138 Search Results for "Pagh, Rasmus"


Volume

LIPIcs, Volume 204

29th Annual European Symposium on Algorithms (ESA 2021)

ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual Conference)

Editors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman

Volume

LIPIcs, Volume 53

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016)

SWAT 2016, June 22-24, 2016, Reykjavik, Iceland

Editors: Rasmus Pagh

Document
Improved Space-Efficient Approximate Nearest Neighbor Search Using Function Inversion

Authors: Samuel McCauley

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Approximate nearest neighbor search (ANN) data structures have widespread applications in machine learning, computational biology, and text processing. The goal of ANN is to preprocess a set S so that, given a query q, we can find a point y whose distance from q approximates the smallest distance from q to any point in S. For most distance functions, the best-known ANN bounds for high-dimensional point sets are obtained using techniques based on locality-sensitive hashing (LSH). Unfortunately, space efficiency is a major challenge for LSH-based data structures. Classic LSH techniques require a very large amount of space, oftentimes polynomial in |S|. A long line of work has developed intricate techniques to reduce this space usage, but these techniques suffer from downsides: they must be hand tailored to each specific LSH, are often complicated, and their space reduction comes at the cost of significantly increased query times. In this paper we explore a new way to improve the space efficiency of LSH using function inversion techniques, originally developed in (Fiat and Naor 2000). We begin by describing how function inversion can be used to improve LSH data structures. This gives a fairly simple, black box method to reduce LSH space usage. Then, we give a data structure that leverages function inversion to improve the query time of the best known near-linear space data structure for approximate nearest neighbor search under Euclidean distance: the ALRW data structure of (Andoni, Laarhoven, Razenshteyn, and Waingarten 2017). ALRW was previously shown to be optimal among "list-of-points" data structures for both Euclidean and Manhattan ANN; thus, in addition to giving improved bounds, our results imply that list-of-points data structures are not optimal for Euclidean or Manhattan ANN .

Cite as

Samuel McCauley. Improved Space-Efficient Approximate Nearest Neighbor Search Using Function Inversion. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 88:1-88:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mccauley:LIPIcs.ESA.2024.88,
  author =	{McCauley, Samuel},
  title =	{{Improved Space-Efficient Approximate Nearest Neighbor Search Using Function Inversion}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{88:1--88:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.88},
  URN =		{urn:nbn:de:0030-drops-211590},
  doi =		{10.4230/LIPIcs.ESA.2024.88},
  annote =	{Keywords: similarity search, locality-sensitive hashing, randomized algorithms, data structures, space efficiency, function inversion}
}
Document
RANDOM
Additive Noise Mechanisms for Making Randomized Approximation Algorithms Differentially Private

Authors: Jakub Tětek

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
The exponential increase in the amount of available data makes taking advantage of them without violating users' privacy one of the fundamental problems of computer science. This question has been investigated thoroughly under the framework of differential privacy. However, most of the literature has not focused on settings where the amount of data is so large that we are not even able to compute the exact answer in the non-private setting (such as in the streaming setting, sublinear-time setting, etc.). This can often make the use of differential privacy unfeasible in practice. In this paper, we show a general approach for making Monte-Carlo randomized approximation algorithms differentially private. We only need to assume the error R of the approximation algorithm is sufficiently concentrated around 0 (e.g. 𝔼[|R|] is bounded) and that the function being approximated has a small global sensitivity Δ. Specifically, if we have a randomized approximation algorithm with sufficiently concentrated error which has time/space/query complexity T(n,ρ) with ρ being an accuracy parameter, we can generally speaking get an algorithm with the same accuracy and complexity T(n,Θ(ε ρ)) that is ε-differentially private. Our technical results are as follows. First, we show that if the error is subexponential, then the Laplace mechanism with error magnitude proportional to the sum of the global sensitivity Δ and the subexponential diameter of the error of the algorithm makes the algorithm differentially private. This is true even if the worst-case global sensitivity of the algorithm is large or infinite. We then introduce a new additive noise mechanism, which we call the zero-symmetric Pareto mechanism. We show that using this mechanism, we can make an algorithm differentially private even if we only assume a bound on the first absolute moment of the error 𝔼[|R|]. Finally, we use our results to give either the first known or improved sublinear-complexity differentially private algorithms for various problems. This includes results for frequency moments, estimating the average degree of a graph in subliinear time, rank queries, or estimating the size of the maximum matching. Our results raise many new questions and we state multiple open problems.

Cite as

Jakub Tětek. Additive Noise Mechanisms for Making Randomized Approximation Algorithms Differentially Private. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 73:1-73:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{tetek:LIPIcs.APPROX/RANDOM.2024.73,
  author =	{T\v{e}tek, Jakub},
  title =	{{Additive Noise Mechanisms for Making Randomized Approximation Algorithms Differentially Private}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{73:1--73:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.73},
  URN =		{urn:nbn:de:0030-drops-210660},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.73},
  annote =	{Keywords: Differential privacy, Randomized approximation algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Optimal Non-Adaptive Cell Probe Dictionaries and Hashing

Authors: Kasper Green Larsen, Rasmus Pagh, Giuseppe Persiano, Toniann Pitassi, Kevin Yeo, and Or Zamir

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We present a simple and provably optimal non-adaptive cell probe data structure for the static dictionary problem. Our data structure supports storing a set of n key-value pairs from [u]× [u] using s words of space and answering key lookup queries in t = O(lg(u/n)/lg(s/n)) non-adaptive probes. This generalizes a solution to the membership problem (i.e., where no values are associated with keys) due to Buhrman et al. We also present matching lower bounds for the non-adaptive static membership problem in the deterministic setting. Our lower bound implies that both our dictionary algorithm and the preceding membership algorithm are optimal, and in particular that there is an inherent complexity gap in these problems between no adaptivity and one round of adaptivity (with which hashing-based algorithms solve these problems in constant time). Using the ideas underlying our data structure, we also obtain the first implementation of a n-wise independent family of hash functions with optimal evaluation time in the cell probe model.

Cite as

Kasper Green Larsen, Rasmus Pagh, Giuseppe Persiano, Toniann Pitassi, Kevin Yeo, and Or Zamir. Optimal Non-Adaptive Cell Probe Dictionaries and Hashing. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 104:1-104:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{larsen_et_al:LIPIcs.ICALP.2024.104,
  author =	{Larsen, Kasper Green and Pagh, Rasmus and Persiano, Giuseppe and Pitassi, Toniann and Yeo, Kevin and Zamir, Or},
  title =	{{Optimal Non-Adaptive Cell Probe Dictionaries and Hashing}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{104:1--104:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.104},
  URN =		{urn:nbn:de:0030-drops-202471},
  doi =		{10.4230/LIPIcs.ICALP.2024.104},
  annote =	{Keywords: non-adaptive, cell probe, dictionary, hashing}
}
Document
Daisy Bloom Filters

Authors: Ioana O. Bercea, Jakob Bæk Tejs Houen, and Rasmus Pagh

Published in: LIPIcs, Volume 294, 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024)


Abstract
A filter is a widely used data structure for storing an approximation of a given set S of elements from some universe 𝒰 (a countable set). It represents a superset S' ⊇ S that is "close to S" in the sense that for x ∉ S, the probability that x ∈ S' is bounded by some ε > 0. The advantage of using a Bloom filter, when some false positives are acceptable, is that the space usage becomes smaller than what is required to store S exactly. Though filters are well-understood from a worst-case perspective, it is clear that state-of-the-art constructions may not be close to optimal for particular distributions of data and queries. Suppose, for instance, that some elements are in S with probability close to 1. Then it would make sense to always include them in S', saving space by not having to represent these elements in the filter. Questions like this have been raised in the context of Weighted Bloom filters (Bruck, Gao and Jiang, ISIT 2006) and Bloom filter implementations that make use of access to learned components (Vaidya, Knorr, Mitzenmacher, and Krask, ICLR 2021). In this paper, we present a lower bound for the expected space that such a filter requires. We also show that the lower bound is asymptotically tight by exhibiting a filter construction that executes queries and insertions in worst-case constant time, and has a false positive rate at most ε with high probability over input sets drawn from a product distribution. We also present a Bloom filter alternative, which we call the Daisy Bloom filter, that executes operations faster and uses significantly less space than the standard Bloom filter.

Cite as

Ioana O. Bercea, Jakob Bæk Tejs Houen, and Rasmus Pagh. Daisy Bloom Filters. In 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 294, pp. 9:1-9:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bercea_et_al:LIPIcs.SWAT.2024.9,
  author =	{Bercea, Ioana O. and Houen, Jakob B{\ae}k Tejs and Pagh, Rasmus},
  title =	{{Daisy Bloom Filters}},
  booktitle =	{19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024)},
  pages =	{9:1--9:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-318-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{294},
  editor =	{Bodlaender, Hans L.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2024.9},
  URN =		{urn:nbn:de:0030-drops-200491},
  doi =		{10.4230/LIPIcs.SWAT.2024.9},
  annote =	{Keywords: Bloom filters, input distribution, learned data structures}
}
Document
CG Challenge
Constructing Concise Convex Covers via Clique Covers (CG Challenge)

Authors: Mikkel Abrahamsen, William Bille Meyling, and André Nusser

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
This work describes the winning implementation of the CG:SHOP 2023 Challenge. The topic of the Challenge was the convex cover problem: given a polygon P (with holes), find a minimum-cardinality set of convex polygons whose union equals P. We use a three-step approach: (1) Create a suitable partition of P. (2) Compute a visibility graph of the pieces of the partition. (3) Solve a vertex clique cover problem on the visibility graph, from which we then derive the convex cover. This way we capture the geometric difficulty in the first step and the combinatorial difficulty in the third step.

Cite as

Mikkel Abrahamsen, William Bille Meyling, and André Nusser. Constructing Concise Convex Covers via Clique Covers (CG Challenge). In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 66:1-66:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{abrahamsen_et_al:LIPIcs.SoCG.2023.66,
  author =	{Abrahamsen, Mikkel and Bille Meyling, William and Nusser, Andr\'{e}},
  title =	{{Constructing Concise Convex Covers via Clique Covers}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{66:1--66:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.66},
  URN =		{urn:nbn:de:0030-drops-179164},
  doi =		{10.4230/LIPIcs.SoCG.2023.66},
  annote =	{Keywords: Convex cover, Polygons with holes, Algorithm engineering, Vertex clique cover}
}
Document
Track A: Algorithms, Complexity and Games
Approximate Triangle Counting via Sampling and Fast Matrix Multiplication

Authors: Jakub Tětek

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
There is a simple O(n³/{ε²T}) time algorithm for 1±ε-approximate triangle counting where T is the number of triangles in the graph and n the number of vertices. At the same time, one may count triangles exactly using fast matrix multiplication in time Õ(n^ω). Is it possible to get a negative dependency on the number of triangles T while retaining the state-of-the-art n^ω dependency on n? We answer this question positively by providing an algorithm which runs in time O({n^ω}/T^{ω-2})⋅poly(n^o(1)/ε). This is optimal in the sense that as long as the exponent of T is independent of n, T, it cannot be improved while retaining the dependency on n. Our algorithm improves upon the state of the art when T ≫ 1 and T ≪ n. We also consider the problem of approximate triangle counting in sparse graphs, parameterized by the number of edges m. The best known algorithm runs in time Õ_ε(m^{3/2}/T) [Eden et al., SIAM Journal on Computing, 2017]. An algorithm by Alon et al. [JACM, 1995] for exact triangle counting that runs in time Õ(m^{2ω/(ω + 1)}). We again get an algorithm whose complexity has a state-of-the-art dependency on m while having negative dependency on T. Specifically, our algorithm runs in time O({m^{2ω/(ω+1)}}/{T^{2(ω-1)/(ω+1)}}) ⋅ poly(n^o(1)/ε). This is again optimal in the sense that no better constant exponent of T is possible without worsening the dependency on m. This algorithm improves upon the state of the art when T ≫ 1 and T ≪ √m. In both cases, algorithms with time complexity matching query complexity lower bounds were known on some range of parameters. While those algorithms have optimal query complexity for the whole range of T, the time complexity departs from the query complexity and is no longer optimal (as we show) for T ≪ n and T ≪ √m, respectively. We focus on the time complexity in this range of T. To the best of our knowledge, this is the first paper considering the discrepancy between query and time complexity in graph parameter estimation.

Cite as

Jakub Tětek. Approximate Triangle Counting via Sampling and Fast Matrix Multiplication. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 107:1-107:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{tetek:LIPIcs.ICALP.2022.107,
  author =	{T\v{e}tek, Jakub},
  title =	{{Approximate Triangle Counting via Sampling and Fast Matrix Multiplication}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{107:1--107:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.107},
  URN =		{urn:nbn:de:0030-drops-164485},
  doi =		{10.4230/LIPIcs.ICALP.2022.107},
  annote =	{Keywords: Approximate triangle counting, Fast matrix multiplication, Sampling}
}
Document
Complete Volume
LIPIcs, Volume 204, ESA 2021, Complete Volume

Authors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
LIPIcs, Volume 204, ESA 2021, Complete Volume

Cite as

29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 1-1340, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@Proceedings{mutzel_et_al:LIPIcs.ESA.2021,
  title =	{{LIPIcs, Volume 204, ESA 2021, Complete Volume}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{1--1340},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021},
  URN =		{urn:nbn:de:0030-drops-145808},
  doi =		{10.4230/LIPIcs.ESA.2021},
  annote =	{Keywords: LIPIcs, Volume 204, ESA 2021, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 0:i-0:xx, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{mutzel_et_al:LIPIcs.ESA.2021.0,
  author =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{0:i--0:xx},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.0},
  URN =		{urn:nbn:de:0030-drops-145816},
  doi =		{10.4230/LIPIcs.ESA.2021.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Invited Talk
Network Planning and Routing Problems over Time: Models, Complexity and Algorithms (Invited Talk)

Authors: Lukas Glomb, Benno Hoch, Frauke Liers, and Florian Rösel

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
In this invited contribution for ESA 2021, we will study the complexity of and algorithms for network optimization tasks with a timing component. They occur, for example, in planning or routing problems that need to be solved repeatedly over time. Typically, already simplified versions of such problems are NP-hard. In addition, the instances typically are too large to be solved straight-forwardly on a time-expanded graph. After an introduction into the area, we state the problem of determining best possible non-stop trajectories in a network that are not allowed to cross at any point in time. For simplified settings, polynomial-time solution approaches are presented whereas already for restricted settings the problems are shown to be NP-hard. When moving to more complex and more realistic settings as they occur, for example, in determining non-stop disjoint trajectories for a set of aircraft, we present heuristic algorithms that adaptively refine coarse disjoint trajectories in the timing dimension. In order to be able to solve the non-stop disjoint trajectories problem over time, the method is integrated in a rolling-horizon algorithm. We present computational results for realistic settings. Motivated by the fact that rolling-horizon approaches are often applied in practice without knowledge on the quality of the obtained solutions, we study this problem from an abstract point of view. In fact, we more abstractly analyze the solution quality of general rolling-horizon algorithms for optimization tasks that show a timing component. We apply it to different planning problems. We end by pointing out some challenges and possibilities for future research.

Cite as

Lukas Glomb, Benno Hoch, Frauke Liers, and Florian Rösel. Network Planning and Routing Problems over Time: Models, Complexity and Algorithms (Invited Talk). In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 1:1-1:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{glomb_et_al:LIPIcs.ESA.2021.1,
  author =	{Glomb, Lukas and Hoch, Benno and Liers, Frauke and R\"{o}sel, Florian},
  title =	{{Network Planning and Routing Problems over Time: Models, Complexity and Algorithms}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{1:1--1:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.1},
  URN =		{urn:nbn:de:0030-drops-145822},
  doi =		{10.4230/LIPIcs.ESA.2021.1},
  annote =	{Keywords: network problems over time, rolling-horizon, complexity, approximation}
}
Document
Invited Talk
A User Friendly Power Tool for Deriving Online Learning Algorithms (Invited Talk)

Authors: Aaron Roth

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
In this talk, we overview a simple and user friendly framework developed in [Noarov et al., 2021] that can be used to derive online learning algorithms in a number of settings. In the core framework, at every round, an adaptive adversary introduces a new game, consisting of an action space for the learner, an action space for the adversary, and a vector valued objective function that is concave-convex in every coordinate. The learner and the adversary then play in this game. The learner’s goal is to play so as to minimize the maximum coordinate of the cumulative vector-valued loss. The resulting one-shot game is not concave-convex, and so the minimax theorem does not apply. Nevertheless we give a simple algorithm that can compete with the setting in which the adversary must announce their action first, with optimally diminishing regret. We demonstrate the power of our simple framework by using it to derive optimal bounds and algorithms across a variety of domains. This includes no regret learning: we can recover optimal algorithms and bounds for minimizing exernal regret, internal regret, adaptive regret, multigroup regret, subsequence regret, and permutation regret in the sleeping experts setting. It also includes (multi)calibration [Hébert-Johnson et al., 2018] and related notions: we are able to recover recently derived algorithms and bounds for online adversarial multicalibration [Gupta et al., 2021], mean conditioned moment multicalibration [Jung et al., 2021], and prediction interval multivalidity [Gupta et al., 2021]. Finally we use it to derive a new variant of Blackwell’s Approachability Theorem, which we term "Fast Polytope Approachability".

Cite as

Aaron Roth. A User Friendly Power Tool for Deriving Online Learning Algorithms (Invited Talk). In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, p. 2:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{roth:LIPIcs.ESA.2021.2,
  author =	{Roth, Aaron},
  title =	{{A User Friendly Power Tool for Deriving Online Learning Algorithms}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{2:1--2:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.2},
  URN =		{urn:nbn:de:0030-drops-145835},
  doi =		{10.4230/LIPIcs.ESA.2021.2},
  annote =	{Keywords: Online Learning, Multicalibration, Multivalidity, Blackwell Approachability}
}
Document
Bi-Objective Search with Bi-Directional A*

Authors: Saman Ahmadi, Guido Tack, Daniel Harabor, and Philip Kilby

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
Bi-objective search is a well-known algorithmic problem, concerned with finding a set of optimal solutions in a two-dimensional domain. This problem has a wide variety of applications such as planning in transport systems or optimal control in energy systems. Recently, bi-objective A*-based search (BOA*) has shown state-of-the-art performance in large networks. This paper develops a bi-directional and parallel variant of BOA*, enriched with several speed-up heuristics. Our experimental results on 1,000 benchmark cases show that our bi-directional A* algorithm for bi-objective search (BOBA*) can optimally solve all of the benchmark cases within the time limit, outperforming the state of the art BOA*, bi-objective Dijkstra and bi-directional bi-objective Dijkstra by an average runtime improvement of a factor of five over all of the benchmark instances.

Cite as

Saman Ahmadi, Guido Tack, Daniel Harabor, and Philip Kilby. Bi-Objective Search with Bi-Directional A*. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 3:1-3:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{ahmadi_et_al:LIPIcs.ESA.2021.3,
  author =	{Ahmadi, Saman and Tack, Guido and Harabor, Daniel and Kilby, Philip},
  title =	{{Bi-Objective Search with Bi-Directional A*}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{3:1--3:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.3},
  URN =		{urn:nbn:de:0030-drops-145849},
  doi =		{10.4230/LIPIcs.ESA.2021.3},
  annote =	{Keywords: Bi-objective search, heuristic search, shortest path problem}
}
Document
A Unified Approach for All Pairs Approximate Shortest Paths in Weighted Undirected Graphs

Authors: Maor Akav and Liam Roditty

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
Let G = (V,E) be a weighted undirected graph with n vertices and m edges, and let d_G(u,v) be the length of the shortest path between u and v in G. In this paper we present a unified approach for obtaining algorithms for all pairs approximate shortest paths in weighted undirected graphs. For every integer k ≥ 2 we show that there is an Õ(n²+kn^{2-3/k}m^{2/k}) expected running time algorithm that computes a matrix M such that for every u,v ∈ V: d_G(u,v) ≤ M[u,v] ≤ (2+(k-2)/k)d_G(u,v). Previous algorithms obtained only specific approximation factors. Baswana and Kavitha [FOCS 2006, SICOMP 2010] presented a 2-approximation algorithm with expected running time of Õ(n²+m√ n) and a 7/3-approximation algorithm with expected running time of Õ(n²+m^{2/3}n). Their results improved upon the results of Cohen and Zwick [SODA 1997, JoA 2001] for graphs with m = o(n²). Kavitha [FSTTCS 2007, Algorithmica 2012] presented a 5/2-approximation algorithm with expected running time of Õ(n^{9/4}). For k = 2 and k = 3 our result gives the algorithms of Baswana and Kavitha. For k = 4, we get a 5/2-approximation algorithm with Õ(n^{5/4}m^{1/2}) expected running time. This improves upon the running time of Õ(n^{9/4}) due to Kavitha, when m = o(n²). Our unified approach reveals that all previous algorithms are a part of a family of algorithms that exhibit a smooth tradeoff between approximation of 2 and 3, and are not sporadic unrelated results. Moreover, our new algorithm uses, among other ideas, the celebrated approximate distance oracles of Thorup and Zwick [STOC 2001, JACM 2005] in a non standard way, which we believe is of independent interest, due to their extensive usage in a variety of applications.

Cite as

Maor Akav and Liam Roditty. A Unified Approach for All Pairs Approximate Shortest Paths in Weighted Undirected Graphs. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 4:1-4:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{akav_et_al:LIPIcs.ESA.2021.4,
  author =	{Akav, Maor and Roditty, Liam},
  title =	{{A Unified Approach for All Pairs Approximate Shortest Paths in Weighted Undirected Graphs}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{4:1--4:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.4},
  URN =		{urn:nbn:de:0030-drops-145858},
  doi =		{10.4230/LIPIcs.ESA.2021.4},
  annote =	{Keywords: Graph algorithms, Approximate All Pairs of Shortest Paths, Distance Oracles}
}
Document
The Voronoi Diagram of Rotating Rays With applications to Floodlight Illumination

Authors: Carlos Alegría, Ioannis Mantas, Evanthia Papadopoulou, Marko Savić, Hendrik Schrezenmaier, Carlos Seara, and Martin Suderland

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
We introduce the Voronoi Diagram of Rotating Rays, a Voronoi structure where the input sites are rays, and the distance function is the counterclockwise angular distance between a point and a ray-site. This novel Voronoi diagram is motivated by illumination and coverage problems, where a domain has to be covered by floodlights (wedges) of uniform angle, and the goal is to find the minimum angle necessary to cover the domain. We study the diagram in the plane, and we present structural properties, combinatorial complexity bounds, and a construction algorithm. If the rays are induced by a convex polygon, we show how to construct the ray Voronoi diagram within this polygon in linear time. Using this information, we can find in optimal linear time the Brocard angle, the minimum angle required to illuminate a convex polygon with floodlights of uniform angle. This last algorithm improves upon previous results, settling an interesting open problem.

Cite as

Carlos Alegría, Ioannis Mantas, Evanthia Papadopoulou, Marko Savić, Hendrik Schrezenmaier, Carlos Seara, and Martin Suderland. The Voronoi Diagram of Rotating Rays With applications to Floodlight Illumination. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 5:1-5:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{alegria_et_al:LIPIcs.ESA.2021.5,
  author =	{Alegr{\'\i}a, Carlos and Mantas, Ioannis and Papadopoulou, Evanthia and Savi\'{c}, Marko and Schrezenmaier, Hendrik and Seara, Carlos and Suderland, Martin},
  title =	{{The Voronoi Diagram of Rotating Rays With applications to Floodlight Illumination}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{5:1--5:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.5},
  URN =		{urn:nbn:de:0030-drops-145865},
  doi =		{10.4230/LIPIcs.ESA.2021.5},
  annote =	{Keywords: rotating rays, Voronoi diagram, oriented angular distance, Brocard angle, floodlight illumination, coverage problems, art gallery problems}
}
  • Refine by Author
  • 15 Pagh, Rasmus
  • 4 Friedrich, Tobias
  • 3 Bläsius, Thomas
  • 3 Chan, Timothy M.
  • 3 Maheshwari, Anil
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 6 approximation
  • 4 fixed-parameter tractability
  • 4 locality-sensitive hashing
  • 3 approximation algorithm
  • 3 approximation algorithms
  • Show More...

  • Refine by Type
  • 136 document
  • 2 volume

  • Refine by Publication Year
  • 87 2021
  • 36 2016
  • 4 2024
  • 3 2017
  • 3 2020
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail