, which states that for any positive integer k ≤ log n, obtaining a sub-(k+2)/k stretch for graphs with Δ_G = Θ(n^{1/k}) requires Ω̃(n²) space. Thus, for graphs with maximum degree Θ(n^{1/2}), obtaining a sub-2 stretch requires Ω̃(n²) space.

Cite as

Tsvi Kopelowitz, Ariel Korin, and Liam Roditty. On the Space Usage of Approximate Distance Oracles with Sub-2 Stretch. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 101:1-101:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kopelowitz_et_al:LIPIcs.ICALP.2024.101,
  author =	{Kopelowitz, Tsvi and Korin, Ariel and Roditty, Liam},
  title =	{{On the Space Usage of Approximate Distance Oracles with Sub-2 Stretch}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{101:1--101:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.101},
  URN =		{urn:nbn:de:0030-drops-202443},
  doi =		{10.4230/LIPIcs.ICALP.2024.101},
  annote =	{Keywords: Graph algorithms, Approximate distance oracle, data structures, shortest path}
}
Document
Track A: Algorithms, Complexity and Games
No Polynomial Kernels for Knapsack

Authors: Klaus Heeger, Danny Hermelin, Matthias Mnich, and Dvir Shabtay

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
This paper focuses on kernelization algorithms for the fundamental Knapsack problem. A kernelization algorithm (or kernel) is a polynomial-time reduction from a problem onto itself, where the output size is bounded by a function of some problem-specific parameter. Such algorithms provide a theoretical model for data reduction and preprocessing and are central in the area of parameterized complexity. In this way, a kernel for Knapsack for some parameter k reduces any instance of Knapsack to an equivalent instance of size at most f(k) in polynomial time, for some computable function f. When f(k) = k^{O(1)} then we call such a reduction a polynomial kernel. Our study focuses on two natural parameters for Knapsack: The number w_# of different item weights, and the number p_# of different item profits. Our main technical contribution is a proof showing that Knapsack does not admit a polynomial kernel for any of these two parameters under standard complexity-theoretic assumptions. Our proof discovers an elaborate application of the standard kernelization lower bound framework, and develops along the way novel ideas that should be useful for other problems as well. We complement our lower bounds by showing that Knapsack admits a polynomial kernel for the combined parameter w_# ⋅ p_#.

Cite as

Klaus Heeger, Danny Hermelin, Matthias Mnich, and Dvir Shabtay. No Polynomial Kernels for Knapsack. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 83:1-83:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{heeger_et_al:LIPIcs.ICALP.2024.83,
  author =	{Heeger, Klaus and Hermelin, Danny and Mnich, Matthias and Shabtay, Dvir},
  title =	{{No Polynomial Kernels for Knapsack}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{83:1--83:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.83},
  URN =		{urn:nbn:de:0030-drops-202261},
  doi =		{10.4230/LIPIcs.ICALP.2024.83},
  annote =	{Keywords: Knapsack, polynomial kernels, compositions, number of different weights, number of different profits}
}
Document
Semialgebraic Range Stabbing, Ray Shooting, and Intersection Counting in the Plane

Authors: Timothy M. Chan, Pingan Cheng, and Da Wei Zheng

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
Polynomial partitioning techniques have recently led to improved geometric data structures for a variety of fundamental problems related to semialgebraic range searching and intersection searching in 3D and higher dimensions (e.g., see [Agarwal, Aronov, Ezra, and Zahl, SoCG 2019; Ezra and Sharir, SoCG 2021; Agarwal, Aronov, Ezra, Katz, and Sharir, SoCG 2022]). They have also led to improved algorithms for offline versions of semialgebraic range searching in 2D, via lens-cutting [Sharir and Zahl (2017)]. In this paper, we show that these techniques can yield new data structures for a number of other 2D problems even for online queries: 1) Semialgebraic range stabbing. We present a data structure for n semialgebraic ranges in 2D of constant description complexity with O(n^{3/2+ε}) preprocessing time and space, so that we can count the number of ranges containing a query point in O(n^{1/4+ε}) time, for an arbitrarily small constant ε > 0. (The query time bound is likely close to tight for this space bound.) 2) Ray shooting amid algebraic arcs. We present a data structure for n algebraic arcs in 2D of constant description complexity with O(n^{3/2+ε}) preprocessing time and space, so that we can find the first arc hit by a query (straight-line) ray in O(n^{1/4+ε}) time. (The query bound is again likely close to tight for this space bound, and they improve a result by Ezra and Sharir with near n^{3/2} space and near √n query time.) 3) Intersection counting amid algebraic arcs. We present a data structure for n algebraic arcs in 2D of constant description complexity with O(n^{3/2+ε}) preprocessing time and space, so that we can count the number of intersection points with a query algebraic arc of constant description complexity in O(n^{1/2+ε}) time. In particular, this implies an O(n^{3/2+ε})-time algorithm for counting intersections between two sets of n algebraic arcs in 2D. (This generalizes a classical O(n^{3/2+ε})-time algorithm for circular arcs by Agarwal and Sharir from SoCG 1991.)

Cite as

Timothy M. Chan, Pingan Cheng, and Da Wei Zheng. Semialgebraic Range Stabbing, Ray Shooting, and Intersection Counting in the Plane. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 33:1-33:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chan_et_al:LIPIcs.SoCG.2024.33,
  author =	{Chan, Timothy M. and Cheng, Pingan and Zheng, Da Wei},
  title =	{{Semialgebraic Range Stabbing, Ray Shooting, and Intersection Counting in the Plane}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{33:1--33:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.33},
  URN =		{urn:nbn:de:0030-drops-199785},
  doi =		{10.4230/LIPIcs.SoCG.2024.33},
  annote =	{Keywords: Computational geometry, range searching, intersection searching, semialgebraic sets, data structures, polynomial partitioning}
}
Document
Convex Polygon Containment: Improving Quadratic to Near Linear Time

Authors: Timothy M. Chan and Isaac M. Hair

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
We revisit a standard polygon containment problem: given a convex k-gon P and a convex n-gon Q in the plane, find a placement of P inside Q under translation and rotation (if it exists), or more generally, find the largest copy of P inside Q under translation, rotation, and scaling. Previous algorithms by Chazelle (1983), Sharir and Toledo (1994), and Agarwal, Amenta, and Sharir (1998) all required Ω(n²) time, even in the simplest k = 3 case. We present a significantly faster new algorithm for k = 3 achieving O(n polylog n) running time. Moreover, we extend the result for general k, achieving O(k^O(1/ε) n^{1+ε}) running time for any ε > 0. Along the way, we also prove a new O(k^O(1) n polylog n) bound on the number of similar copies of P inside Q that have 4 vertices of P in contact with the boundary of Q (assuming general position input), disproving a conjecture by Agarwal, Amenta, and Sharir (1998).

Cite as

Timothy M. Chan and Isaac M. Hair. Convex Polygon Containment: Improving Quadratic to Near Linear Time. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 34:1-34:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chan_et_al:LIPIcs.SoCG.2024.34,
  author =	{Chan, Timothy M. and Hair, Isaac M.},
  title =	{{Convex Polygon Containment: Improving Quadratic to Near Linear Time}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{34:1--34:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.34},
  URN =		{urn:nbn:de:0030-drops-199795},
  doi =		{10.4230/LIPIcs.SoCG.2024.34},
  annote =	{Keywords: Polygon containment, convex polygons, translations, rotations}
}
Document
Enclosing Points with Geometric Objects

Authors: Timothy M. Chan, Qizheng He, and Jie Xue

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
Let X be a set of points in ℝ² and 𝒪 be a set of geometric objects in ℝ², where |X| + |𝒪| = n. We study the problem of computing a minimum subset 𝒪^* ⊆ 𝒪 that encloses all points in X. Here a point x ∈ X is enclosed by 𝒪^* if it lies in a bounded connected component of ℝ²∖(⋃_{O ∈ 𝒪^*} O). We propose two algorithmic frameworks to design polynomial-time approximation algorithms for the problem. The first framework is based on sparsification and min-cut, which results in O(1)-approximation algorithms for unit disks, unit squares, etc. The second framework is based on LP rounding, which results in an O(α(n)log n)-approximation algorithm for segments, where α(n) is the inverse Ackermann function, and an O(log n)-approximation algorithm for disks.

Cite as

Timothy M. Chan, Qizheng He, and Jie Xue. Enclosing Points with Geometric Objects. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 35:1-35:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chan_et_al:LIPIcs.SoCG.2024.35,
  author =	{Chan, Timothy M. and He, Qizheng and Xue, Jie},
  title =	{{Enclosing Points with Geometric Objects}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{35:1--35:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.35},
  URN =		{urn:nbn:de:0030-drops-199802},
  doi =		{10.4230/LIPIcs.SoCG.2024.35},
  annote =	{Keywords: obstacle placement, geometric optimization, approximation algorithms}
}
Document
Dynamic Geometric Connectivity in the Plane with Constant Query Time

Authors: Timothy M. Chan and Zhengcheng Huang

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
We present the first fully dynamic connectivity data structures for geometric intersection graphs achieving constant query time and sublinear amortized update time for many classes of geometric objects in 2D . Our data structures can answer connectivity queries between two objects, as well as "global" connectivity queries (e.g., deciding whether the entire graph is connected). Previously, the data structure by Afshani and Chan (ESA'06) achieved such bounds only in the special case of axis-aligned line segments or rectangles but did not work for arbitrary line segments or disks, whereas the data structures by Chan, Pătraşcu, and Roditty (FOCS'08) worked for more general classes of geometric objects but required n^{Ω(1)} query time and could not handle global connectivity queries. Specifically, we obtain new data structures with O(1) query time and amortized update time near n^{4/5}, n^{7/8}, and n^{20/21} for axis-aligned line segments, disks, and arbitrary line segments respectively. Besides greatly reducing the query time, our data structures also improve the previous update times for axis-aligned line segments by Afshani and Chan (from near n^{10/11} to n^{4/5}) and for disks by Chan, Pătraşcu, and Roditty (from near n^{20/21} to n^{7/8}).

Cite as

Timothy M. Chan and Zhengcheng Huang. Dynamic Geometric Connectivity in the Plane with Constant Query Time. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 36:1-36:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chan_et_al:LIPIcs.SoCG.2024.36,
  author =	{Chan, Timothy M. and Huang, Zhengcheng},
  title =	{{Dynamic Geometric Connectivity in the Plane with Constant Query Time}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{36:1--36:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.36},
  URN =		{urn:nbn:de:0030-drops-199819},
  doi =		{10.4230/LIPIcs.SoCG.2024.36},
  annote =	{Keywords: Connectivity, dynamic data structures, geometric intersection graphs}
}
Document
Track A: Algorithms, Complexity and Games
On the Fine-Grained Complexity of Small-Size Geometric Set Cover and Discrete k-Center for Small k

Authors: Timothy M. Chan, Qizheng He, and Yuancheng Yu

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We study the time complexity of the discrete k-center problem and related (exact) geometric set cover problems when k or the size of the cover is small. We obtain a plethora of new results: - We give the first subquadratic algorithm for rectilinear discrete 3-center in 2D, running in Õ(n^{3/2}) time. - We prove a lower bound of Ω(n^{4/3-δ}) for rectilinear discrete 3-center in 4D, for any constant δ > 0, under a standard hypothesis about triangle detection in sparse graphs. - Given n points and n weighted axis-aligned unit squares in 2D, we give the first subquadratic algorithm for finding a minimum-weight cover of the points by 3 unit squares, running in Õ(n^{8/5}) time. We also prove a lower bound of Ω(n^{3/2-δ}) for the same problem in 2D, under the well-known APSP Hypothesis. For arbitrary axis-aligned rectangles in 2D, our upper bound is Õ(n^{7/4}). - We prove a lower bound of Ω(n^{2-δ}) for Euclidean discrete 2-center in 13D, under the Hyperclique Hypothesis. This lower bound nearly matches the straightforward upper bound of Õ(n^ω), if the matrix multiplication exponent ω is equal to 2. - We similarly prove an Ω(n^{k-δ}) lower bound for Euclidean discrete k-center in O(k) dimensions for any constant k ≥ 3, under the Hyperclique Hypothesis. This lower bound again nearly matches known upper bounds if ω = 2. - We also prove an Ω(n^{2-δ}) lower bound for the problem of finding 2 boxes to cover the largest number of points, given n points and n boxes in 12D . This matches the straightforward near-quadratic upper bound.

Cite as

Timothy M. Chan, Qizheng He, and Yuancheng Yu. On the Fine-Grained Complexity of Small-Size Geometric Set Cover and Discrete k-Center for Small k. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 34:1-34:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chan_et_al:LIPIcs.ICALP.2023.34,
  author =	{Chan, Timothy M. and He, Qizheng and Yu, Yuancheng},
  title =	{{On the Fine-Grained Complexity of Small-Size Geometric Set Cover and Discrete k-Center for Small k}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{34:1--34:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.34},
  URN =		{urn:nbn:de:0030-drops-180868},
  doi =		{10.4230/LIPIcs.ICALP.2023.34},
  annote =	{Keywords: Geometric set cover, discrete k-center, conditional lower bounds}
}
Document
Constant-Hop Spanners for More Geometric Intersection Graphs, with Even Smaller Size

Authors: Timothy M. Chan and Zhengcheng Huang

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
In SoCG 2022, Conroy and Tóth presented several constructions of sparse, low-hop spanners in geometric intersection graphs, including an O(nlog n)-size 3-hop spanner for n disks (or fat convex objects) in the plane, and an O(nlog² n)-size 3-hop spanner for n axis-aligned rectangles in the plane. Their work left open two major questions: (i) can the size be made closer to linear by allowing larger constant stretch? and (ii) can near-linear size be achieved for more general classes of intersection graphs? We address both questions simultaneously, by presenting new constructions of constant-hop spanners that have almost linear size and that hold for a much larger class of intersection graphs. More precisely, we prove the existence of an O(1)-hop spanner for arbitrary string graphs with O(nα_k(n)) size for any constant k, where α_k(n) denotes the k-th function in the inverse Ackermann hierarchy. We similarly prove the existence of an O(1)-hop spanner for intersection graphs of d-dimensional fat objects with O(nα_k(n)) size for any constant k and d. We also improve on some of Conroy and Tóth’s specific previous results, in either the number of hops or the size: we describe an O(nlog n)-size 2-hop spanner for disks (or more generally objects with linear union complexity) in the plane, and an O(nlog n)-size 3-hop spanner for axis-aligned rectangles in the plane. Our proofs are all simple, using separator theorems, recursion, shifted quadtrees, and shallow cuttings.

Cite as

Timothy M. Chan and Zhengcheng Huang. Constant-Hop Spanners for More Geometric Intersection Graphs, with Even Smaller Size. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 23:1-23:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chan_et_al:LIPIcs.SoCG.2023.23,
  author =	{Chan, Timothy M. and Huang, Zhengcheng},
  title =	{{Constant-Hop Spanners for More Geometric Intersection Graphs, with Even Smaller Size}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{23:1--23:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.23},
  URN =		{urn:nbn:de:0030-drops-178738},
  doi =		{10.4230/LIPIcs.SoCG.2023.23},
  annote =	{Keywords: Hop spanners, geometric intersection graphs, string graphs, fat objects, separators, shallow cuttings}
}
  • Refine by Author
  • 38 Chan, Timothy M.
  • 6 He, Qizheng
  • 4 Tsakalidis, Konstantinos
  • 3 Huang, Zhengcheng
  • 3 Skrepetos, Dimitrios
  • Show More...

  • Refine by Classification
  • 19 Theory of computation → Computational geometry
  • 6 Theory of computation → Design and analysis of algorithms
  • 5 Theory of computation → Data structures design and analysis
  • 2 Theory of computation
  • 2 Theory of computation → Problems, reductions and completeness
  • Show More...

  • Refine by Keyword
  • 7 dynamic data structures
  • 5 approximation algorithms
  • 4 geometric data structures
  • 4 range searching
  • 4 shallow cuttings
  • Show More...

  • Refine by Type
  • 50 document

  • Refine by Publication Year
  • 13 2024
  • 8 2018
  • 7 2021
  • 4 2016
  • 4 2017
  • Show More...