26 Search Results for "Vigoda, Eric"


Document
RANDOM
Near-Linear Time Samplers for Matroid Independent Sets with Applications

Authors: Xiaoyu Chen, Heng Guo, Xinyuan Zhang, and Zongrui Zou

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We give a Õ(n) time almost uniform sampler for independent sets of a matroid, whose ground set has n elements and is given by an independence oracle. As a consequence, one can sample connected spanning subgraphs of a given graph G = (V,E) in Õ(|E|) time, whereas the previous best algorithm takes O(|E||V|) time. This improvement, in turn, leads to a faster running time on estimating all-terminal network reliability. Furthermore, we generalise this near-linear time sampler to the random cluster model with q ≤ 1.

Cite as

Xiaoyu Chen, Heng Guo, Xinyuan Zhang, and Zongrui Zou. Near-Linear Time Samplers for Matroid Independent Sets with Applications. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 32:1-32:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.APPROX/RANDOM.2024.32,
  author =	{Chen, Xiaoyu and Guo, Heng and Zhang, Xinyuan and Zou, Zongrui},
  title =	{{Near-Linear Time Samplers for Matroid Independent Sets with Applications}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{32:1--32:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.32},
  URN =		{urn:nbn:de:0030-drops-210254},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.32},
  annote =	{Keywords: Network reliability, Random cluster modek, Matroid, Bases-exchange walk}
}
Document
RANDOM
Improved Bounds for High-Dimensional Equivalence and Product Testing Using Subcube Queries

Authors: Tomer Adar, Eldar Fischer, and Amit Levi

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We study property testing in the subcube conditional model introduced by Bhattacharyya and Chakraborty (2017). We obtain the first equivalence test for n-dimensional distributions that is quasi-linear in n, improving the previously known Õ(n²/ε²) query complexity bound to Õ(n/ε²). We extend this result to general finite alphabets with logarithmic cost in the alphabet size. By exploiting the specific structure of the queries that we use (which are more restrictive than general subcube queries), we obtain a cubic improvement over the best known test for distributions over {1,…,N} under the interval querying model of Canonne, Ron and Servedio (2015), attaining a query complexity of Õ((log N)/ε²), which for fixed ε almost matches the known lower bound of Ω((log N)/log log N). We also derive a product test for n-dimensional distributions with Õ(n/ε²) queries, and provide an Ω(√n/ε²) lower bound for this property.

Cite as

Tomer Adar, Eldar Fischer, and Amit Levi. Improved Bounds for High-Dimensional Equivalence and Product Testing Using Subcube Queries. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 48:1-48:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{adar_et_al:LIPIcs.APPROX/RANDOM.2024.48,
  author =	{Adar, Tomer and Fischer, Eldar and Levi, Amit},
  title =	{{Improved Bounds for High-Dimensional Equivalence and Product Testing Using Subcube Queries}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{48:1--48:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.48},
  URN =		{urn:nbn:de:0030-drops-210418},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.48},
  annote =	{Keywords: Distribution testing, conditional sampling, sub-cube sampling}
}
Document
RANDOM
Parallelising Glauber Dynamics

Authors: Holden Lee

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
For distributions over discrete product spaces ∏_{i=1}^n Ω_i', Glauber dynamics is a Markov chain that at each step, resamples a random coordinate conditioned on the other coordinates. We show that k-Glauber dynamics, which resamples a random subset of k coordinates, mixes k times faster in χ²-divergence, and assuming approximate tensorization of entropy, mixes k times faster in KL-divergence. We apply this to obtain parallel algorithms in two settings: (1) For the Ising model μ_{J,h}(x) ∝ exp(1/2 ⟨x,Jx⟩ + ⟨h,x⟩) with ‖J‖ < 1-c (the regime where fast mixing is known), we show that we can implement each step of Θ(n/‖J‖_F)-Glauber dynamics efficiently with a parallel algorithm, resulting in a parallel algorithm with running time Õ(‖J‖_F) = Õ(√n). (2) For the mixed p-spin model at high enough temperature, we show that with high probability we can implement each step of Θ(√n)-Glauber dynamics efficiently and obtain running time Õ(√n).

Cite as

Holden Lee. Parallelising Glauber Dynamics. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 49:1-49:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lee:LIPIcs.APPROX/RANDOM.2024.49,
  author =	{Lee, Holden},
  title =	{{Parallelising Glauber Dynamics}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{49:1--49:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.49},
  URN =		{urn:nbn:de:0030-drops-210424},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.49},
  annote =	{Keywords: sampling, Ising model, parallel algorithm, Markov chain, Glauber dynamics}
}
Document
RANDOM
Fast and Slow Mixing of the Kawasaki Dynamics on Bounded-Degree Graphs

Authors: Aiya Kuchukova, Marcus Pappik, Will Perkins, and Corrine Yap

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We study the worst-case mixing time of the global Kawasaki dynamics for the fixed-magnetization Ising model on the class of graphs of maximum degree Δ. Proving a conjecture of Carlson, Davies, Kolla, and Perkins, we show that below the tree uniqueness threshold, the Kawasaki dynamics mix rapidly for all magnetizations. Disproving a conjecture of Carlson, Davies, Kolla, and Perkins, we show that the regime of fast mixing does not extend throughout the regime of tractability for this model: there is a range of parameters for which there exist efficient sampling algorithms for the fixed-magnetization Ising model on max-degree Δ graphs, but the Kawasaki dynamics can take exponential time to mix. Our techniques involve showing spectral independence in the fixed-magnetization Ising model and proving a sharp threshold for the existence of multiple metastable states in the Ising model with external field on random regular graphs.

Cite as

Aiya Kuchukova, Marcus Pappik, Will Perkins, and Corrine Yap. Fast and Slow Mixing of the Kawasaki Dynamics on Bounded-Degree Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 56:1-56:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kuchukova_et_al:LIPIcs.APPROX/RANDOM.2024.56,
  author =	{Kuchukova, Aiya and Pappik, Marcus and Perkins, Will and Yap, Corrine},
  title =	{{Fast and Slow Mixing of the Kawasaki Dynamics on Bounded-Degree Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{56:1--56:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.56},
  URN =		{urn:nbn:de:0030-drops-210493},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.56},
  annote =	{Keywords: ferromagnetic Ising model, fixed-magnetization Ising model, Kawasaki dynamics, Glauber dynamics, mixing time}
}
Document
RANDOM
Expanderizing Higher Order Random Walks

Authors: Vedat Levi Alev and Shravas Rao

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We study a variant of the down-up (also known as the Glauber dynamics) and up-down walks over an n-partite simplicial complex, which we call expanderized higher order random walks - where the sequence of updated coordinates correspond to the sequence of vertices visited by a random walk over an auxiliary expander graph H. When H is the clique with self loops on [n], this random walk reduces to the usual down-up walk and when H is the directed cycle on [n], this random walk reduces to the well-known systematic scan Glauber dynamics. We show that whenever the usual higher order random walks satisfy a log-Sobolev inequality or a Poincaré inequality, the expanderized walks satisfy the same inequalities with a loss of quality related to the two-sided expansion of the auxillary graph H. Our construction can be thought as a higher order random walk generalization of the derandomized squaring algorithm of Rozenman and Vadhan (RANDOM 2005). We study the mixing times of our expanderized walks in two example cases: We show that when initiated with an expander graph our expanderized random walks have mixing time (i) O(n log n) for sampling a uniformly random list colorings of a graph G of maximum degree Δ = O(1) where each vertex has at least (11/6 - ε) Δ and at most O(Δ) colors, (ii) O_h((n log n)/(1 - ‖J‖_op)²) for sampling the Ising model with a PSD interaction matrix J ∈ ℝ^{n×n} satisfying ‖J‖_op ≤ 1 and the external field h ∈ ℝⁿ- here the O(•) notation hides a constant that depends linearly on the largest entry of h. As expander graphs can be very sparse, this decreases the amount of randomness required to simulate the down-up walks by a logarithmic factor. We also prove some simple results which enable us to argue about log-Sobolev constants of higher order random walks and provide a simple and self-contained analysis of local-to-global Φ-entropy contraction in simplicial complexes - giving simpler proofs for many pre-existing results.

Cite as

Vedat Levi Alev and Shravas Rao. Expanderizing Higher Order Random Walks. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 58:1-58:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{alev_et_al:LIPIcs.APPROX/RANDOM.2024.58,
  author =	{Alev, Vedat Levi and Rao, Shravas},
  title =	{{Expanderizing Higher Order Random Walks}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{58:1--58:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.58},
  URN =		{urn:nbn:de:0030-drops-210510},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.58},
  annote =	{Keywords: Higher Order Random Walks, Expander Graphs, Glauber Dynamics, Derandomized Squaring, High Dimensional Expansion, Spectral Independence, Entropic Independence}
}
Document
RANDOM
Rapid Mixing of the Down-Up Walk on Matchings of a Fixed Size

Authors: Vishesh Jain and Clayton Mizgerd

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
Let G = (V,E) be a graph on n vertices and let m^*(G) denote the size of a maximum matching in G. We show that for any δ > 0 and for any 1 ≤ k ≤ (1-δ)m^*(G), the down-up walk on matchings of size k in G mixes in time polynomial in n. Previously, polynomial mixing was not known even for graphs with maximum degree Δ, and our result makes progress on a conjecture of Jain, Perkins, Sah, and Sawhney [STOC, 2022] that the down-up walk mixes in optimal time O_{Δ,δ}(nlog{n}). In contrast with recent works analyzing mixing of down-up walks in various settings using the spectral independence framework, we bound the spectral gap by constructing and analyzing a suitable multi-commodity flow. In fact, we present constructions demonstrating the limitations of the spectral independence approach in our setting.

Cite as

Vishesh Jain and Clayton Mizgerd. Rapid Mixing of the Down-Up Walk on Matchings of a Fixed Size. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 63:1-63:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jain_et_al:LIPIcs.APPROX/RANDOM.2024.63,
  author =	{Jain, Vishesh and Mizgerd, Clayton},
  title =	{{Rapid Mixing of the Down-Up Walk on Matchings of a Fixed Size}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{63:1--63:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.63},
  URN =		{urn:nbn:de:0030-drops-210563},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.63},
  annote =	{Keywords: Down-up walk, Matchings, MCMC}
}
Document
RANDOM
On Sampling from Ising Models with Spectral Constraints

Authors: Andreas Galanis, Alkis Kalavasis, and Anthimos Vardis Kandiros

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We consider the problem of sampling from the Ising model when the underlying interaction matrix has eigenvalues lying within an interval of length γ. Recent work in this setting has shown various algorithmic results that apply roughly when γ < 1, notably with nearly-linear running times based on the classical Glauber dynamics. However, the optimality of the range of γ was not clear since previous inapproximability results developed for the antiferromagnetic case (where the matrix has entries ≤ 0) apply only for γ > 2. To this end, Kunisky (SODA'24) recently provided evidence that the problem becomes hard already when γ > 1 based on the low-degree hardness for an inference problem on random matrices. Based on this, he conjectured that sampling from the Ising model in the same range of γ is NP-hard. Here we confirm this conjecture, complementing in particular the known algorithmic results by showing NP-hardness results for approximately counting and sampling when γ > 1, with strong inapproximability guarantees; we also obtain a more refined hardness result for matrices where only a constant number of entries per row are allowed to be non-zero. The main observation in our reductions is that, for γ > 1, Glauber dynamics mixes slowly when the interactions are all positive (ferromagnetic) for the complete and random regular graphs, due to a bimodality in the underlying distribution. While ferromagnetic interactions typically preclude NP-hardness results, here we work around this by introducing in an appropriate way mild antiferromagnetism, keeping the spectrum roughly within the same range. This allows us to exploit the bimodality of the aforementioned graphs and show the target NP-hardness by adapting suitably previous inapproximability techniques developed for antiferromagnetic systems.

Cite as

Andreas Galanis, Alkis Kalavasis, and Anthimos Vardis Kandiros. On Sampling from Ising Models with Spectral Constraints. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 70:1-70:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{galanis_et_al:LIPIcs.APPROX/RANDOM.2024.70,
  author =	{Galanis, Andreas and Kalavasis, Alkis and Kandiros, Anthimos Vardis},
  title =	{{On Sampling from Ising Models with Spectral Constraints}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{70:1--70:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.70},
  URN =		{urn:nbn:de:0030-drops-210638},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.70},
  annote =	{Keywords: Ising model, spectral constraints, Glauber dynamics, mean-field Ising, random regular graphs}
}
Document
Multicoloured Hardcore Model: Fast Mixing and Its Applications as a Scheduling Algorithm

Authors: Sam Olesker-Taylor

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
In the hardcore model, certain vertices in a graph are active: the active vertices must form an independent set. We extend this to a multicoloured version: instead of simply being active or not, the active vertices are assigned a colour; active vertices of the same colour must not be adjacent. This models a scenario in which two neighbouring resources may interfere when active - eg, short-range radio communication. However, there are multiple channels (colours) available; they only interfere if both use the same channel. Other applications include routing in fibreoptic networks. We analyse Glauber dynamics. Vertices update their status at random times, at which a uniform colour is proposed: the vertex is assigned that colour if it is available; otherwise, it is set inactive. We find conditions for fast mixing of these dynamics. We also use them to model a queueing system: vertices only serve customers in their queue whilst active. The mixing estimates are applied to establish positive recurrence of the queue lengths, and bound their expectation in equilibrium.

Cite as

Sam Olesker-Taylor. Multicoloured Hardcore Model: Fast Mixing and Its Applications as a Scheduling Algorithm. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 20:1-20:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{oleskertaylor:LIPIcs.AofA.2024.20,
  author =	{Olesker-Taylor, Sam},
  title =	{{Multicoloured Hardcore Model: Fast Mixing and Its Applications as a Scheduling Algorithm}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{20:1--20:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.20},
  URN =		{urn:nbn:de:0030-drops-204558},
  doi =		{10.4230/LIPIcs.AofA.2024.20},
  annote =	{Keywords: mixing time, queueing theory, hardcore model, proper colourings, independent set, data transmission, randomised algorithms, routing, scheduling, multihop wireless networks}
}
Document
Track A: Algorithms, Complexity and Games
A Spectral Approach to Approximately Counting Independent Sets in Dense Bipartite Graphs

Authors: Charlie Carlson, Ewan Davies, Alexandra Kolla, and Aditya Potukuchi

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We give a randomized algorithm that approximates the number of independent sets in a dense, regular bipartite graph - in the language of approximate counting, we give an FPRAS for #BIS on the class of dense, regular bipartite graphs. Efficient counting algorithms typically apply to "high-temperature" problems on bounded-degree graphs, and our contribution is a notable exception as it applies to dense graphs in a low-temperature setting. Our methods give a counting-focused complement to the long line of work in combinatorial optimization showing that CSPs such as Max-Cut and Unique Games are easy on dense graphs via spectral arguments. Our contributions include a novel extension of the method of graph containers that differs considerably from other recent low-temperature algorithms. The additional key insights come from spectral graph theory and have previously been successful in approximation algorithms. As a result, we can overcome some limitations that seem inherent to the aforementioned class of algorithms. In particular, we exploit the fact that dense, regular graphs exhibit a kind of small-set expansion (i.e., bounded threshold rank), which, via subspace enumeration, lets us enumerate small cuts efficiently.

Cite as

Charlie Carlson, Ewan Davies, Alexandra Kolla, and Aditya Potukuchi. A Spectral Approach to Approximately Counting Independent Sets in Dense Bipartite Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 35:1-35:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{carlson_et_al:LIPIcs.ICALP.2024.35,
  author =	{Carlson, Charlie and Davies, Ewan and Kolla, Alexandra and Potukuchi, Aditya},
  title =	{{A Spectral Approach to Approximately Counting Independent Sets in Dense Bipartite Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{35:1--35:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.35},
  URN =		{urn:nbn:de:0030-drops-201782},
  doi =		{10.4230/LIPIcs.ICALP.2024.35},
  annote =	{Keywords: approximate counting, independent sets, bipartite graphs, graph containers}
}
Document
Track A: Algorithms, Complexity and Games
Problems on Group-Labeled Matroid Bases

Authors: Florian Hörsch, András Imolay, Ryuhei Mizutani, Taihei Oki, and Tamás Schwarcz

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Consider a matroid equipped with a labeling of its ground set to an abelian group. We define the label of a subset of the ground set as the sum of the labels of its elements. We study a collection of problems on finding bases and common bases of matroids with restrictions on their labels. For zero bases and zero common bases, the results are mostly negative. While finding a non-zero basis of a matroid is not difficult, it turns out that the complexity of finding a non-zero common basis depends on the group. Namely, we show that the problem is hard for a fixed group if it contains an element of order two, otherwise it is polynomially solvable. As a generalization of both zero and non-zero constraints, we further study F-avoiding constraints where we seek a basis or common basis whose label is not in a given set F of forbidden labels. Using algebraic techniques, we give a randomized algorithm for finding an F-avoiding common basis of two matroids represented over the same field for finite groups given as operation tables. The study of F-avoiding bases with groups given as oracles leads to a conjecture stating that whenever an F-avoiding basis exists, an F-avoiding basis can be obtained from an arbitrary basis by exchanging at most |F| elements. We prove the conjecture for the special cases when |F| ≤ 2 or the group is ordered. By relying on structural observations on matroids representable over fixed, finite fields, we verify a relaxed version of the conjecture for these matroids. As a consequence, we obtain a polynomial-time algorithm in these special cases for finding an F-avoiding basis when |F| is fixed.

Cite as

Florian Hörsch, András Imolay, Ryuhei Mizutani, Taihei Oki, and Tamás Schwarcz. Problems on Group-Labeled Matroid Bases. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 86:1-86:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{horsch_et_al:LIPIcs.ICALP.2024.86,
  author =	{H\"{o}rsch, Florian and Imolay, Andr\'{a}s and Mizutani, Ryuhei and Oki, Taihei and Schwarcz, Tam\'{a}s},
  title =	{{Problems on Group-Labeled Matroid Bases}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{86:1--86:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.86},
  URN =		{urn:nbn:de:0030-drops-202299},
  doi =		{10.4230/LIPIcs.ICALP.2024.86},
  annote =	{Keywords: matroids, matroid intersection, congruency constraint, exact-weight constraint, additive combinatorics, algebraic algorithm, strongly base orderability}
}
Document
Track A: Algorithms, Complexity and Games
Approximate Counting for Spin Systems in Sub-Quadratic Time

Authors: Konrad Anand, Weiming Feng, Graham Freifeld, Heng Guo, and Jiaheng Wang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We present two randomised approximate counting algorithms with Õ(n^{2-c}/ε²) running time for some constant c > 0 and accuracy ε: 1) for the hard-core model with fugacity λ on graphs with maximum degree Δ when λ = O(Δ^{-1.5-c₁}) where c₁ = c/(2-2c); 2) for spin systems with strong spatial mixing (SSM) on planar graphs with quadratic growth, such as ℤ². For the hard-core model, Weitz’s algorithm (STOC, 2006) achieves sub-quadratic running time when correlation decays faster than the neighbourhood growth, namely when λ = o(Δ^{-2}). Our first algorithm does not require this property and extends the range where sub-quadratic algorithms exist. Our second algorithm appears to be the first to achieve sub-quadratic running time up to the SSM threshold, albeit on a restricted family of graphs. It also extends to (not necessarily planar) graphs with polynomial growth, such as ℤ^d, but with a running time of the form Õ(n²ε^{-2}/2^{c(log n)^{1/d}}) where d is the exponent of the polynomial growth and c > 0 is some constant.

Cite as

Konrad Anand, Weiming Feng, Graham Freifeld, Heng Guo, and Jiaheng Wang. Approximate Counting for Spin Systems in Sub-Quadratic Time. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 11:1-11:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{anand_et_al:LIPIcs.ICALP.2024.11,
  author =	{Anand, Konrad and Feng, Weiming and Freifeld, Graham and Guo, Heng and Wang, Jiaheng},
  title =	{{Approximate Counting for Spin Systems in Sub-Quadratic Time}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{11:1--11:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.11},
  URN =		{urn:nbn:de:0030-drops-201543},
  doi =		{10.4230/LIPIcs.ICALP.2024.11},
  annote =	{Keywords: Randomised algorithm, Approximate counting, Spin system, Sub-quadratic algorithm}
}
Document
Improved Distributed Algorithms for Random Colorings

Authors: Charlie Carlson, Daniel Frishberg, and Eric Vigoda

Published in: LIPIcs, Volume 286, 27th International Conference on Principles of Distributed Systems (OPODIS 2023)


Abstract
Markov Chain Monte Carlo (MCMC) algorithms are a widely-used algorithmic tool for sampling from high-dimensional distributions, a notable example is the equilibirum distribution of graphical models. The Glauber dynamics, also known as the Gibbs sampler, is the simplest example of an MCMC algorithm; the transitions of the chain update the configuration at a randomly chosen coordinate at each step. Several works have studied distributed versions of the Glauber dynamics and we extend these efforts to a more general family of Markov chains. An important combinatorial problem in the study of MCMC algorithms is random colorings. Given a graph G of maximum degree Δ and an integer k ≥ Δ+1, the goal is to generate a random proper vertex k-coloring of G. Jerrum (1995) proved that the Glauber dynamics has O(nlog{n}) mixing time when k > 2Δ. Fischer and Ghaffari (2018), and independently Feng, Hayes, and Yin (2018), presented a parallel and distributed version of the Glauber dynamics which converges in O(log{n}) rounds for k > (2+ε)Δ for any ε > 0. We improve this result to k > (11/6-δ)Δ for a fixed δ > 0. This matches the state of the art for randomly sampling colorings of general graphs in the sequential setting. Whereas previous works focused on distributed variants of the Glauber dynamics, our work presents a parallel and distributed version of the more general flip dynamics presented by Vigoda (2000) (and refined by Chen, Delcourt, Moitra, Perarnau, and Postle (2019)), which recolors local maximal two-colored components in each step.

Cite as

Charlie Carlson, Daniel Frishberg, and Eric Vigoda. Improved Distributed Algorithms for Random Colorings. In 27th International Conference on Principles of Distributed Systems (OPODIS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 286, pp. 13:1-13:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{carlson_et_al:LIPIcs.OPODIS.2023.13,
  author =	{Carlson, Charlie and Frishberg, Daniel and Vigoda, Eric},
  title =	{{Improved Distributed Algorithms for Random Colorings}},
  booktitle =	{27th International Conference on Principles of Distributed Systems (OPODIS 2023)},
  pages =	{13:1--13:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-308-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{286},
  editor =	{Bessani, Alysson and D\'{e}fago, Xavier and Nakamura, Junya and Wada, Koichi and Yamauchi, Yukiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2023.13},
  URN =		{urn:nbn:de:0030-drops-195030},
  doi =		{10.4230/LIPIcs.OPODIS.2023.13},
  annote =	{Keywords: Distributed Graph Algorithms, Local Algorithms, Coloring, Glauber Dynamics, Sampling, Markov Chains}
}
Document
Rapid Mixing for the Hardcore Glauber Dynamics and Other Markov Chains in Bounded-Treewidth Graphs

Authors: David Eppstein and Daniel Frishberg

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
We give a new rapid mixing result for a natural random walk on the independent sets of a graph G. We show that when G has bounded treewidth, this random walk - known as the Glauber dynamics for the hardcore model - mixes rapidly for all fixed values of the standard parameter λ > 0, giving a simple alternative to existing sampling algorithms for these structures. We also show rapid mixing for analogous Markov chains on dominating sets, b-edge covers, b-matchings, maximal independent sets, and maximal b-matchings. (For b-matchings, maximal independent sets, and maximal b-matchings we also require bounded degree.) Our results imply simpler alternatives to known algorithms for the sampling and approximate counting problems in these graphs. We prove our results by applying a divide-and-conquer framework we developed in a previous paper, as an alternative to the projection-restriction technique introduced by Jerrum, Son, Tetali, and Vigoda. We extend this prior framework to handle chains for which the application of that framework is not straightforward, strengthening existing results by Dyer, Goldberg, and Jerrum and by Heinrich for the Glauber dynamics on q-colorings of graphs of bounded treewidth and bounded degree.

Cite as

David Eppstein and Daniel Frishberg. Rapid Mixing for the Hardcore Glauber Dynamics and Other Markov Chains in Bounded-Treewidth Graphs. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 30:1-30:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{eppstein_et_al:LIPIcs.ISAAC.2023.30,
  author =	{Eppstein, David and Frishberg, Daniel},
  title =	{{Rapid Mixing for the Hardcore Glauber Dynamics and Other Markov Chains in Bounded-Treewidth Graphs}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{30:1--30:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.30},
  URN =		{urn:nbn:de:0030-drops-193324},
  doi =		{10.4230/LIPIcs.ISAAC.2023.30},
  annote =	{Keywords: Glauber dynamics, mixing time, projection-restriction, multicommodity flow}
}
Document
RANDOM
Optimal Mixing via Tensorization for Random Independent Sets on Arbitrary Trees

Authors: Charilaos Efthymiou, Thomas P. Hayes, Daniel Štefankovič, and Eric Vigoda

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
We study the mixing time of the single-site update Markov chain, known as the Glauber dynamics, for generating a random independent set of a tree. Our focus is obtaining optimal convergence results for arbitrary trees. We consider the more general problem of sampling from the Gibbs distribution in the hard-core model where independent sets are weighted by a parameter λ > 0; the special case λ = 1 corresponds to the uniform distribution over all independent sets. Previous work of Martinelli, Sinclair and Weitz (2004) obtained optimal mixing time bounds for the complete Δ-regular tree for all λ. However, Restrepo et al. (2014) showed that for sufficiently large λ there are bounded-degree trees where optimal mixing does not hold. Recent work of Eppstein and Frishberg (2022) proved a polynomial mixing time bound for the Glauber dynamics for arbitrary trees, and more generally for graphs of bounded tree-width. We establish an optimal bound on the relaxation time (i.e., inverse spectral gap) of O(n) for the Glauber dynamics for unweighted independent sets on arbitrary trees. Moreover, for λ ≤ .44 we prove an optimal mixing time bound of O(n log n). We stress that our results hold for arbitrary trees and there is no dependence on the maximum degree Δ. Interestingly, our results extend (far) beyond the uniqueness threshold which is on the order λ = O(1/Δ). Our proof approach is inspired by recent work on spectral independence. In fact, we prove that spectral independence holds with a constant independent of the maximum degree for any tree, but this does not imply mixing for general trees as the optimal mixing results of Chen, Liu, and Vigoda (2021) only apply for bounded degree graphs. We instead utilize the combinatorial nature of independent sets to directly prove approximate tensorization of variance/entropy via a non-trivial inductive proof.

Cite as

Charilaos Efthymiou, Thomas P. Hayes, Daniel Štefankovič, and Eric Vigoda. Optimal Mixing via Tensorization for Random Independent Sets on Arbitrary Trees. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 33:1-33:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{efthymiou_et_al:LIPIcs.APPROX/RANDOM.2023.33,
  author =	{Efthymiou, Charilaos and Hayes, Thomas P. and \v{S}tefankovi\v{c}, Daniel and Vigoda, Eric},
  title =	{{Optimal Mixing via Tensorization for Random Independent Sets on Arbitrary Trees}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{33:1--33:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.33},
  URN =		{urn:nbn:de:0030-drops-188589},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.33},
  annote =	{Keywords: MCMC, Mixing Time, Independent Sets, Hard-Core Model, Approximate Counting Algorithms, Sampling Algorithms}
}
Document
Counting and Sampling Labeled Chordal Graphs in Polynomial Time

Authors: Úrsula Hébert-Johnson, Daniel Lokshtanov, and Eric Vigoda

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
We present the first polynomial-time algorithm to exactly compute the number of labeled chordal graphs on n vertices. Our algorithm solves a more general problem: given n and ω as input, it computes the number of ω-colorable labeled chordal graphs on n vertices, using O(n⁷) arithmetic operations. A standard sampling-to-counting reduction then yields a polynomial-time exact sampler that generates an ω-colorable labeled chordal graph on n vertices uniformly at random. Our counting algorithm improves upon the previous best result by Wormald (1985), which computes the number of labeled chordal graphs on n vertices in time exponential in n. An implementation of the polynomial-time counting algorithm gives the number of labeled chordal graphs on up to 30 vertices in less than three minutes on a standard desktop computer. Previously, the number of labeled chordal graphs was only known for graphs on up to 15 vertices.

Cite as

Úrsula Hébert-Johnson, Daniel Lokshtanov, and Eric Vigoda. Counting and Sampling Labeled Chordal Graphs in Polynomial Time. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 58:1-58:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{hebertjohnson_et_al:LIPIcs.ESA.2023.58,
  author =	{H\'{e}bert-Johnson, \'{U}rsula and Lokshtanov, Daniel and Vigoda, Eric},
  title =	{{Counting and Sampling Labeled Chordal Graphs in Polynomial Time}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{58:1--58:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.58},
  URN =		{urn:nbn:de:0030-drops-187119},
  doi =		{10.4230/LIPIcs.ESA.2023.58},
  annote =	{Keywords: Counting algorithms, graph sampling, chordal graphs}
}
  • Refine by Author
  • 14 Vigoda, Eric
  • 9 Galanis, Andreas
  • 5 Štefankovič, Daniel
  • 4 Blanca, Antonio
  • 4 Goldberg, Leslie Ann
  • Show More...

  • Refine by Classification
  • 12 Theory of computation → Random walks and Markov chains
  • 5 Theory of computation → Design and analysis of algorithms
  • 4 Theory of computation → Generating random combinatorial structures
  • 4 Theory of computation → Randomness, geometry and discrete structures
  • 2 Mathematics of computing → Discrete mathematics
  • Show More...

  • Refine by Keyword
  • 6 mixing time
  • 5 Glauber dynamics
  • 4 approximate counting
  • 3 Potts model
  • 3 Swendsen-Wang dynamics
  • Show More...

  • Refine by Type
  • 26 document

  • Refine by Publication Year
  • 12 2024
  • 3 2019
  • 3 2023
  • 2 2014
  • 2 2018
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail