2 Search Results for "Marek, Victor W."


Document
Normal Form Theorem for Logic Programs with Cardinality Constraints

Authors: Victor W. Marek and Jeffrey B. Remmel

Published in: Dagstuhl Seminar Proceedings, Volume 5171, Nonmonotonic Reasoning, Answer Set Programming and Constraints (2005)


Abstract
We discuss proof schemes, a kind of context-dependent proofs for logic programs. We show usefullness of these constructs both in the context of normal logic programs and their generalizations due to Niemela and collaborators. As an application we show the following result. For every cardinality-constraint logic program P there is a logic program P´ with the same heads, but with bodies consisting of atoms and negated atoms such that P and P´ have same stable models. It is worth noting that another proof of same result can be obtained from the results by Lifschitz and collaborators.

Cite as

Victor W. Marek and Jeffrey B. Remmel. Normal Form Theorem for Logic Programs with Cardinality Constraints. In Nonmonotonic Reasoning, Answer Set Programming and Constraints. Dagstuhl Seminar Proceedings, Volume 5171, pp. 1-34, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2005)


Copy BibTex To Clipboard

@InProceedings{marek_et_al:DagSemProc.05171.5,
  author =	{Marek, Victor W. and Remmel, Jeffrey B.},
  title =	{{Normal Form Theorem for Logic Programs with Cardinality Constraints}},
  booktitle =	{Nonmonotonic Reasoning, Answer Set Programming and Constraints},
  pages =	{1--34},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2005},
  volume =	{5171},
  editor =	{Gerhard Brewka and Ilkka Niemel\"{a} and Torsten Schaub and Miroslaw Truszczynski},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.05171.5},
  URN =		{urn:nbn:de:0030-drops-2598},
  doi =		{10.4230/DagSemProc.05171.5},
  annote =	{Keywords: Proof scheme, cardinality constraints}
}
Document
Set Based Logic Programming

Authors: Jeffrey B. Remmel and Victor W. Marek

Published in: Dagstuhl Seminar Proceedings, Volume 5171, Nonmonotonic Reasoning, Answer Set Programming and Constraints (2005)


Abstract
We propose a set of desiderata for extensions of Answer Set Programming to capture domains where the objects of interest are infinite sets and yet we can still process ASP programs effectively. We propose two different schemes to do this. One is to extend cardinality type constraints to set constraints which involve codes for finite, recursive and recursively enumerable sets. A second scheme to modify logic programming to reason about sets directly. In this setting, we can also augment logic programming with certain monotone inductive operators so that we can reason about families of sets which have structure such a closed sets of a topological space or subspaces of a vector space. We observe that under such conditions, the classic Gelfond-Lifschitz construction generalizes to at least two different notions of stable models.

Cite as

Jeffrey B. Remmel and Victor W. Marek. Set Based Logic Programming. In Nonmonotonic Reasoning, Answer Set Programming and Constraints. Dagstuhl Seminar Proceedings, Volume 5171, pp. 1-26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2005)


Copy BibTex To Clipboard

@InProceedings{remmel_et_al:DagSemProc.05171.8,
  author =	{Remmel, Jeffrey B. and Marek, Victor W.},
  title =	{{Set Based Logic Programming}},
  booktitle =	{Nonmonotonic Reasoning, Answer Set Programming and Constraints},
  pages =	{1--26},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2005},
  volume =	{5171},
  editor =	{Gerhard Brewka and Ilkka Niemel\"{a} and Torsten Schaub and Miroslaw Truszczynski},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.05171.8},
  URN =		{urn:nbn:de:0030-drops-2667},
  doi =		{10.4230/DagSemProc.05171.8},
  annote =	{Keywords: ASP, codes for infinite sets, stable model generalizations}
}
  • Refine by Author
  • 2 Marek, Victor W.
  • 2 Remmel, Jeffrey B.

  • Refine by Classification

  • Refine by Keyword
  • 1 ASP
  • 1 Proof scheme
  • 1 cardinality constraints
  • 1 codes for infinite sets
  • 1 stable model generalizations

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 2 2005

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail