7 Search Results for "Kumar, Ashish"


Document
Impredicativity, Cumulativity and Product Covariance in the Logical Framework Dedukti

Authors: Thiago Felicissimo and Théo Winterhalter

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Proof assistants such as Coq implement a type theory featuring three important features: impredicativity, cumulativity and product covariance. This combination has proven difficult to be expressed in the logical framework Dedukti, and previous attempts have failed in providing an encoding that is proven confluent, sound and conservative. In this work we solve this longstanding open problem by providing an encoding of these three features that we prove to be confluent, sound and to satisfy a restricted (but, we argue, strong enough) form of conservativity. Our proof of confluence is a contribution by itself, and combines various criteria and proof techniques from rewriting theory. Our proof of soundness also contributes a new strategy in which the result is shown in terms of an inverse translation function, fixing a common flaw made in some previous encoding attempts.

Cite as

Thiago Felicissimo and Théo Winterhalter. Impredicativity, Cumulativity and Product Covariance in the Logical Framework Dedukti. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 21:1-21:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{felicissimo_et_al:LIPIcs.FSCD.2024.21,
  author =	{Felicissimo, Thiago and Winterhalter, Th\'{e}o},
  title =	{{Impredicativity, Cumulativity and Product Covariance in the Logical Framework Dedukti}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{21:1--21:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.21},
  URN =		{urn:nbn:de:0030-drops-203503},
  doi =		{10.4230/LIPIcs.FSCD.2024.21},
  annote =	{Keywords: Dedukti, Rewriting, Confluence, Dependent types, Cumulativity, Universes}
}
Document
Track A: Algorithms, Complexity and Games
List Update with Delays or Time Windows

Authors: Yossi Azar, Shahar Lewkowicz, and Danny Vainstein

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We address the problem of List Update, which is considered one of the fundamental problems in online algorithms and competitive analysis. In this context, we are presented with a list of elements and receive requests for these elements over time. Our objective is to fulfill these requests, incurring a cost proportional to their position in the list. Additionally, we can swap any two consecutive elements at a cost of 1. The renowned "Move to Front" algorithm, introduced by Sleator and Tarjan, immediately moves any requested element to the front of the list. They demonstrated that this algorithm achieves a competitive ratio of 2. While this bound is impressive, the actual cost of the algorithm’s solution can be excessively high. For example, if we request the last half of the list, the resulting solution cost becomes quadratic in the list’s length. To address this issue, we consider a more generalized problem called List Update with Time Windows. In this variant, each request arrives with a specific deadline by which it must be served, rather than being served immediately. Moreover, we allow the algorithm to process multiple requests simultaneously, accessing the corresponding elements in a single pass. The cost incurred in this case is determined by the position of the furthest element accessed, leading to a significant reduction in the total solution cost. We introduce this problem to explore lower solution costs, but it necessitates the development of new algorithms. For instance, Move-to-Front fails when handling the simple scenario of requesting the last half of the list with overlapping time windows. In our work, we present a natural O(1) competitive algorithm for this problem. While the algorithm itself is intuitive, its analysis is intricate, requiring the use of a novel potential function. Additionally, we delve into a more general problem called List Update with Delays, where the fixed deadlines are replaced with arbitrary delay functions. In this case, the cost includes not only the access and swapping costs, but also penalties for the delays incurred until the requests are served. This problem encompasses a special case known as the prize collecting version, where a request may go unserved up to a given deadline, resulting in a specified penalty. For this more comprehensive problem, we establish an O(1) competitive algorithm. However, the algorithm for the delay version is more complex, and its analysis involves significantly more intricate considerations.

Cite as

Yossi Azar, Shahar Lewkowicz, and Danny Vainstein. List Update with Delays or Time Windows. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 15:1-15:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{azar_et_al:LIPIcs.ICALP.2024.15,
  author =	{Azar, Yossi and Lewkowicz, Shahar and Vainstein, Danny},
  title =	{{List Update with Delays or Time Windows}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{15:1--15:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.15},
  URN =		{urn:nbn:de:0030-drops-201583},
  doi =		{10.4230/LIPIcs.ICALP.2024.15},
  annote =	{Keywords: Online, List Update, Delay, Time Window, Deadline}
}
Document
Track A: Algorithms, Complexity and Games
Dynamic PageRank: Algorithms and Lower Bounds

Authors: Rajesh Jayaram, Jakub Łącki, Slobodan Mitrović, Krzysztof Onak, and Piotr Sankowski

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the PageRank problem in the dynamic setting, where the goal is to explicitly maintain an approximate PageRank vector π ∈ ℝⁿ for a graph under a sequence of edge insertions and deletions. Our main result is a complete characterization of the complexity of dynamic PageRank maintenance for both multiplicative and additive (L₁) approximations. First, we establish matching lower and upper bounds for maintaining additive approximate PageRank in both incremental and decremental settings. In particular, we demonstrate that in the worst-case (1/α)^{Θ(log log n)} update time is necessary and sufficient for this problem, where α is the desired additive approximation. On the other hand, we demonstrate that the commonly employed ForwardPush approach performs substantially worse than this optimal runtime. Specifically, we show that ForwardPush requires Ω(n^{1-δ}) time per update on average, for any δ > 0, even in the incremental setting. For multiplicative approximations, however, we demonstrate that the situation is significantly more challenging. Specifically, we prove that any algorithm that explicitly maintains a constant factor multiplicative approximation of the PageRank vector of a directed graph must have amortized update time Ω(n^{1-δ}), for any δ > 0, even in the incremental setting, thereby resolving a 13-year old open question of Bahmani et al. (VLDB 2010). This sharply contrasts with the undirected setting, where we show that poly log n update time is feasible, even in the fully dynamic setting under oblivious adversary.

Cite as

Rajesh Jayaram, Jakub Łącki, Slobodan Mitrović, Krzysztof Onak, and Piotr Sankowski. Dynamic PageRank: Algorithms and Lower Bounds. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 90:1-90:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jayaram_et_al:LIPIcs.ICALP.2024.90,
  author =	{Jayaram, Rajesh and {\L}\k{a}cki, Jakub and Mitrovi\'{c}, Slobodan and Onak, Krzysztof and Sankowski, Piotr},
  title =	{{Dynamic PageRank: Algorithms and Lower Bounds}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{90:1--90:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.90},
  URN =		{urn:nbn:de:0030-drops-202336},
  doi =		{10.4230/LIPIcs.ICALP.2024.90},
  annote =	{Keywords: PageRank, dynamic algorithms, graph algorithms}
}
Document
Track A: Algorithms, Complexity and Games
A Sublinear Time Tester for Max-Cut on Clusterable Graphs

Authors: Agastya Vibhuti Jha and Akash Kumar

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
One natural question in the area of sublinear time algorithms asks whether we can distinguish between graphs with max-cut value at least 1-ε from graphs with max-cut value at most 1/2+ε in the adjacency list model where we can make degree queries and neighbor queries. Chiplunkar, Kapralov, Khanna, Mousavifar, and Peres (FOCS' 18) showed that in graphs of bounded degree, one cannot hope for a factor 1/2+ε approximation to the max-cut value in time n^{1/2+o(ε)}. Recently, Peng and Yoshida (SODA '23) obtained o(n) time algorithms which can distinguish expanders with max-cut value at least 1-ε from expanders with small max-cut value (their running time is n^{1/2+O(ε)}). In this paper, going beyond the results of Peng-Yoshida, we develop sublinear time algorithms for this problem on clusterable graphs (which is a graph class with a good community structure). Our algorithms run in ≈ n^{0.5001+ O(ε)} time. A natural extension of Peng-Yoshida approach does not seem to work for clusterable graphs. Indeed, their random walk based technique tracks the 𝓁₂ length of random walk vectors and they exploit the difference in the length of these vectors to tell apart expanders with large cut value from expanders with small cut-value. Such approaches fail to be reliable when graph has loosely connected clusters. Taking inspiration from [Ashish Chiplunkar et al., 2018], we exploit the more refined geometry of spectra of clusterable graphs which leads to our sublinear time implementation. We prove a novel spectral lemma which shows that in a spectral expander 2 - λ_{n-1} ≥ Ω(λ₂). This lemma is leveraged to show that there is a suitable difference between spectra of clusterable graphs with large cut value and spectra of clusterable graphs with small cut value. We use this gap to obtain our sublinear time implementation. To do this, we obtain a nuanced understanding of the eigenvector structure of clusterable graphs and in particular, we show that the eigenvectors of the normalized Laplacian of a clusterable graph, corresponding to eigenvalues which are close to 2 have a small infinity norm.

Cite as

Agastya Vibhuti Jha and Akash Kumar. A Sublinear Time Tester for Max-Cut on Clusterable Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 91:1-91:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jha_et_al:LIPIcs.ICALP.2024.91,
  author =	{Jha, Agastya Vibhuti and Kumar, Akash},
  title =	{{A Sublinear Time Tester for Max-Cut on Clusterable Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{91:1--91:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.91},
  URN =		{urn:nbn:de:0030-drops-202344},
  doi =		{10.4230/LIPIcs.ICALP.2024.91},
  annote =	{Keywords: Sublinear Algorithms, Graph Algorithms, Clusterable Graphs, Property Testung}
}
Document
Translating Proofs from an Impredicative Type System to a Predicative One

Authors: Thiago Felicissimo, Frédéric Blanqui, and Ashish Kumar Barnawal

Published in: LIPIcs, Volume 252, 31st EACSL Annual Conference on Computer Science Logic (CSL 2023)


Abstract
As the development of formal proofs is a time-consuming task, it is important to devise ways of sharing the already written proofs to prevent wasting time redoing them. One of the challenges in this domain is to translate proofs written in proof assistants based on impredicative logics, such as Coq, Matita and the HOL family, to proof assistants based on predicative logics like Agda, whenever impredicativity is not used in an essential way. In this paper we present an algorithm to do such a translation between a core impredicative type system and a core predicative one allowing prenex universe polymorphism like in Agda. It consists in trying to turn a potentially impredicative term into a universe polymorphic term as general as possible. The use of universe polymorphism is justified by the fact that mapping an impredicative universe to a fixed predicative one is not sufficient in most cases. During the algorithm, we need to solve unification problems modulo the max-successor algebra on universe levels. But, in this algebra, there are solvable problems having no most general solution. We however provide an incomplete algorithm whose solutions, when it succeeds, are most general ones. The proposed translation is of course partial, but in practice allows one to translate many proofs that do not use impredicativity in an essential way. Indeed, it was implemented in the tool Predicativize and then used to translate semi-automatically many non-trivial developments from Matita’s arithmetic library to Agda, including Bertrand’s Postulate and Fermat’s Little Theorem, which were not available in Agda yet.

Cite as

Thiago Felicissimo, Frédéric Blanqui, and Ashish Kumar Barnawal. Translating Proofs from an Impredicative Type System to a Predicative One. In 31st EACSL Annual Conference on Computer Science Logic (CSL 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 252, pp. 19:1-19:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{felicissimo_et_al:LIPIcs.CSL.2023.19,
  author =	{Felicissimo, Thiago and Blanqui, Fr\'{e}d\'{e}ric and Barnawal, Ashish Kumar},
  title =	{{Translating Proofs from an Impredicative Type System to a Predicative One}},
  booktitle =	{31st EACSL Annual Conference on Computer Science Logic (CSL 2023)},
  pages =	{19:1--19:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-264-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{252},
  editor =	{Klin, Bartek and Pimentel, Elaine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2023.19},
  URN =		{urn:nbn:de:0030-drops-174801},
  doi =		{10.4230/LIPIcs.CSL.2023.19},
  annote =	{Keywords: Type Theory, Impredicativity, Predicativity, Proof Translation, Universe Polymorphism, Unification Modulo Max, Agda, Dedukti}
}
Document
Planar Maximum Matching: Towards a Parallel Algorithm

Authors: Samir Datta, Raghav Kulkarni, Ashish Kumar, and Anish Mukherjee

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
Perfect matchings in planar graphs have been extensively studied and understood in the context of parallel complexity [P W Kastelyn, 1967; Vijay Vazirani, 1988; Meena Mahajan and Kasturi R. Varadarajan, 2000; Datta et al., 2010; Nima Anari and Vijay V. Vazirani, 2017]. However, corresponding results for maximum matchings have been elusive. We partly bridge this gap by proving: 1) An SPL upper bound for planar bipartite maximum matching search. 2) Planar maximum matching search reduces to planar maximum matching decision. 3) Planar maximum matching count reduces to planar bipartite maximum matching count and planar maximum matching decision. The first bound improves on the known [Thanh Minh Hoang, 2010] bound of L^{C_=L} and is adaptable to any special bipartite graph class with non-zero circulation such as bounded genus graphs, K_{3,3}-free graphs and K_5-free graphs. Our bounds and reductions non-trivially combine techniques like the Gallai-Edmonds decomposition [L. Lovász and M.D. Plummer, 1986], deterministic isolation [Datta et al., 2010; Samir Datta et al., 2012; Rahul Arora et al., 2016], and the recent breakthroughs in the parallel search for planar perfect matchings [Nima Anari and Vijay V. Vazirani, 2017; Piotr Sankowski, 2018].

Cite as

Samir Datta, Raghav Kulkarni, Ashish Kumar, and Anish Mukherjee. Planar Maximum Matching: Towards a Parallel Algorithm. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 21:1-21:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{datta_et_al:LIPIcs.ISAAC.2018.21,
  author =	{Datta, Samir and Kulkarni, Raghav and Kumar, Ashish and Mukherjee, Anish},
  title =	{{Planar Maximum Matching: Towards a Parallel Algorithm}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{21:1--21:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.21},
  URN =		{urn:nbn:de:0030-drops-99695},
  doi =		{10.4230/LIPIcs.ISAAC.2018.21},
  annote =	{Keywords: maximum matching, planar graphs, parallel complexity, reductions}
}
Document
Deductive Verification of Continuous Dynamical Systems

Authors: Ankur Taly and Ashish Tiwari

Published in: LIPIcs, Volume 4, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2009)


Abstract
We define the notion of inductive invariants for continuous dynamical systems and use it to present inference rules for safety verification of polynomial continuous dynamical systems. We present two different sound and complete inference rules, but neither of these rules can be effectively applied. We then present several simpler and practical inference rules that are sound and relatively complete for different classes of inductive invariants. The simpler inference rules can be effectively checked when all involved sets are semi-algebraic.

Cite as

Ankur Taly and Ashish Tiwari. Deductive Verification of Continuous Dynamical Systems. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 4, pp. 383-394, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{taly_et_al:LIPIcs.FSTTCS.2009.2334,
  author =	{Taly, Ankur and Tiwari, Ashish},
  title =	{{Deductive Verification of Continuous Dynamical Systems}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science},
  pages =	{383--394},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-13-2},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{4},
  editor =	{Kannan, Ravi and Narayan Kumar, K.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2009.2334},
  URN =		{urn:nbn:de:0030-drops-23342},
  doi =		{10.4230/LIPIcs.FSTTCS.2009.2334},
  annote =	{Keywords: Deductive Verification, inductive invariants, continuous and hybrid dynamical systems, Theory of Reals}
}
  • Refine by Author
  • 2 Felicissimo, Thiago
  • 1 Azar, Yossi
  • 1 Barnawal, Ashish Kumar
  • 1 Blanqui, Frédéric
  • 1 Datta, Samir
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Equational logic and rewriting
  • 2 Theory of computation → Type theory
  • 1 Information systems → Page and site ranking
  • 1 Mathematics of computing → Graph algorithms
  • 1 Mathematics of computing → Spectra of graphs
  • Show More...

  • Refine by Keyword
  • 2 Dedukti
  • 1 Agda
  • 1 Clusterable Graphs
  • 1 Confluence
  • 1 Cumulativity
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 4 2024
  • 1 2009
  • 1 2018
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail