111 Search Results for "Pilipczuk, Michał"


Volume

LIPIcs, Volume 115

13th International Symposium on Parameterized and Exact Computation (IPEC 2018)

IPEC 2018, August 20-24, 2018, Helsinki, Finland

Editors: Christophe Paul and Michal Pilipczuk

Document
A Parameterized Approximation Scheme for the Geometric Knapsack Problem with Wide Items

Authors: Mathieu Mari, Timothé Picavet, and Michał Pilipczuk

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
We study a natural geometric variant of the classic Knapsack problem called 2D-Knapsack: we are given a set of axis-parallel rectangles and a rectangular bounding box, and the goal is to pack as many of these rectangles inside the box without overlap. Naturally, this problem is NP-complete. Recently, Grandoni et al. [ESA'19] showed that it is also 𝖶[1]-hard when parameterized by the size k of the sought packing, and they presented a parameterized approximation scheme (PAS) for the variant where we are allowed to rotate the rectangles by 90° before packing them into the box. Obtaining a PAS for the original 2D-Knapsack problem, without rotation, appears to be a challenging open question. In this work, we make progress towards this goal by showing a PAS under the following assumptions: - both the box and all the input rectangles have integral, polynomially bounded sidelengths; - every input rectangle is wide - its width is greater than its height; and - the aspect ratio of the box is bounded by a constant. Our approximation scheme relies on a mix of various parameterized and approximation techniques, including color coding, rounding, and searching for a structured near-optimum packing using dynamic programming.

Cite as

Mathieu Mari, Timothé Picavet, and Michał Pilipczuk. A Parameterized Approximation Scheme for the Geometric Knapsack Problem with Wide Items. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 33:1-33:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{mari_et_al:LIPIcs.IPEC.2023.33,
  author =	{Mari, Mathieu and Picavet, Timoth\'{e} and Pilipczuk, Micha{\l}},
  title =	{{A Parameterized Approximation Scheme for the Geometric Knapsack Problem with Wide Items}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{33:1--33:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.33},
  URN =		{urn:nbn:de:0030-drops-194529},
  doi =		{10.4230/LIPIcs.IPEC.2023.33},
  annote =	{Keywords: Parameterized complexity, Approximation scheme, Geometric knapsack, Color coding, Dynamic programming, Computational geometry}
}
Document
Space-Efficient Parameterized Algorithms on Graphs of Low Shrubdepth

Authors: Benjamin Bergougnoux, Vera Chekan, Robert Ganian, Mamadou Moustapha Kanté, Matthias Mnich, Sang-il Oum, Michał Pilipczuk, and Erik Jan van Leeuwen

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
Dynamic programming on various graph decompositions is one of the most fundamental techniques used in parameterized complexity. Unfortunately, even if we consider concepts as simple as path or tree decompositions, such dynamic programming uses space that is exponential in the decomposition’s width, and there are good reasons to believe that this is necessary. However, it has been shown that in graphs of low treedepth it is possible to design algorithms which achieve polynomial space complexity without requiring worse time complexity than their counterparts working on tree decompositions of bounded width. Here, treedepth is a graph parameter that, intuitively speaking, takes into account both the depth and the width of a tree decomposition of the graph, rather than the width alone. Motivated by the above, we consider graphs that admit clique expressions with bounded depth and label count, or equivalently, graphs of low shrubdepth. Here, shrubdepth is a bounded-depth analogue of cliquewidth, in the same way as treedepth is a bounded-depth analogue of treewidth. We show that also in this setting, bounding the depth of the decomposition is a deciding factor for improving the space complexity. More precisely, we prove that on n-vertex graphs equipped with a tree-model (a decomposition notion underlying shrubdepth) of depth d and using k labels, - Independent Set can be solved in time 2^𝒪(dk) ⋅ n^𝒪(1) using 𝒪(dk²log n) space; - Max Cut can be solved in time n^𝒪(dk) using 𝒪(dk log n) space; and - Dominating Set can be solved in time 2^𝒪(dk) ⋅ n^𝒪(1) using n^𝒪(1) space via a randomized algorithm. We also establish a lower bound, conditional on a certain assumption about the complexity of Longest Common Subsequence, which shows that at least in the case of Independent Set the exponent of the parametric factor in the time complexity has to grow with d if one wishes to keep the space complexity polynomial.

Cite as

Benjamin Bergougnoux, Vera Chekan, Robert Ganian, Mamadou Moustapha Kanté, Matthias Mnich, Sang-il Oum, Michał Pilipczuk, and Erik Jan van Leeuwen. Space-Efficient Parameterized Algorithms on Graphs of Low Shrubdepth. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 18:1-18:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bergougnoux_et_al:LIPIcs.ESA.2023.18,
  author =	{Bergougnoux, Benjamin and Chekan, Vera and Ganian, Robert and Kant\'{e}, Mamadou Moustapha and Mnich, Matthias and Oum, Sang-il and Pilipczuk, Micha{\l} and van Leeuwen, Erik Jan},
  title =	{{Space-Efficient Parameterized Algorithms on Graphs of Low Shrubdepth}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{18:1--18:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.18},
  URN =		{urn:nbn:de:0030-drops-186710},
  doi =		{10.4230/LIPIcs.ESA.2023.18},
  annote =	{Keywords: Parameterized complexity, shrubdepth, space complexity, algebraic methods}
}
Document
Track A: Algorithms, Complexity and Games
Parameterized Complexity of Binary CSP: Vertex Cover, Treedepth, and Related Parameters

Authors: Hans L. Bodlaender, Carla Groenland, and Michał Pilipczuk

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We investigate the parameterized complexity of Binary CSP parameterized by the vertex cover number and the treedepth of the constraint graph, as well as by a selection of related modulator-based parameters. The main findings are as follows: - Binary CSP parameterized by the vertex cover number is W[3]-complete. More generally, for every positive integer d, Binary CSP parameterized by the size of a modulator to a treedepth-d graph is W[2d+1]-complete. This provides a new family of natural problems that are complete for odd levels of the W-hierarchy. - We introduce a new complexity class XSLP, defined so that Binary CSP parameterized by treedepth is complete for this class. We provide two equivalent characterizations of XSLP: the first one relates XSLP to a model of an alternating Turing machine with certain restrictions on conondeterminism and space complexity, while the second one links XSLP to the problem of model-checking first-order logic with suitably restricted universal quantification. Interestingly, the proof of the machine characterization of XSLP uses the concept of universal trees, which are prominently featured in the recent work on parity games. - We describe a new complexity hierarchy sandwiched between the W-hierarchy and the A-hierarchy: For every odd t, we introduce a parameterized complexity class S[t] with W[t] ⊆ S[t] ⊆ A[t], defined using a parameter that interpolates between the vertex cover number and the treedepth. We expect that many of the studied classes will be useful in the future for pinpointing the complexity of various structural parameterizations of graph problems.

Cite as

Hans L. Bodlaender, Carla Groenland, and Michał Pilipczuk. Parameterized Complexity of Binary CSP: Vertex Cover, Treedepth, and Related Parameters. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 27:1-27:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bodlaender_et_al:LIPIcs.ICALP.2023.27,
  author =	{Bodlaender, Hans L. and Groenland, Carla and Pilipczuk, Micha{\l}},
  title =	{{Parameterized Complexity of Binary CSP: Vertex Cover, Treedepth, and Related Parameters}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{27:1--27:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.27},
  URN =		{urn:nbn:de:0030-drops-180798},
  doi =		{10.4230/LIPIcs.ICALP.2023.27},
  annote =	{Keywords: Parameterized Complexity, Constraint Satisfaction Problems, Binary CSP, List Coloring, Vertex Cover, Treedepth, W-hierarchy}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Flipper Games for Monadically Stable Graph Classes

Authors: Jakub Gajarský, Nikolas Mählmann, Rose McCarty, Pierre Ohlmann, Michał Pilipczuk, Wojciech Przybyszewski, Sebastian Siebertz, Marek Sokołowski, and Szymon Toruńczyk

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
A class of graphs C is monadically stable if for every unary expansion Ĉ of C, one cannot encode - using first-order transductions - arbitrarily long linear orders in graphs from C. It is known that nowhere dense graph classes are monadically stable; these include classes of bounded maximum degree and classes that exclude a fixed topological minor. On the other hand, monadic stability is a property expressed in purely model-theoretic terms that is also suited for capturing structure in dense graphs. In this work we provide a characterization of monadic stability in terms of the Flipper game: a game on a graph played by Flipper, who in each round can complement the edge relation between any pair of vertex subsets, and Localizer, who in each round is forced to restrict the game to a ball of bounded radius. This is an analog of the Splitter game, which characterizes nowhere dense classes of graphs (Grohe, Kreutzer, and Siebertz, J. ACM '17). We give two different proofs of our main result. The first proof is based on tools borrowed from model theory, and it exposes an additional property of monadically stable graph classes that is close in spirit to definability of types. Also, as a byproduct, we show that monadic stability for graph classes coincides with monadic stability of existential formulas with two free variables, and we provide another combinatorial characterization of monadic stability via forbidden patterns. The second proof relies on the recently introduced notion of flip-flatness (Dreier, Mählmann, Siebertz, and Toruńczyk, arXiv 2206.13765) and provides an efficient algorithm to compute Flipper’s moves in a winning strategy.

Cite as

Jakub Gajarský, Nikolas Mählmann, Rose McCarty, Pierre Ohlmann, Michał Pilipczuk, Wojciech Przybyszewski, Sebastian Siebertz, Marek Sokołowski, and Szymon Toruńczyk. Flipper Games for Monadically Stable Graph Classes. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 128:1-128:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{gajarsky_et_al:LIPIcs.ICALP.2023.128,
  author =	{Gajarsk\'{y}, Jakub and M\"{a}hlmann, Nikolas and McCarty, Rose and Ohlmann, Pierre and Pilipczuk, Micha{\l} and Przybyszewski, Wojciech and Siebertz, Sebastian and Soko{\l}owski, Marek and Toru\'{n}czyk, Szymon},
  title =	{{Flipper Games for Monadically Stable Graph Classes}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{128:1--128:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.128},
  URN =		{urn:nbn:de:0030-drops-181804},
  doi =		{10.4230/LIPIcs.ICALP.2023.128},
  annote =	{Keywords: Stability theory, structural graph theory, games}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Canonical Decompositions in Monadically Stable and Bounded Shrubdepth Graph Classes

Authors: Pierre Ohlmann, Michał Pilipczuk, Wojciech Przybyszewski, and Szymon Toruńczyk

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We use model-theoretic tools originating from stability theory to derive a result we call the Finitary Substitute Lemma, which intuitively says the following. Suppose we work in a stable graph class 𝒞, and using a first-order formula φ with parameters we are able to define, in every graph G ∈ 𝒞, a relation R that satisfies some hereditary first-order assertion ψ. Then we are able to find a first-order formula φ' that has the same property, but additionally is finitary: there is finite bound k ∈ ℕ such that in every graph G ∈ 𝒞, different choices of parameters give only at most k different relations R that can be defined using φ'. We use the Finitary Substitute Lemma to derive two corollaries about the existence of certain canonical decompositions in classes of well-structured graphs. - We prove that in the Splitter game, which characterizes nowhere dense graph classes, and in the Flipper game, which characterizes monadically stable graph classes, there is a winning strategy for Splitter, respectively Flipper, that can be defined in first-order logic from the game history. Thus, the strategy is canonical. - We show that for any fixed graph class 𝒞 of bounded shrubdepth, there is an 𝒪(n²)-time algorithm that given an n-vertex graph G ∈ 𝒞, computes in an isomorphism-invariant way a structure H of bounded treedepth in which G can be interpreted. A corollary of this result is an 𝒪(n²)-time isomorphism test and canonization algorithm for any fixed class of bounded shrubdepth.

Cite as

Pierre Ohlmann, Michał Pilipczuk, Wojciech Przybyszewski, and Szymon Toruńczyk. Canonical Decompositions in Monadically Stable and Bounded Shrubdepth Graph Classes. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 135:1-135:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{ohlmann_et_al:LIPIcs.ICALP.2023.135,
  author =	{Ohlmann, Pierre and Pilipczuk, Micha{\l} and Przybyszewski, Wojciech and Toru\'{n}czyk, Szymon},
  title =	{{Canonical Decompositions in Monadically Stable and Bounded Shrubdepth Graph Classes}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{135:1--135:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.135},
  URN =		{urn:nbn:de:0030-drops-181874},
  doi =		{10.4230/LIPIcs.ICALP.2023.135},
  annote =	{Keywords: Model Theory, Stability Theory, Shrubdepth, Nowhere Dense, Monadically Stable}
}
Document
On Rational Recursive Sequences

Authors: Lorenzo Clemente, Maria Donten-Bury, Filip Mazowiecki, and Michał Pilipczuk

Published in: LIPIcs, Volume 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)


Abstract
We study the class of rational recursive sequences (ratrec) over the rational numbers. A ratrec sequence is defined via a system of sequences using mutually recursive equations of depth 1, where the next values are computed as rational functions of the previous values. An alternative class is that of simple ratrec sequences, where one uses a single recursive equation, however of depth k: the next value is defined as a rational function of k previous values. We conjecture that the classes ratrec and simple ratrec coincide. The main contribution of this paper is a proof of a variant of this conjecture where the initial conditions are treated symbolically, using a formal variable per sequence, while the sequences themselves consist of rational functions over those variables. While the initial conjecture does not follow from this variant, we hope that the introduced algebraic techniques may eventually be helpful in resolving the problem. The class ratrec strictly generalises a well-known class of polynomial recursive sequences (polyrec). These are defined like ratrec, but using polynomial functions instead of rational ones. One can observe that if our conjecture is true and effective, then we can improve the complexities of the zeroness and the equivalence problems for polyrec sequences. Currently, the only known upper bound is Ackermanian, which follows from results on polynomial automata. We complement this observation by proving a PSPACE lower bound for both problems for polyrec. Our lower bound construction also implies that the Skolem problem is PSPACE-hard for the polyrec class.

Cite as

Lorenzo Clemente, Maria Donten-Bury, Filip Mazowiecki, and Michał Pilipczuk. On Rational Recursive Sequences. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 24:1-24:21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{clemente_et_al:LIPIcs.STACS.2023.24,
  author =	{Clemente, Lorenzo and Donten-Bury, Maria and Mazowiecki, Filip and Pilipczuk, Micha{\l}},
  title =	{{On Rational Recursive Sequences}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{24:1--24:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.24},
  URN =		{urn:nbn:de:0030-drops-176763},
  doi =		{10.4230/LIPIcs.STACS.2023.24},
  annote =	{Keywords: recursive sequences, polynomial automata, zeroness problem, equivalence problem}
}
Document
Maintaining CMSO₂ Properties on Dynamic Structures with Bounded Feedback Vertex Number

Authors: Konrad Majewski, Michał Pilipczuk, and Marek Sokołowski

Published in: LIPIcs, Volume 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)


Abstract
Let 𝜑 be a sentence of CMSO₂ (monadic second-order logic with quantification over edge subsets and counting modular predicates) over the signature of graphs. We present a dynamic data structure that for a given graph G that is updated by edge insertions and edge deletions, maintains whether 𝜑 is satisfied in G. The data structure is required to correctly report the outcome only when the feedback vertex number of G does not exceed a fixed constant k, otherwise it reports that the feedback vertex number is too large. With this assumption, we guarantee amortized update time O_{𝜑,k}(log n). By combining this result with a classic theorem of Erdős and Pósa, we give a fully dynamic data structure that maintains whether a graph contains a packing of k vertex-disjoint cycles with amortized update time O_k(log n). Our data structure also works in a larger generality of relational structures over binary signatures.

Cite as

Konrad Majewski, Michał Pilipczuk, and Marek Sokołowski. Maintaining CMSO₂ Properties on Dynamic Structures with Bounded Feedback Vertex Number. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 46:1-46:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{majewski_et_al:LIPIcs.STACS.2023.46,
  author =	{Majewski, Konrad and Pilipczuk, Micha{\l} and Soko{\l}owski, Marek},
  title =	{{Maintaining CMSO₂ Properties on Dynamic Structures with Bounded Feedback Vertex Number}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{46:1--46:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.46},
  URN =		{urn:nbn:de:0030-drops-176981},
  doi =		{10.4230/LIPIcs.STACS.2023.46},
  annote =	{Keywords: feedback vertex set, CMSO₂ formula, data structure, dynamic graphs, fixed-parameter tractability}
}
Document
Dynamic Data Structures for Parameterized String Problems

Authors: Jędrzej Olkowski, Michał Pilipczuk, Mateusz Rychlicki, Karol Węgrzycki, and Anna Zych-Pawlewicz

Published in: LIPIcs, Volume 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)


Abstract
We revisit classic string problems considered in the area of parameterized complexity, and study them through the lens of dynamic data structures. That is, instead of asking for a static algorithm that solves the given instance efficiently, our goal is to design a data structure that efficiently maintains a solution, or reports a lack thereof, upon updates in the instance. We first consider the CLOSEST STRING problem, for which we design randomized dynamic data structures with amortized update times d^𝒪(d) and |Σ|^𝒪(d), respectively, where Σ is the alphabet and d is the assumed bound on the maximum distance. These are obtained by combining known static approaches to CLOSEST STRING with color-coding. Next, we note that from a result of Frandsen et al. [J. ACM'97] one can easily infer a meta-theorem that provides dynamic data structures for parameterized string problems with worst-case update time of the form 𝒪_k(log log n), where k is the parameter in question and n is the length of the string. We showcase the utility of this meta-theorem by giving such data structures for problems DISJOINT FACTORS and EDIT DISTANCE. We also give explicit data structures for these problems, with worst-case update times 𝒪(k 2^k log log n) and 𝒪(k²log log n), respectively. Finally, we discuss how a lower bound methodology introduced by Amarilli et al. [ICALP'21] can be used to show that obtaining update time 𝒪(f(k)) for DISJOINT FACTORS and EDIT DISTANCE is unlikely already for a constant value of the parameter k.

Cite as

Jędrzej Olkowski, Michał Pilipczuk, Mateusz Rychlicki, Karol Węgrzycki, and Anna Zych-Pawlewicz. Dynamic Data Structures for Parameterized String Problems. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 50:1-50:22, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{olkowski_et_al:LIPIcs.STACS.2023.50,
  author =	{Olkowski, J\k{e}drzej and Pilipczuk, Micha{\l} and Rychlicki, Mateusz and W\k{e}grzycki, Karol and Zych-Pawlewicz, Anna},
  title =	{{Dynamic Data Structures for Parameterized String Problems}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{50:1--50:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.50},
  URN =		{urn:nbn:de:0030-drops-177026},
  doi =		{10.4230/LIPIcs.STACS.2023.50},
  annote =	{Keywords: Parameterized algorithms, Dynamic data structures, String problems, Closest String, Edit Distance, Disjoint Factors, Predecessor problem}
}
Document
On the Complexity of Problems on Tree-Structured Graphs

Authors: Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Marcin Pilipczuk, and Michał Pilipczuk

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)


Abstract
In this paper, we introduce a new class of parameterized problems, which we call XALP: the class of all parameterized problems that can be solved in f(k)n^O(1) time and f(k)log n space on a non-deterministic Turing Machine with access to an auxiliary stack (with only top element lookup allowed). Various natural problems on "tree-structured graphs" are complete for this class: we show that List Coloring and All-or-Nothing Flow parameterized by treewidth are XALP-complete. Moreover, Independent Set and Dominating Set parameterized by treewidth divided by log n, and Max Cut parameterized by cliquewidth are also XALP-complete. Besides finding a "natural home" for these problems, we also pave the road for future reductions. We give a number of equivalent characterisations of the class XALP, e.g., XALP is the class of problems solvable by an Alternating Turing Machine whose runs have tree size at most f(k)n^O(1) and use f(k)log n space. Moreover, we introduce "tree-shaped" variants of Weighted CNF-Satisfiability and Multicolor Clique that are XALP-complete.

Cite as

Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Marcin Pilipczuk, and Michał Pilipczuk. On the Complexity of Problems on Tree-Structured Graphs. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 6:1-6:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bodlaender_et_al:LIPIcs.IPEC.2022.6,
  author =	{Bodlaender, Hans L. and Groenland, Carla and Jacob, Hugo and Pilipczuk, Marcin and Pilipczuk, Micha{\l}},
  title =	{{On the Complexity of Problems on Tree-Structured Graphs}},
  booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
  pages =	{6:1--6:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-260-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{249},
  editor =	{Dell, Holger and Nederlof, Jesper},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.6},
  URN =		{urn:nbn:de:0030-drops-173626},
  doi =		{10.4230/LIPIcs.IPEC.2022.6},
  annote =	{Keywords: Parameterized Complexity, Treewidth, XALP, XNLP}
}
Document
List Colouring Trees in Logarithmic Space

Authors: Hans L. Bodlaender, Carla Groenland, and Hugo Jacob

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
We show that List Colouring can be solved on n-vertex trees by a deterministic Turing machine using O(log n) bits on the worktape. Given an n-vertex graph G = (V,E) and a list L(v) ⊆ {1,… ,n} of available colours for each v ∈ V, a list colouring for G is a proper colouring c such that c(v) ∈ L(v) for all v.

Cite as

Hans L. Bodlaender, Carla Groenland, and Hugo Jacob. List Colouring Trees in Logarithmic Space. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 24:1-24:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bodlaender_et_al:LIPIcs.ESA.2022.24,
  author =	{Bodlaender, Hans L. and Groenland, Carla and Jacob, Hugo},
  title =	{{List Colouring Trees in Logarithmic Space}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{24:1--24:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.24},
  URN =		{urn:nbn:de:0030-drops-169620},
  doi =		{10.4230/LIPIcs.ESA.2022.24},
  annote =	{Keywords: List colouring, trees, space complexity, logspace, graph algorithms, tree-partition-width}
}
Document
Polynomial Kernel for Immersion Hitting in Tournaments

Authors: Łukasz Bożyk and Michał Pilipczuk

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
For a fixed simple digraph H without isolated vertices, we consider the problem of deleting arcs from a given tournament to get a digraph which does not contain H as an immersion. We prove that for every H, this problem admits a polynomial kernel when parameterized by the number of deleted arcs. The degree of the bound on the kernel size depends on H.

Cite as

Łukasz Bożyk and Michał Pilipczuk. Polynomial Kernel for Immersion Hitting in Tournaments. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 26:1-26:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bozyk_et_al:LIPIcs.ESA.2022.26,
  author =	{Bo\.{z}yk, {\L}ukasz and Pilipczuk, Micha{\l}},
  title =	{{Polynomial Kernel for Immersion Hitting in Tournaments}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{26:1--26:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.26},
  URN =		{urn:nbn:de:0030-drops-169642},
  doi =		{10.4230/LIPIcs.ESA.2022.26},
  annote =	{Keywords: kernelization, graph immersion, tournament, protrusion}
}
Document
Computing Treedepth in Polynomial Space and Linear FPT Time

Authors: Wojciech Nadara, Michał Pilipczuk, and Marcin Smulewicz

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
The treedepth of a graph G is the least possible depth of an elimination forest of G: a rooted forest on the same vertex set where every pair of vertices adjacent in G is bound by the ancestor/descendant relation. We propose an algorithm that given a graph G and an integer d, either finds an elimination forest of G of depth at most d or concludes that no such forest exists; thus the algorithm decides whether the treedepth of G is at most d. The running time is 2^𝒪(d²)⋅n^𝒪(1) and the space usage is polynomial in n. Further, by allowing randomization, the time and space complexities can be improved to 2^𝒪(d²)⋅n and d^𝒪(1)⋅n, respectively. This improves upon the algorithm of Reidl et al. [ICALP 2014], which also has time complexity 2^𝒪(d²)⋅n, but uses exponential space.

Cite as

Wojciech Nadara, Michał Pilipczuk, and Marcin Smulewicz. Computing Treedepth in Polynomial Space and Linear FPT Time. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 79:1-79:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{nadara_et_al:LIPIcs.ESA.2022.79,
  author =	{Nadara, Wojciech and Pilipczuk, Micha{\l} and Smulewicz, Marcin},
  title =	{{Computing Treedepth in Polynomial Space and Linear FPT Time}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{79:1--79:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.79},
  URN =		{urn:nbn:de:0030-drops-170175},
  doi =		{10.4230/LIPIcs.ESA.2022.79},
  annote =	{Keywords: treedepth, FPT, polynomial space}
}
Document
Track A: Algorithms, Complexity and Games
Algorithms and Data Structures for First-Order Logic with Connectivity Under Vertex Failures

Authors: Michał Pilipczuk, Nicole Schirrmacher, Sebastian Siebertz, Szymon Toruńczyk, and Alexandre Vigny

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We introduce a new data structure for answering connectivity queries in undirected graphs subject to batched vertex failures. Precisely, given any graph G and integer parameter k, we can in fixed-parameter time construct a data structure that can later be used to answer queries of the form: "are vertices s and t connected via a path that avoids vertices u₁,…, u_k?" in time 2^𝒪(k). In the terminology of the literature on data structures, this gives the first deterministic data structure for connectivity under vertex failures where for every fixed number of failures, all operations can be performed in constant time. With the aim to understand the power and the limitations of our new techniques, we prove an algorithmic meta theorem for the recently introduced separator logic, which extends first-order logic with atoms for connectivity under vertex failures. We prove that the model-checking problem for separator logic is fixed-parameter tractable on every class of graphs that exclude a fixed topological minor. We also show a weak converse. This implies that from the point of view of parameterized complexity, under standard complexity theoretical assumptions, the frontier of tractability of separator logic is almost exactly delimited by classes excluding a fixed topological minor. The backbone of our proof relies on a decomposition theorem of Cygan, Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh [SICOMP '19], which provides a tree decomposition of a given graph into bags that are unbreakable. Crucially, unbreakability allows to reduce separator logic to plain first-order logic within each bag individually. Guided by this observation, we design our model-checking algorithm using dynamic programming over the tree decomposition, where the transition at each bag amounts to running a suitable model-checking subprocedure for plain first-order logic. This approach is robust enough to provide also an extension to efficient enumeration of answers to a query expressed in separator logic.

Cite as

Michał Pilipczuk, Nicole Schirrmacher, Sebastian Siebertz, Szymon Toruńczyk, and Alexandre Vigny. Algorithms and Data Structures for First-Order Logic with Connectivity Under Vertex Failures. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 102:1-102:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{pilipczuk_et_al:LIPIcs.ICALP.2022.102,
  author =	{Pilipczuk, Micha{\l} and Schirrmacher, Nicole and Siebertz, Sebastian and Toru\'{n}czyk, Szymon and Vigny, Alexandre},
  title =	{{Algorithms and Data Structures for First-Order Logic with Connectivity Under Vertex Failures}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{102:1--102:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.102},
  URN =		{urn:nbn:de:0030-drops-164432},
  doi =		{10.4230/LIPIcs.ICALP.2022.102},
  annote =	{Keywords: Combinatorics and graph theory, Computational applications of logic, Data structures, Fixed-parameter algorithms and complexity, Graph algorithms}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Twin-Width and Types

Authors: Jakub Gajarský, Michał Pilipczuk, Wojciech Przybyszewski, and Szymon Toruńczyk

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We study problems connected to first-order logic in graphs of bounded twin-width. Inspired by the approach of Bonnet et al. [FOCS 2020], we introduce a robust methodology of local types and describe their behavior in contraction sequences - the decomposition notion underlying twin-width. We showcase the applicability of the methodology by proving the following two algorithmic results. In both statements, we fix a first-order formula φ(x_1,…,x_k) and a constant d, and we assume that on input we are given a graph G together with a contraction sequence of width at most d. - One can in time 𝒪(n) construct a data structure that can answer the following queries in time 𝒪(log log n): given w_1,…,w_k, decide whether φ(w_1,…,w_k) holds in G. - After 𝒪(n)-time preprocessing, one can enumerate all tuples w₁,…,w_k that satisfy φ(x_1,…,x_k) in G with 𝒪(1) delay. In the first case, the query time can be reduced to 𝒪(1/ε) at the expense of increasing the construction time to 𝒪(n^{1+ε}), for any fixed ε > 0. Finally, we also apply our tools to prove the following statement, which shows optimal bounds on the VC density of set systems that are first-order definable in graphs of bounded twin-width. - Let G be a graph of twin-width d, A be a subset of vertices of G, and φ(x_1,…,x_k,y_1,…,y_l) be a first-order formula. Then the number of different subsets of A^k definable by φ using l-tuples of vertices from G as parameters, is bounded by O(|A|^l).

Cite as

Jakub Gajarský, Michał Pilipczuk, Wojciech Przybyszewski, and Szymon Toruńczyk. Twin-Width and Types. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 123:1-123:21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gajarsky_et_al:LIPIcs.ICALP.2022.123,
  author =	{Gajarsk\'{y}, Jakub and Pilipczuk, Micha{\l} and Przybyszewski, Wojciech and Toru\'{n}czyk, Szymon},
  title =	{{Twin-Width and Types}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{123:1--123:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.123},
  URN =		{urn:nbn:de:0030-drops-164640},
  doi =		{10.4230/LIPIcs.ICALP.2022.123},
  annote =	{Keywords: twin-width, FO logic, model checking, query answering, enumeration}
}
  • Refine by Author
  • 28 Pilipczuk, Michał
  • 23 Pilipczuk, Michal
  • 9 Pilipczuk, Marcin
  • 9 Saurabh, Saket
  • 9 Siebertz, Sebastian
  • Show More...

  • Refine by Classification
  • 28 Theory of computation → Parameterized complexity and exact algorithms
  • 20 Theory of computation → Fixed parameter tractability
  • 14 Theory of computation → Graph algorithms analysis
  • 10 Mathematics of computing → Graph algorithms
  • 8 Theory of computation → Finite Model Theory
  • Show More...

  • Refine by Keyword
  • 15 parameterized complexity
  • 9 fixed-parameter tractability
  • 9 treewidth
  • 7 Parameterized Complexity
  • 7 kernelization
  • Show More...

  • Refine by Type
  • 110 document
  • 1 volume

  • Refine by Publication Year
  • 46 2019
  • 15 2015
  • 11 2022
  • 9 2017
  • 8 2023
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail