26 Search Results for "Johnson, Daniel D."


Document
Derandomizing Logspace with a Small Shared Hard Drive

Authors: Edward Pyne

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We obtain new catalytic algorithms for space-bounded derandomization. In the catalytic computation model introduced by (Buhrman, Cleve, Koucký, Loff, and Speelman STOC 2013), we are given a small worktape, and a larger catalytic tape that has an arbitrary initial configuration. We may edit this tape, but it must be exactly restored to its initial configuration at the completion of the computation. We prove that BPSPACE[S] ⊆ CSPACE[S,S²] where BPSPACE[S] corresponds to randomized space S computation, and CSPACE[S,C] corresponds to catalytic algorithms that use O(S) bits of workspace and O(C) bits of catalytic space. Previously, only BPSPACE[S] ⊆ CSPACE[S,2^O(S)] was known. In fact, we prove a general tradeoff, that for every α ∈ [1,1.5], BPSPACE[S] ⊆ CSPACE[S^α,S^(3-α)]. We do not use the algebraic techniques of prior work on catalytic computation. Instead, we develop an algorithm that branches based on if the catalytic tape is conditionally random, and instantiate this primitive in a recursive framework. Our result gives an alternate proof of the best known time-space tradeoff for BPSPACE[S], due to (Cai, Chakaravarthy, and van Melkebeek, Theory Comput. Sys. 2006). As a final application, we extend our results to solve search problems in CSPACE[S,S²]. As far as we are aware, this constitutes the first study of search problems in the catalytic computing model.

Cite as

Edward Pyne. Derandomizing Logspace with a Small Shared Hard Drive. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 4:1-4:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{pyne:LIPIcs.CCC.2024.4,
  author =	{Pyne, Edward},
  title =	{{Derandomizing Logspace with a Small Shared Hard Drive}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{4:1--4:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.4},
  URN =		{urn:nbn:de:0030-drops-204006},
  doi =		{10.4230/LIPIcs.CCC.2024.4},
  annote =	{Keywords: Catalytic computation, space-bounded computation, derandomization}
}
Document
Buffered Streaming Edge Partitioning

Authors: Adil Chhabra, Marcelo Fonseca Faraj, Christian Schulz, and Daniel Seemaier

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Addressing the challenges of processing massive graphs, which are prevalent in diverse fields such as social, biological, and technical networks, we introduce HeiStreamE and FreightE, two innovative (buffered) streaming algorithms designed for efficient edge partitioning of large-scale graphs. HeiStreamE utilizes an adapted Split-and-Connect graph model and a Fennel-based multilevel partitioning scheme, while FreightE partitions a hypergraph representation of the input graph. Besides ensuring superior solution quality, these approaches also overcome the limitations of existing algorithms by maintaining linear dependency on the graph size in both time and memory complexity with no dependence on the number of blocks of partition. Our comprehensive experimental analysis demonstrates that HeiStreamE outperforms current streaming algorithms and the re-streaming algorithm 2PS in partitioning quality (replication factor), and is more memory-efficient for real-world networks where the number of edges is far greater than the number of vertices. Further, FreightE is shown to produce fast and efficient partitions, particularly for higher numbers of partition blocks.

Cite as

Adil Chhabra, Marcelo Fonseca Faraj, Christian Schulz, and Daniel Seemaier. Buffered Streaming Edge Partitioning. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 5:1-5:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chhabra_et_al:LIPIcs.SEA.2024.5,
  author =	{Chhabra, Adil and Fonseca Faraj, Marcelo and Schulz, Christian and Seemaier, Daniel},
  title =	{{Buffered Streaming Edge Partitioning}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{5:1--5:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.5},
  URN =		{urn:nbn:de:0030-drops-203701},
  doi =		{10.4230/LIPIcs.SEA.2024.5},
  annote =	{Keywords: graph partitioning, edge partitioning, streaming, online, buffered partitioning}
}
Document
Local Search k-means++ with Foresight

Authors: Theo Conrads, Lukas Drexler, Joshua Könen, Daniel R. Schmidt, and Melanie Schmidt

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Since its introduction in 1957, Lloyd’s algorithm for k-means clustering has been extensively studied and has undergone several improvements. While in its original form it does not guarantee any approximation factor at all, Arthur and Vassilvitskii (SODA 2007) proposed k-means++ which enhances Lloyd’s algorithm by a seeding method which guarantees a 𝒪(log k)-approximation in expectation. More recently, Lattanzi and Sohler (ICML 2019) proposed LS++ which further improves the solution quality of k-means++ by local search techniques to obtain a 𝒪(1)-approximation. On the practical side, the greedy variant of k-means++ is often used although its worst-case behaviour is provably worse than for the standard k-means++ variant. We investigate how to improve LS++ further in practice. We study two options for improving the practical performance: (a) Combining LS++ with greedy k-means++ instead of k-means++, and (b) Improving LS++ by better entangling it with Lloyd’s algorithm. Option (a) worsens the theoretical guarantees of k-means++ but improves the practical quality also in combination with LS++ as we confirm in our experiments. Option (b) is our new algorithm, Foresight LS++. We experimentally show that FLS++ improves upon the solution quality of LS++. It retains its asymptotic runtime and its worst-case approximation bounds.

Cite as

Theo Conrads, Lukas Drexler, Joshua Könen, Daniel R. Schmidt, and Melanie Schmidt. Local Search k-means++ with Foresight. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 7:1-7:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{conrads_et_al:LIPIcs.SEA.2024.7,
  author =	{Conrads, Theo and Drexler, Lukas and K\"{o}nen, Joshua and Schmidt, Daniel R. and Schmidt, Melanie},
  title =	{{Local Search k-means++ with Foresight}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{7:1--7:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.7},
  URN =		{urn:nbn:de:0030-drops-203727},
  doi =		{10.4230/LIPIcs.SEA.2024.7},
  annote =	{Keywords: k-means clustering, kmeans++, greedy, local search}
}
Document
3/2-Dual Approximation for CPU/GPU Scheduling

Authors: Bernhard Sebastian Germann, Klaus Jansen, Felix Ohnesorge, and Malte Tutas

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
We present a fast and efficient 3/2 dual approximation algorithm for CPU/GPU scheduling under the objective of makespan minimization. In CPU/GPU scheduling tasks can be scheduled on two different architectures. When executed on the CPU, a task is moldable and can be assigned to multiple cores. The running time becomes a function in the assigned cores. On a GPU, the task is a classical job with a set processing time. Both settings have drawn recent independent scientific interest. For the moldable CPU scheduling, the current best known constant rate approximation is a 3/2 approximation algorithm [Wu et al. EJOR volume 306]. The best efficient algorithm for this setting is a 3/2+ε approximation [Mounie et al. SIAM '07] whereas GPU scheduling admits a 13/11 approximation [Coffman, Garey, Johnson SIAM'78]. We improve upon the current best known algorithms for CPU/GPU scheduling by Bleuse et al. by formulating a novel multidimensional multiple choice knapsack to allot tasks to either architecture and schedule them there with known algorithms. This yields an improved running time over the current state of the art. We complement our theoretical results with experimentation that shows a significant speedup by using practical optimizations and explore their efficacy.

Cite as

Bernhard Sebastian Germann, Klaus Jansen, Felix Ohnesorge, and Malte Tutas. 3/2-Dual Approximation for CPU/GPU Scheduling. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 13:1-13:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{germann_et_al:LIPIcs.SEA.2024.13,
  author =	{Germann, Bernhard Sebastian and Jansen, Klaus and Ohnesorge, Felix and Tutas, Malte},
  title =	{{3/2-Dual Approximation for CPU/GPU Scheduling}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{13:1--13:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.13},
  URN =		{urn:nbn:de:0030-drops-203782},
  doi =		{10.4230/LIPIcs.SEA.2024.13},
  annote =	{Keywords: computing, machine scheduling, moldable, CPU/GPU}
}
Document
Targeted Branching for the Maximum Independent Set Problem Using Graph Neural Networks

Authors: Kenneth Langedal, Demian Hespe, and Peter Sanders

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Identifying a maximum independent set is a fundamental NP-hard problem. This problem has several real-world applications and requires finding the largest possible set of vertices not adjacent to each other in an undirected graph. Over the past few years, branch-and-bound and branch-and-reduce algorithms have emerged as some of the most effective methods for solving the problem exactly. Specifically, the branch-and-reduce approach, which combines branch-and-bound principles with reduction rules, has proven particularly successful in tackling previously unmanageable real-world instances. This progress was largely made possible by the development of more effective reduction rules. Nevertheless, other key components that can impact the efficiency of these algorithms have not received the same level of interest. Among these is the branching strategy, which determines which vertex to branch on next. Until recently, the most widely used strategy was to choose the vertex of the highest degree. In this work, we present a graph neural network approach for selecting the next branching vertex. The intricate nature of current branch-and-bound solvers makes supervised and reinforcement learning difficult. Therefore, we use a population-based genetic algorithm to evolve the model’s parameters instead. Our proposed approach results in a speedup on 73% of the benchmark instances with a median speedup of 24%.

Cite as

Kenneth Langedal, Demian Hespe, and Peter Sanders. Targeted Branching for the Maximum Independent Set Problem Using Graph Neural Networks. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 20:1-20:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{langedal_et_al:LIPIcs.SEA.2024.20,
  author =	{Langedal, Kenneth and Hespe, Demian and Sanders, Peter},
  title =	{{Targeted Branching for the Maximum Independent Set Problem Using Graph Neural Networks}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{20:1--20:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.20},
  URN =		{urn:nbn:de:0030-drops-203853},
  doi =		{10.4230/LIPIcs.SEA.2024.20},
  annote =	{Keywords: Graphs, Independent Set, Vertex Cover, Graph Neural Networks, Branch-and-Reduce}
}
Document
Scalable Hard Instances for Independent Set Reconfiguration

Authors: Takehide Soh, Takumu Watanabe, Jun Kawahara, Akira Suzuki, and Takehiro Ito

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
The Token Jumping problem, also known as the independent set reconfiguration problem under the token jumping model, is defined as follows: Given a graph and two same-sized independent sets, determine whether one can be transformed into the other via a sequence of independent sets. Token Jumping has been extensively studied, mainly from the viewpoint of algorithmic theory, but its practical study has just begun. To develop a practically good solver, it is important to construct benchmark datasets that are scalable and hard. Here, "scalable" means the ability to change the scale of the instance while maintaining its characteristics by adjusting the given parameters; and "hard" means that the instance can become so difficult that it cannot be solved within a practical time frame by a solver. In this paper, we propose four types of instance series for Token Jumping. Our instance series is scalable in the sense that instance scales are controlled by the number of vertices. To establish their hardness, we focus on the numbers of transformation steps; our instance series requires exponential numbers of steps with respect to the number of vertices. Interestingly, three types of instance series are constructed by importing theories developed by algorithmic research. We experimentally evaluate the scalability and hardness of the proposed instance series, using the SAT solver and award-winning solvers of the international competition for Token Jumping.

Cite as

Takehide Soh, Takumu Watanabe, Jun Kawahara, Akira Suzuki, and Takehiro Ito. Scalable Hard Instances for Independent Set Reconfiguration. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 26:1-26:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{soh_et_al:LIPIcs.SEA.2024.26,
  author =	{Soh, Takehide and Watanabe, Takumu and Kawahara, Jun and Suzuki, Akira and Ito, Takehiro},
  title =	{{Scalable Hard Instances for Independent Set Reconfiguration}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{26:1--26:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.26},
  URN =		{urn:nbn:de:0030-drops-203913},
  doi =		{10.4230/LIPIcs.SEA.2024.26},
  annote =	{Keywords: Combinatorial reconfiguration, Benckmark dataset, Graph Algorithm, PSPACE-complete}
}
Document
On Iteration in Discrete Probabilistic Programming

Authors: Mateo Torres-Ruiz, Robin Piedeleu, Alexandra Silva, and Fabio Zanasi

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Discrete probabilistic programming languages provide an expressive tool for representing and reasoning about probabilistic models. These languages typically define the semantics of a program through its posterior distribution, obtained through exact inference techniques. While the semantics of standard programming constructs in this context is well understood, there is a gap in extending these languages with tools to reason about the asymptotic behaviour of programs. In this paper, we introduce unbounded iteration in the context of a discrete probabilistic programming language, give it a semantics, and show how to compute it exactly. This allows us to express the stationary distribution of a probabilistic function while preserving the efficiency of exact inference techniques. We discuss the advantages and limitations of our approach, showcasing their practical utility by considering examples where bounded iteration poses a challenge due to the inherent difficulty of assessing the proximity of a distribution to its stationary point.

Cite as

Mateo Torres-Ruiz, Robin Piedeleu, Alexandra Silva, and Fabio Zanasi. On Iteration in Discrete Probabilistic Programming. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 20:1-20:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{torresruiz_et_al:LIPIcs.FSCD.2024.20,
  author =	{Torres-Ruiz, Mateo and Piedeleu, Robin and Silva, Alexandra and Zanasi, Fabio},
  title =	{{On Iteration in Discrete Probabilistic Programming}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{20:1--20:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.20},
  URN =		{urn:nbn:de:0030-drops-203490},
  doi =		{10.4230/LIPIcs.FSCD.2024.20},
  annote =	{Keywords: Probabilistic programming, Programming languages semantics, Unbounded iteration}
}
Document
Track A: Algorithms, Complexity and Games
Parameterized Approximation For Robust Clustering in Discrete Geometric Spaces

Authors: Fateme Abbasi, Sandip Banerjee, Jarosław Byrka, Parinya Chalermsook, Ameet Gadekar, Kamyar Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim Spoerhase

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the well-studied Robust (k,z)-Clustering problem, which generalizes the classic k-Median, k-Means, and k-Center problems and arises in the domains of robust optimization [Anthony, Goyal, Gupta, Nagarajan, Math. Oper. Res. 2010] and in algorithmic fairness [Abbasi, Bhaskara, Venkatasubramanian, 2021 & Ghadiri, Samadi, Vempala, 2022]. Given a constant z ≥ 1, the input to Robust (k,z)-Clustering is a set P of n points in a metric space (M,δ), a weight function w: P → ℝ_{≥ 0} and a positive integer k. Further, each point belongs to one (or more) of the m many different groups S_1,S_2,…,S_m ⊆ P. Our goal is to find a set X of k centers such that max_{i ∈ [m]} ∑_{p ∈ S_i} w(p) δ(p,X)^z is minimized. Complementing recent work on this problem, we give a comprehensive understanding of the parameterized approximability of the problem in geometric spaces where the parameter is the number k of centers. We prove the following results: [(i)] 1) For a universal constant η₀ > 0.0006, we devise a 3^z(1-η₀)-factor FPT approximation algorithm for Robust (k,z)-Clustering in discrete high-dimensional Euclidean spaces where the set of potential centers is finite. This shows that the lower bound of 3^z for general metrics [Goyal, Jaiswal, Inf. Proc. Letters, 2023] no longer holds when the metric has geometric structure. 2) We show that Robust (k,z)-Clustering in discrete Euclidean spaces is (√{3/2}- o(1))-hard to approximate for FPT algorithms, even if we consider the special case k-Center in logarithmic dimensions. This rules out a (1+ε)-approximation algorithm running in time f(k,ε)poly(m,n) (also called efficient parameterized approximation scheme or EPAS), giving a striking contrast with the recent EPAS for the continuous setting where centers can be placed anywhere in the space [Abbasi et al., FOCS'23]. 3) However, we obtain an EPAS for Robust (k,z)-Clustering in discrete Euclidean spaces when the dimension is sublogarithmic (for the discrete problem, earlier work [Abbasi et al., FOCS'23] provides an EPAS only in dimension o(log log n)). Our EPAS works also for metrics of sub-logarithmic doubling dimension.

Cite as

Fateme Abbasi, Sandip Banerjee, Jarosław Byrka, Parinya Chalermsook, Ameet Gadekar, Kamyar Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim Spoerhase. Parameterized Approximation For Robust Clustering in Discrete Geometric Spaces. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 6:1-6:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{abbasi_et_al:LIPIcs.ICALP.2024.6,
  author =	{Abbasi, Fateme and Banerjee, Sandip and Byrka, Jaros{\l}aw and Chalermsook, Parinya and Gadekar, Ameet and Khodamoradi, Kamyar and Marx, D\'{a}niel and Sharma, Roohani and Spoerhase, Joachim},
  title =	{{Parameterized Approximation For Robust Clustering in Discrete Geometric Spaces}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{6:1--6:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.6},
  URN =		{urn:nbn:de:0030-drops-201494},
  doi =		{10.4230/LIPIcs.ICALP.2024.6},
  annote =	{Keywords: Clustering, approximation algorithms, parameterized complexity}
}
Document
Track A: Algorithms, Complexity and Games
Fully-Scalable MPC Algorithms for Clustering in High Dimension

Authors: Artur Czumaj, Guichen Gao, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Pavel Veselý

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We design new parallel algorithms for clustering in high-dimensional Euclidean spaces. These algorithms run in the Massively Parallel Computation (MPC) model, and are fully scalable, meaning that the local memory in each machine may be n^σ for arbitrarily small fixed σ > 0. Importantly, the local memory may be substantially smaller than the number of clusters k, yet all our algorithms are fast, i.e., run in O(1) rounds. We first devise a fast MPC algorithm for O(1)-approximation of uniform Facility Location. This is the first fully-scalable MPC algorithm that achieves O(1)-approximation for any clustering problem in general geometric setting; previous algorithms only provide poly(log n)-approximation or apply to restricted inputs, like low dimension or small number of clusters k; e.g. [Bhaskara and Wijewardena, ICML'18; Cohen-Addad et al., NeurIPS'21; Cohen-Addad et al., ICML'22]. We then build on this Facility Location result and devise a fast MPC algorithm that achieves O(1)-bicriteria approximation for k-Median and for k-Means, namely, it computes (1+ε)k clusters of cost within O(1/ε²)-factor of the optimum for k clusters. A primary technical tool that we introduce, and may be of independent interest, is a new MPC primitive for geometric aggregation, namely, computing for every data point a statistic of its approximate neighborhood, for statistics like range counting and nearest-neighbor search. Our implementation of this primitive works in high dimension, and is based on consistent hashing (aka sparse partition), a technique that was recently used for streaming algorithms [Czumaj et al., FOCS'22].

Cite as

Artur Czumaj, Guichen Gao, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Pavel Veselý. Fully-Scalable MPC Algorithms for Clustering in High Dimension. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 50:1-50:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{czumaj_et_al:LIPIcs.ICALP.2024.50,
  author =	{Czumaj, Artur and Gao, Guichen and Jiang, Shaofeng H.-C. and Krauthgamer, Robert and Vesel\'{y}, Pavel},
  title =	{{Fully-Scalable MPC Algorithms for Clustering in High Dimension}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{50:1--50:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.50},
  URN =		{urn:nbn:de:0030-drops-201938},
  doi =		{10.4230/LIPIcs.ICALP.2024.50},
  annote =	{Keywords: Massively parallel computing, high dimension, facility location, k-median, k-means}
}
Document
Track A: Algorithms, Complexity and Games
Computing Tree Decompositions with Small Independence Number

Authors: Clément Dallard, Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Martin Milanič

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
The independence number of a tree decomposition is the maximum of the independence numbers of the subgraphs induced by its bags. The tree-independence number of a graph is the minimum independence number of a tree decomposition of it. Several NP-hard graph problems, like maximum weight independent set, can be solved in time n^𝒪(k) if the input n-vertex graph is given together with a tree decomposition of independence number k. Yolov in [SODA 2018] gave an algorithm that given an n-vertex graph G and an integer k, in time n^𝒪(k³) either constructs a tree decomposition of G whose independence number is 𝒪(k³) or correctly reports that the tree-independence number of G is larger than k. In this paper, we first give an algorithm for computing the tree-independence number with a better approximation ratio and running time and then prove that our algorithm is, in some sense, the best one can hope for. More precisely, our algorithm runs in time 2^𝒪(k²) n^𝒪(k) and either outputs a tree decomposition of G with independence number at most 8k, or determines that the tree-independence number of G is larger than k. This implies 2^𝒪(k²) n^𝒪(k)-time algorithms for various problems, like maximum weight independent set, parameterized by the tree-independence number k without needing the decomposition as an input. Assuming Gap-ETH, an n^Ω(k) factor in the running time is unavoidable for any approximation algorithm for the tree-independence number. Our second result is that the exact computation of the tree-independence number is para-NP-hard: We show that for every constant k ≥ 4 it is NP-hard to decide if a given graph has the tree-independence number at most k.

Cite as

Clément Dallard, Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Martin Milanič. Computing Tree Decompositions with Small Independence Number. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 51:1-51:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dallard_et_al:LIPIcs.ICALP.2024.51,
  author =	{Dallard, Cl\'{e}ment and Fomin, Fedor V. and Golovach, Petr A. and Korhonen, Tuukka and Milani\v{c}, Martin},
  title =	{{Computing Tree Decompositions with Small Independence Number}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{51:1--51:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.51},
  URN =		{urn:nbn:de:0030-drops-201945},
  doi =		{10.4230/LIPIcs.ICALP.2024.51},
  annote =	{Keywords: tree-independence number, approximation, parameterized algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Two-Sets Cut-Uncut on Planar Graphs

Authors: Matthias Bentert, Pål Grønås Drange, Fedor V. Fomin, Petr A. Golovach, and Tuukka Korhonen

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study Two-Sets Cut-Uncut on planar graphs. Therein, one is given an undirected planar graph G and two disjoint sets S and T of vertices as input. The question is, what is the minimum number of edges to remove from G, such that all vertices in S are separated from all vertices in T, while maintaining that every vertex in S, and respectively in T, stays in the same connected component. We show that this problem can be solved in 2^{|S|+|T|} n^𝒪(1) time with a one-sided-error randomized algorithm. Our algorithm implies a polynomial-time algorithm for the network diversion problem on planar graphs, which resolves an open question from the literature. More generally, we show that Two-Sets Cut-Uncut is fixed-parameter tractable when parameterized by the number r of faces in a planar embedding covering the terminals S ∪ T, by providing a 2^𝒪(r) n^𝒪(1)-time algorithm.

Cite as

Matthias Bentert, Pål Grønås Drange, Fedor V. Fomin, Petr A. Golovach, and Tuukka Korhonen. Two-Sets Cut-Uncut on Planar Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 22:1-22:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bentert_et_al:LIPIcs.ICALP.2024.22,
  author =	{Bentert, Matthias and Drange, P\r{a}l Gr{\o}n\r{a}s and Fomin, Fedor V. and Golovach, Petr A. and Korhonen, Tuukka},
  title =	{{Two-Sets Cut-Uncut on Planar Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{22:1--22:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.22},
  URN =		{urn:nbn:de:0030-drops-201654},
  doi =		{10.4230/LIPIcs.ICALP.2024.22},
  annote =	{Keywords: planar graphs, cut-uncut, group-constrained paths}
}
Document
Track A: Algorithms, Complexity and Games
Random Separating Hyperplane Theorem and Learning Polytopes

Authors: Chiranjib Bhattacharyya, Ravindran Kannan, and Amit Kumar

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
The Separating Hyperplane theorem is a fundamental result in Convex Geometry with myriad applications. The theorem asserts that for a point a not in a closed convex set K, there is a hyperplane with K on one side and a strictly on the other side. Our first result, Random Separating Hyperplane Theorem (RSH), is a strengthening of this for polytopes. RSH asserts that if the distance between a and a polytope K with k vertices and unit diameter in ℜ^d is at least δ, where δ is a fixed constant in (0,1), then a randomly chosen hyperplane separates a and K with probability at least 1/poly(k) and margin at least Ω (δ/√d). RSH has algorithmic applications in learning polytopes. We consider a fundamental problem, denoted the "Hausdorff problem", of learning a unit diameter polytope K within Hausdorff distance δ, given an optimization oracle for K. Using RSH, we show that with polynomially many random queries to the optimization oracle, K can be approximated within error O(δ). To our knowledge, this is the first provable algorithm for the Hausdorff Problem in this setting. Building on this result, we show that if the vertices of K are well-separated, then an optimization oracle can be used to generate a list of points, each within distance O(δ) of K, with the property that the list contains a point close to each vertex of K. Further, we show how to prune this list to generate a (unique) approximation to each vertex of the polytope. We prove that in many latent variable settings, e.g., topic modeling, LDA, optimization oracles do exist provided we project to a suitable SVD subspace. Thus, our work yields the first efficient algorithm for finding approximations to the vertices of the latent polytope under the well-separatedness assumption. This assumption states that each vertex of K is far from the convex hull of the remaining vertices of K, and is much weaker than other assumptions behind algorithms in the literature which find vertices of the latent polytope.

Cite as

Chiranjib Bhattacharyya, Ravindran Kannan, and Amit Kumar. Random Separating Hyperplane Theorem and Learning Polytopes. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 25:1-25:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bhattacharyya_et_al:LIPIcs.ICALP.2024.25,
  author =	{Bhattacharyya, Chiranjib and Kannan, Ravindran and Kumar, Amit},
  title =	{{Random Separating Hyperplane Theorem and Learning Polytopes}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{25:1--25:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.25},
  URN =		{urn:nbn:de:0030-drops-201687},
  doi =		{10.4230/LIPIcs.ICALP.2024.25},
  annote =	{Keywords: Separating Hyperplane Theorem, Learning Polytopes, Optimization Oracles}
}
Document
Track A: Algorithms, Complexity and Games
Parameterized Algorithms for Steiner Forest in Bounded Width Graphs

Authors: Andreas Emil Feldmann and Michael Lampis

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we reassess the parameterized complexity and approximability of the well-studied Steiner Forest problem in several graph classes of bounded width. The problem takes an edge-weighted graph and pairs of vertices as input, and the aim is to find a minimum cost subgraph in which each given vertex pair lies in the same connected component. It is known that this problem is APX-hard in general, and NP-hard on graphs of treewidth 3, treedepth 4, and feedback vertex set size 2. However, Bateni, Hajiaghayi and Marx [JACM, 2011] gave an approximation scheme with a runtime of n^O(k²/ε) on graphs of treewidth k. Our main result is a much faster efficient parameterized approximation scheme (EPAS) with a runtime of 2^O(k²/ε log k/ε)⋅n^O(1). If k instead is the vertex cover number of the input graph, we show how to compute the optimum solution in 2^O(k log k)⋅n^O(1) time, and we also prove that this runtime dependence on k is asymptotically best possible, under ETH. Furthermore, if k is the size of a feedback edge set, then we obtain a faster 2^O(k)⋅n^O(1) time algorithm, which again cannot be improved under ETH.

Cite as

Andreas Emil Feldmann and Michael Lampis. Parameterized Algorithms for Steiner Forest in Bounded Width Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 61:1-61:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{feldmann_et_al:LIPIcs.ICALP.2024.61,
  author =	{Feldmann, Andreas Emil and Lampis, Michael},
  title =	{{Parameterized Algorithms for Steiner Forest in Bounded Width Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{61:1--61:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.61},
  URN =		{urn:nbn:de:0030-drops-202048},
  doi =		{10.4230/LIPIcs.ICALP.2024.61},
  annote =	{Keywords: Steiner Forest, Approximation Algorithms, FPT algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Subexponential Parameterized Directed Steiner Network Problems on Planar Graphs: A Complete Classification

Authors: Esther Galby, Sándor Kisfaludi-Bak, Dániel Marx, and Roohani Sharma

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In the Directed Steiner Network problem, the input is a directed graph G, a set T ⊆ V(G) of k terminals, and a demand graph D on T. The task is to find a subgraph H ⊆ G with the minimum number of edges such that for every (s,t) ∈ E(D), the solution H contains a directed s → t path. The goal of this paper is to investigate how the complexity of the problem depends on the demand pattern in planar graphs. Formally, if 𝒟 is a class of directed graphs, then the 𝒟-Steiner Network (𝒟-DSN) problem is the special case where the demand graph D is restricted to be from 𝒟. We give a complete characterization of the behavior of every 𝒟-DSN problem on planar graphs. We classify every class 𝒟 closed under transitive equivalence and identification of vertices into three cases: assuming ETH, either the problem is 1) solvable in time 2^O(k)⋅n^O(1), i.e., FPT parameterized by the number k of terminals, but not solvable in time 2^o(k)⋅n^O(1), 2) solvable in time f(k)⋅n^O(√k), but cannot be solved in time f(k)⋅n^o(√k), or 3) solvable in time f(k)⋅n^O(k), but cannot be solved in time f(k)⋅n^o(k). Our result is a far-reaching generalization and unification of earlier results on Directed Steiner Tree, Directed Steiner Network, and Strongly Connected Steiner Subgraph on planar graphs. As an important step of our lower bound proof, we discover a rare example of a genuinely planar problem (i.e., described by a planar graph and two sets of vertices) that cannot be solved in time f(k)⋅n^o(k): given two sets of terminals S and T with |S|+|T| = k, find a subgraph with minimum number of edges such that every vertex of T is reachable from every vertex of S.

Cite as

Esther Galby, Sándor Kisfaludi-Bak, Dániel Marx, and Roohani Sharma. Subexponential Parameterized Directed Steiner Network Problems on Planar Graphs: A Complete Classification. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 67:1-67:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{galby_et_al:LIPIcs.ICALP.2024.67,
  author =	{Galby, Esther and Kisfaludi-Bak, S\'{a}ndor and Marx, D\'{a}niel and Sharma, Roohani},
  title =	{{Subexponential Parameterized Directed Steiner Network Problems on Planar Graphs: A Complete Classification}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{67:1--67:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.67},
  URN =		{urn:nbn:de:0030-drops-202104},
  doi =		{10.4230/LIPIcs.ICALP.2024.67},
  annote =	{Keywords: Directed Steiner Network, Sub-exponential algorithm}
}
Document
Track A: Algorithms, Complexity and Games
A Tight Subexponential-Time Algorithm for Two-Page Book Embedding

Authors: Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
A book embedding of a graph is a drawing that maps vertices onto a line and edges to simple pairwise non-crossing curves drawn into "pages", which are half-planes bounded by that line. Two-page book embeddings, i.e., book embeddings into 2 pages, are of special importance as they are both NP-hard to compute and have specific applications. We obtain a 2^𝒪(√n) algorithm for computing a book embedding of an n-vertex graph on two pages - a result which is asymptotically tight under the Exponential Time Hypothesis. As a key tool in our approach, we obtain a single-exponential fixed-parameter algorithm for the same problem when parameterized by the treewidth of the input graph. We conclude by establishing the fixed-parameter tractability of computing minimum-page book embeddings when parameterized by the feedback edge number, settling an open question arising from previous work on the problem.

Cite as

Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki. A Tight Subexponential-Time Algorithm for Two-Page Book Embedding. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 68:1-68:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ganian_et_al:LIPIcs.ICALP.2024.68,
  author =	{Ganian, Robert and M\"{u}ller, Haiko and Ordyniak, Sebastian and Paesani, Giacomo and Rychlicki, Mateusz},
  title =	{{A Tight Subexponential-Time Algorithm for Two-Page Book Embedding}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{68:1--68:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.68},
  URN =		{urn:nbn:de:0030-drops-202114},
  doi =		{10.4230/LIPIcs.ICALP.2024.68},
  annote =	{Keywords: book embedding, page number, subexponential algorithms, subhamiltonicity, feedback edge number}
}
  • Refine by Author
  • 2 Fomin, Fedor V.
  • 2 Golovach, Petr A.
  • 2 Korhonen, Tuukka
  • 2 Marx, Dániel
  • 2 Sharma, Roohani
  • Show More...

  • Refine by Classification
  • 5 Mathematics of computing → Graph algorithms
  • 5 Theory of computation → Graph algorithms analysis
  • 5 Theory of computation → Parameterized complexity and exact algorithms
  • 3 Theory of computation → Facility location and clustering
  • 3 Theory of computation → Fixed parameter tractability
  • Show More...

  • Refine by Keyword
  • 1 Anonymity
  • 1 Applications of logics
  • 1 Approximation Algorithms
  • 1 Benckmark dataset
  • 1 Branch-and-Reduce
  • Show More...

  • Refine by Type
  • 26 document

  • Refine by Publication Year
  • 23 2024
  • 1 2017
  • 1 2018
  • 1 2021