11 Search Results for "Creignou, Nadia"


Document
Enumeration Classes Defined by Circuits

Authors: Nadia Creignou, Arnaud Durand, and Heribert Vollmer

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
We refine the complexity landscape for enumeration problems by introducing very low classes defined by using Boolean circuits as enumerators. We locate well-known enumeration problems, e.g., from graph theory, Gray code enumeration, and propositional satisfiability in our classes. In this way we obtain a framework to distinguish between the complexity of different problems known to be in DelayP, for which a formal way of comparison was not possible to this day.

Cite as

Nadia Creignou, Arnaud Durand, and Heribert Vollmer. Enumeration Classes Defined by Circuits. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 38:1-38:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{creignou_et_al:LIPIcs.MFCS.2022.38,
  author =	{Creignou, Nadia and Durand, Arnaud and Vollmer, Heribert},
  title =	{{Enumeration Classes Defined by Circuits}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{38:1--38:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.38},
  URN =		{urn:nbn:de:0030-drops-168364},
  doi =		{10.4230/LIPIcs.MFCS.2022.38},
  annote =	{Keywords: Computational complexity, enumeration problem, Boolean circuit}
}
Document
SAT and Interactions (Dagstuhl Seminar 16381)

Authors: Olaf Beyersdorff, Nadia Creignou, Uwe Egly, and Heribert Vollmer

Published in: Dagstuhl Reports, Volume 6, Issue 9 (2017)


Abstract
This report documents the programme and outcomes of Dagstuhl Seminar 16381 "SAT and Interactions". The seminar brought together researchers from different areas from theoretical computer science involved with various aspects of satisfiability. A key objective of the seminar has been to initiate or consolidate discussions among the different groups for a fresh attack on one of the most important problems in theoretical computer science and mathematics.

Cite as

Olaf Beyersdorff, Nadia Creignou, Uwe Egly, and Heribert Vollmer. SAT and Interactions (Dagstuhl Seminar 16381). In Dagstuhl Reports, Volume 6, Issue 9, pp. 74-93, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@Article{beyersdorff_et_al:DagRep.6.9.74,
  author =	{Beyersdorff, Olaf and Creignou, Nadia and Egly, Uwe and Vollmer, Heribert},
  title =	{{SAT and Interactions (Dagstuhl Seminar 16381)}},
  pages =	{74--93},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2017},
  volume =	{6},
  number =	{9},
  editor =	{Beyersdorff, Olaf and Creignou, Nadia and Egly, Uwe and Vollmer, Heribert},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.6.9.74},
  URN =		{urn:nbn:de:0030-drops-69116},
  doi =		{10.4230/DagRep.6.9.74},
  annote =	{Keywords: Combinatorics, Computational Complexity, P vs. NP, Proof Complexity, Quantified Boolean formulas, SAT-solvers, satisfiability problem}
}
Document
SAT Interactions (Dagstuhl Seminar 12471)

Authors: Nadia Creignou, Nicola Galesi, Oliver Kullmann, and Heribert Vollmer

Published in: Dagstuhl Reports, Volume 2, Issue 11 (2013)


Abstract
This report documents the programme and outcomes of Dagstuhl Seminar 12471 "SAT Interactions". The seminar brought together researchers from different areas from theoretical computer science as well as the area of SAT solvers. A key objective of the seminar has been to initiate or consolidate discussions among the different groups for a fresh attack on one of the most important problems in theoretical computer science and mathematics.

Cite as

Nadia Creignou, Nicola Galesi, Oliver Kullmann, and Heribert Vollmer. SAT Interactions (Dagstuhl Seminar 12471). In Dagstuhl Reports, Volume 2, Issue 11, pp. 87-101, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@Article{creignou_et_al:DagRep.2.11.87,
  author =	{Creignou, Nadia and Galesi, Nicola and Kullmann, Oliver and Vollmer, Heribert},
  title =	{{SAT Interactions (Dagstuhl Seminar 12471)}},
  pages =	{87--101},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2013},
  volume =	{2},
  number =	{11},
  editor =	{Creignou, Nadia and Galesi, Nicola and Kullmann, Oliver and Vollmer, Heribert},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.2.11.87},
  URN =		{urn:nbn:de:0030-drops-39786},
  doi =		{10.4230/DagRep.2.11.87},
  annote =	{Keywords: satisfiability problem, computational complexity, P-NP question, proof complexity, combinatorics, SAT-solvers, quantified Boolean formulas}
}
Document
The Complexity of Reasoning for Fragments of Autoepistemic Logic

Authors: Nadia Creignou, Arne Meier, Michael Thomas, and Heribert Vollmer

Published in: Dagstuhl Seminar Proceedings, Volume 10061, Circuits, Logic, and Games (2010)


Abstract
Autoepistemic logic extends propositional logic by the modal operator L. A formula that is preceded by an L is said to be "believed". The logic was introduced by Moore 1985 for modeling an ideally rational agent's behavior and reasoning about his own beliefs. In this paper we analyze all Boolean fragments of autoepistemic logic with respect to the computational complexity of the three most common decision problems expansion existence, brave reasoning and cautious reasoning. As a second contribution we classify the computational complexity of counting the number of stable expansions of a given knowledge base. To the best of our knowledge this is the first paper analyzing the counting problem for autoepistemic logic.

Cite as

Nadia Creignou, Arne Meier, Michael Thomas, and Heribert Vollmer. The Complexity of Reasoning for Fragments of Autoepistemic Logic. In Circuits, Logic, and Games. Dagstuhl Seminar Proceedings, Volume 10061, pp. 1-10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{creignou_et_al:DagSemProc.10061.6,
  author =	{Creignou, Nadia and Meier, Arne and Thomas, Michael and Vollmer, Heribert},
  title =	{{The Complexity of Reasoning for Fragments of Autoepistemic Logic}},
  booktitle =	{Circuits, Logic, and Games},
  pages =	{1--10},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{10061},
  editor =	{Benjamin Rossman and Thomas Schwentick and Denis Th\'{e}rien and Heribert Vollmer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.10061.6},
  URN =		{urn:nbn:de:0030-drops-25234},
  doi =		{10.4230/DagSemProc.10061.6},
  annote =	{Keywords: Autoepistemic logic, computational complexity, nonmonotonic reasoning, Post's lattice}
}
Document
06401 Abstracts Collection – Complexity of Constraints

Authors: Nadia Creignou, Phokion Kolaitis, and Heribert Vollmer

Published in: Dagstuhl Seminar Proceedings, Volume 6401, Complexity of Constraints (2006)


Abstract
From 01.10.06 to 06.10.06, the Dagstuhl Seminar 06401 ``Complexity of Constraints'' was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available.

Cite as

Nadia Creignou, Phokion Kolaitis, and Heribert Vollmer. 06401 Abstracts Collection – Complexity of Constraints. In Complexity of Constraints. Dagstuhl Seminar Proceedings, Volume 6401, pp. 1-14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{creignou_et_al:DagSemProc.06401.1,
  author =	{Creignou, Nadia and Kolaitis, Phokion and Vollmer, Heribert},
  title =	{{06401 Abstracts Collection – Complexity of Constraints}},
  booktitle =	{Complexity of Constraints},
  pages =	{1--14},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{6401},
  editor =	{Nadia Creignou and Phokion Kolaitis and Heribert Vollmer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.06401.1},
  URN =		{urn:nbn:de:0030-drops-8067},
  doi =		{10.4230/DagSemProc.06401.1},
  annote =	{Keywords: Constraint satisfaction problems, computational complexity, universal algebra, mathematical logic, finite model theory}
}
Document
06401 Executive Summary – Complexity of Constraints

Authors: Nadia Creignou, Phokion Kolaitis, and Heribert Vollmer

Published in: Dagstuhl Seminar Proceedings, Volume 6401, Complexity of Constraints (2006)


Abstract
In this document we describe the original motivation and goals of the seminar as well as the sequence of talks given during the seminar.

Cite as

Nadia Creignou, Phokion Kolaitis, and Heribert Vollmer. 06401 Executive Summary – Complexity of Constraints. In Complexity of Constraints. Dagstuhl Seminar Proceedings, Volume 6401, pp. 1-6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{creignou_et_al:DagSemProc.06401.2,
  author =	{Creignou, Nadia and Kolaitis, Phokion and Vollmer, Heribert},
  title =	{{06401 Executive Summary – Complexity of Constraints}},
  booktitle =	{Complexity of Constraints},
  pages =	{1--6},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{6401},
  editor =	{Nadia Creignou and Phokion Kolaitis and Heribert Vollmer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.06401.2},
  URN =		{urn:nbn:de:0030-drops-8001},
  doi =		{10.4230/DagSemProc.06401.2},
  annote =	{Keywords: Constraint satisfaction problems, complexity}
}
Document
A Unifying Theory of Structural Decompostions for the Constraint Satisfaction Problems

Authors: David Cohen, Marc Gyssens, and Peter Jeavons

Published in: Dagstuhl Seminar Proceedings, Volume 6401, Complexity of Constraints (2006)


Abstract
In this talk (draft paper) we develop the theory of structural decompositions for the CSP. We begin with the very general notion of a guarded decomposition and make several simplifying assumptions to arrive a the definition of an acyclic guarded cover. We show how many existing decompositions can seen as acyclic guarded covers. We develop a generic algorithm for discovering acyclic guarded covers under the further assumption that they have a join tree satisfying a simple extra condition. We show that many existing decompositions do in fact satisfy this extra condition. Using this theory we are able to describe a new class of structural decompostion which we call spread cuts. These generalise many existing decomposition methods. We present a class of hypergraphs whose spread cut width is significantly smaller than their hypertree width. The definition of a guarded decomposition and the algorithm for discovering them were motvated by the similar algorithms developed by Gottlob, Scarcello and Leone in their work on hypertrees. The authors also wish to acknowledge that an acyclic guarded decomposition is very similar to a generalised hypertree decomposition as described in the hypertree literature.

Cite as

David Cohen, Marc Gyssens, and Peter Jeavons. A Unifying Theory of Structural Decompostions for the Constraint Satisfaction Problems. In Complexity of Constraints. Dagstuhl Seminar Proceedings, Volume 6401, pp. 1-22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:DagSemProc.06401.3,
  author =	{Cohen, David and Gyssens, Marc and Jeavons, Peter},
  title =	{{A Unifying Theory of Structural Decompostions for the Constraint Satisfaction Problems}},
  booktitle =	{Complexity of Constraints},
  pages =	{1--22},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{6401},
  editor =	{Nadia Creignou and Phokion Kolaitis and Heribert Vollmer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.06401.3},
  URN =		{urn:nbn:de:0030-drops-8017},
  doi =		{10.4230/DagSemProc.06401.3},
  annote =	{Keywords: Structural decomposition, spread cut}
}
Document
Constraint satisfaction problems in clausal form: Autarkies, minimal unsatisfiability, and applications to hypergraph inequalities

Authors: Oliver Kullmann

Published in: Dagstuhl Seminar Proceedings, Volume 6401, Complexity of Constraints (2006)


Abstract
Generalised CNFs are considered using such literals, which exclude exactly one possible value from the domain of the variable. First we consider poly-time SAT decision (and fixed-parameter tractability) exploiting matching theory. Then we consider irredundant generalised CNFs, and characterise some extremal minimally unsatisfiable CNFs.

Cite as

Oliver Kullmann. Constraint satisfaction problems in clausal form: Autarkies, minimal unsatisfiability, and applications to hypergraph inequalities. In Complexity of Constraints. Dagstuhl Seminar Proceedings, Volume 6401, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{kullmann:DagSemProc.06401.4,
  author =	{Kullmann, Oliver},
  title =	{{Constraint satisfaction problems in clausal form: Autarkies, minimal unsatisfiability, and applications to hypergraph inequalities}},
  booktitle =	{Complexity of Constraints},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{6401},
  editor =	{Nadia Creignou and Phokion Kolaitis and Heribert Vollmer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.06401.4},
  URN =		{urn:nbn:de:0030-drops-8030},
  doi =		{10.4230/DagSemProc.06401.4},
  annote =	{Keywords: Signed CNF, autarkies, minimal unsatisfiable, hypergraph colouring, block designs}
}
Document
Constraint Satisfaction with Succinctly Specified Relations

Authors: Hubie Chen and Martin Grohe

Published in: Dagstuhl Seminar Proceedings, Volume 6401, Complexity of Constraints (2006)


Abstract
The general intractability of the constraint satisfaction problem has motivated the study of the complexity of restricted cases of this problem. Thus far, the literature has primarily considered the formulation of the CSP where constraint relations are given explicitly. We initiate the systematic study of CSP complexity with succinctly specified constraint relations. This is joint work with Hubie Chen.

Cite as

Hubie Chen and Martin Grohe. Constraint Satisfaction with Succinctly Specified Relations. In Complexity of Constraints. Dagstuhl Seminar Proceedings, Volume 6401, pp. 1-15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:DagSemProc.06401.5,
  author =	{Chen, Hubie and Grohe, Martin},
  title =	{{Constraint Satisfaction with Succinctly Specified Relations}},
  booktitle =	{Complexity of Constraints},
  pages =	{1--15},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{6401},
  editor =	{Nadia Creignou and Phokion Kolaitis and Heribert Vollmer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.06401.5},
  URN =		{urn:nbn:de:0030-drops-8022},
  doi =		{10.4230/DagSemProc.06401.5},
  annote =	{Keywords: Constraint satisfaction, complexity, succinct representations}
}
Document
Enumerating all Solutions for Constraint Satisfaction Problems

Authors: Henning Schnoor and Ilka Schnoor

Published in: Dagstuhl Seminar Proceedings, Volume 6401, Complexity of Constraints (2006)


Abstract
We contribute to the study of efficient enumeration algorithms for all solutions of constraint satisfaction problems. The only algorithm known so far, presented by Creignou and Hébrard and generalized by Cohen, reduces the enumeration problem for a constraint language $Gamma$ to the decision problem for a slightly enlarged constraint language $Gamma^+,$ i.e., it yields an efficient enumeration algorithm for the case where $mathrm{CSP}(Gamma^+)$ is tractable. We develop a new class of algorithms, yielding efficient enumeration algorithms for a broad class of constraint languages. For the three-element domain, we achieve a first step towards a dichotomy theorem for the enumeration problem.

Cite as

Henning Schnoor and Ilka Schnoor. Enumerating all Solutions for Constraint Satisfaction Problems. In Complexity of Constraints. Dagstuhl Seminar Proceedings, Volume 6401, pp. 1-25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{schnoor_et_al:DagSemProc.06401.6,
  author =	{Schnoor, Henning and Schnoor, Ilka},
  title =	{{Enumerating all Solutions for Constraint Satisfaction Problems}},
  booktitle =	{Complexity of Constraints},
  pages =	{1--25},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{6401},
  editor =	{Nadia Creignou and Phokion Kolaitis and Heribert Vollmer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.06401.6},
  URN =		{urn:nbn:de:0030-drops-8040},
  doi =		{10.4230/DagSemProc.06401.6},
  annote =	{Keywords: Complexity, constraint satisfaction, enumeration}
}
Document
New Algebraic Tools for Constraint Satisfaction

Authors: Henning Schnoor and Ilka Schnoor

Published in: Dagstuhl Seminar Proceedings, Volume 6401, Complexity of Constraints (2006)


Abstract
The Galois correspondence involving polymorphisms and co-clones has received a lot of attention in regard to constraint satisfaction problems. However, it fails if we are interested in a reduction giving equivalence instead of only satisfiability-equivalence. We show how a similar Galois connection involving weaker closure operators can be applied for these problems. As an example of the usefulness of our construction, we show how to obtain very short proofs of complexity classifications in this context.

Cite as

Henning Schnoor and Ilka Schnoor. New Algebraic Tools for Constraint Satisfaction. In Complexity of Constraints. Dagstuhl Seminar Proceedings, Volume 6401, pp. 1-18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{schnoor_et_al:DagSemProc.06401.7,
  author =	{Schnoor, Henning and Schnoor, Ilka},
  title =	{{New Algebraic Tools for Constraint Satisfaction}},
  booktitle =	{Complexity of Constraints},
  pages =	{1--18},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{6401},
  editor =	{Nadia Creignou and Phokion Kolaitis and Heribert Vollmer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.06401.7},
  URN =		{urn:nbn:de:0030-drops-8057},
  doi =		{10.4230/DagSemProc.06401.7},
  annote =	{Keywords: Constraints, Partial Clones, Galois Correspondence}
}
  • Refine by Author
  • 6 Creignou, Nadia
  • 6 Vollmer, Heribert
  • 2 Kolaitis, Phokion
  • 2 Kullmann, Oliver
  • 2 Schnoor, Henning
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Circuit complexity
  • 1 Theory of computation → Complexity classes

  • Refine by Keyword
  • 3 computational complexity
  • 2 Constraint satisfaction problems
  • 2 SAT-solvers
  • 2 complexity
  • 2 satisfiability problem
  • Show More...

  • Refine by Type
  • 11 document

  • Refine by Publication Year
  • 7 2006
  • 1 2010
  • 1 2013
  • 1 2017
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail