29 Search Results for "Yan, Peter"


Document
Open the Chests: An Environment for Activity Recognition and Sequential Decision Problems Using Temporal Logic

Authors: Ivelina Stoyanova, Nicolas Museux, Sao Mai Nguyen, and David Filliat

Published in: LIPIcs, Volume 318, 31st International Symposium on Temporal Representation and Reasoning (TIME 2024)


Abstract
This article presents Open the Chests, a novel benchmark environment designed for simulating and testing activity recognition and reactive decision-making algorithms. By leveraging temporal logic, Open the Chests offers a dynamic, event-driven simulation platform that illustrates the complexities of real-world systems. The environment contains multiple chests, each representing an activity pattern that an interacting agent must identify and respond to by pressing a corresponding button. The agent must analyze sequences of asynchronous events generated by the environment to recognize these patterns and make informed decisions. With the aim of theoretically grounding the environment, the Activity-Based Markov Decision Process (AB-MDP) is defined, allowing to model the context-dependent interaction with activities. Our goal is to propose a robust tool for the development, testing, and bench-marking of algorithms that is illustrative of realistic scenarios and allows for the isolation of specific complexities in event-driven environments.

Cite as

Ivelina Stoyanova, Nicolas Museux, Sao Mai Nguyen, and David Filliat. Open the Chests: An Environment for Activity Recognition and Sequential Decision Problems Using Temporal Logic. In 31st International Symposium on Temporal Representation and Reasoning (TIME 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 318, pp. 5:1-5:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{stoyanova_et_al:LIPIcs.TIME.2024.5,
  author =	{Stoyanova, Ivelina and Museux, Nicolas and Nguyen, Sao Mai and Filliat, David},
  title =	{{Open the Chests: An Environment for Activity Recognition and Sequential Decision Problems Using Temporal Logic}},
  booktitle =	{31st International Symposium on Temporal Representation and Reasoning (TIME 2024)},
  pages =	{5:1--5:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-349-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{318},
  editor =	{Sala, Pietro and Sioutis, Michael and Wang, Fusheng},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2024.5},
  URN =		{urn:nbn:de:0030-drops-212128},
  doi =		{10.4230/LIPIcs.TIME.2024.5},
  annote =	{Keywords: Event-Based Decision Making, Activity Recognition, Temporal Logic, Reinforcement Learning, Dynamic Systems, Complex Event Processing, Benchmark Environment, Real-Time Simulation}
}
Document
Improved Algorithms for the Capacitated Team Orienteering Problem

Authors: Gianlorenzo D'Angelo, Mattia D'Emidio, Esmaeil Delfaraz, and Gabriele Di Stefano

Published in: OASIcs, Volume 123, 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024)


Abstract
We study the Capacitated Team Orienteering Problem, where a fleet of vehicles with capacities have to meet customers with known demands and prizes for a single commodity. The objective is to maximize the total prize and to assign a sequence of customers to each vehicle while keeping the total distance traveled within a given budget and such that the total demand served by each vehicle does not exceed its capacity. The problem has been widely studied both from a theoretical and a practical point of view. The contribution of this paper is twofold: (1) We advance the theoretical knowledge on the problem by providing new approximation algorithms that achieve, under some natural assumption, improved approximation ratios compared to the current best algorithms; (2) We propose four efficient heuristics that outperform the current state-of-the-art practical methods in the sense that they compute solutions that collect nearly the same prize in a significantly smaller running time. We also experimentally test the scalability of the new heuristics, showing that their running time increases approximately linearly with the size of the input, allowing us to process large graphs which were not possible to analyze before.

Cite as

Gianlorenzo D'Angelo, Mattia D'Emidio, Esmaeil Delfaraz, and Gabriele Di Stefano. Improved Algorithms for the Capacitated Team Orienteering Problem. In 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024). Open Access Series in Informatics (OASIcs), Volume 123, pp. 7:1-7:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dangelo_et_al:OASIcs.ATMOS.2024.7,
  author =	{D'Angelo, Gianlorenzo and D'Emidio, Mattia and Delfaraz, Esmaeil and Di Stefano, Gabriele},
  title =	{{Improved Algorithms for the Capacitated Team Orienteering Problem}},
  booktitle =	{24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024)},
  pages =	{7:1--7:17},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-350-8},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{123},
  editor =	{Bouman, Paul C. and Kontogiannis, Spyros C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2024.7},
  URN =		{urn:nbn:de:0030-drops-211957},
  doi =		{10.4230/OASIcs.ATMOS.2024.7},
  annote =	{Keywords: Vehicle Routing, Approximation algorithms, Algorithm Engineering}
}
Document
Sparse Outerstring Graphs Have Logarithmic Treewidth

Authors: Shinwoo An, Eunjin Oh, and Jie Xue

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
An outerstring graph is the intersection graph of curves lying inside a disk with one endpoint on the boundary of the disk. We show that an outerstring graph with n vertices has treewidth O(αlog n), where α denotes the arboricity of the graph, with an almost matching lower bound of Ω(α log (n/α)). As a corollary, we show that a t-biclique-free outerstring graph has treewidth O(t(log t)log n). This leads to polynomial-time algorithms for most of the central NP-complete problems such as Independent Set, Vertex Cover, Dominating Set, Feedback Vertex Set, Coloring for sparse outerstring graphs. Also, we can obtain subexponential-time (exact, parameterized, and approximation) algorithms for various NP-complete problems such as Vertex Cover, Feedback Vertex Set and Cycle Packing for (not necessarily sparse) outerstring graphs.

Cite as

Shinwoo An, Eunjin Oh, and Jie Xue. Sparse Outerstring Graphs Have Logarithmic Treewidth. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 10:1-10:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{an_et_al:LIPIcs.ESA.2024.10,
  author =	{An, Shinwoo and Oh, Eunjin and Xue, Jie},
  title =	{{Sparse Outerstring Graphs Have Logarithmic Treewidth}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{10:1--10:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.10},
  URN =		{urn:nbn:de:0030-drops-210816},
  doi =		{10.4230/LIPIcs.ESA.2024.10},
  annote =	{Keywords: Outerstring graphs, geometric intersection graphs, treewidth}
}
Document
Towards Communication-Efficient Peer-To-Peer Networks

Authors: Khalid Hourani, William K. Moses Jr., and Gopal Pandurangan

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We focus on designing Peer-to-Peer (P2P) networks that enable efficient communication. Over the last two decades, there has been substantial algorithmic research on distributed protocols for building P2P networks with various desirable properties such as high expansion, low diameter, and robustness to a large number of deletions. A key underlying theme in all of these works is to distributively build a random graph topology that guarantees the above properties. Moreover, the random connectivity topology is widely deployed in many P2P systems today, including those that implement blockchains and cryptocurrencies. However, a major drawback of using a random graph topology for a P2P network is that the random topology does not respect the underlying (Internet) communication topology. This creates a large propagation delay, which is a major communication bottleneck in modern P2P networks. In this paper, we work towards designing P2P networks that are communication-efficient (having small propagation delay) with provable guarantees. Our main contribution is an efficient, decentralized protocol, Close-Weaver, that transforms a random graph topology embedded in an underlying Euclidean space into a topology that also respects the underlying metric. We then present efficient point-to-point routing and broadcast protocols that achieve essentially optimal performance with respect to the underlying space.

Cite as

Khalid Hourani, William K. Moses Jr., and Gopal Pandurangan. Towards Communication-Efficient Peer-To-Peer Networks. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 71:1-71:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hourani_et_al:LIPIcs.ESA.2024.71,
  author =	{Hourani, Khalid and Moses Jr., William K. and Pandurangan, Gopal},
  title =	{{Towards Communication-Efficient Peer-To-Peer Networks}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{71:1--71:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.71},
  URN =		{urn:nbn:de:0030-drops-211428},
  doi =		{10.4230/LIPIcs.ESA.2024.71},
  annote =	{Keywords: Peer-to-Peer Networks, Overlay Construction Protocol, Expanders, Broadcast, Geometric Routing}
}
Document
Insights into (k, ρ)-Shortcutting Algorithms

Authors: Alexander Leonhardt, Ulrich Meyer, and Manuel Penschuck

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
A graph is called a (k, ρ)-graph iff every node can reach ρ of its nearest neighbors in at most k hops. This property has proven useful in the analysis and design of parallel shortest-path algorithms [Blelloch et al., 2016; Dong et al., 2021]. Any graph can be transformed into a (k, ρ)-graph by adding shortcuts. Formally, the (k,ρ)-Minimum-Shortcut-Problem (kρ-MSP) asks to find an appropriate shortcut set of minimal cardinality. We show that kρ-MSP is NP-complete in the practical regime of k ≥ 3 and ρ = Θ(n^ε) for ε > 0. With a related construction, we bound the approximation factor of known kρ-MSP heuristics [Blelloch et al., 2016] from below and propose algorithmic countermeasures improving the approximation quality. Further, we describe an integer linear problem (ILP) that optimally solves kρ-MSP. Finally, we compare the practical performance and quality of all algorithms empirically.

Cite as

Alexander Leonhardt, Ulrich Meyer, and Manuel Penschuck. Insights into (k, ρ)-Shortcutting Algorithms. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 84:1-84:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{leonhardt_et_al:LIPIcs.ESA.2024.84,
  author =	{Leonhardt, Alexander and Meyer, Ulrich and Penschuck, Manuel},
  title =	{{Insights into (k, \rho)-Shortcutting Algorithms}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{84:1--84:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.84},
  URN =		{urn:nbn:de:0030-drops-211554},
  doi =		{10.4230/LIPIcs.ESA.2024.84},
  annote =	{Keywords: Complexity, Approximation, Optimal algorithms, Parallel shortest path}
}
Document
RANDOM
Hilbert Functions and Low-Degree Randomness Extractors

Authors: Alexander Golovnev, Zeyu Guo, Pooya Hatami, Satyajeet Nagargoje, and Chao Yan

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
For S ⊆ 𝔽ⁿ, consider the linear space of restrictions of degree-d polynomials to S. The Hilbert function of S, denoted h_S(d,𝔽), is the dimension of this space. We obtain a tight lower bound on the smallest value of the Hilbert function of subsets S of arbitrary finite grids in 𝔽ⁿ with a fixed size |S|. We achieve this by proving that this value coincides with a combinatorial quantity, namely the smallest number of low Hamming weight points in a down-closed set of size |S|. Understanding the smallest values of Hilbert functions is closely related to the study of degree-d closure of sets, a notion introduced by Nie and Wang (Journal of Combinatorial Theory, Series A, 2015). We use bounds on the Hilbert function to obtain a tight bound on the size of degree-d closures of subsets of 𝔽_qⁿ, which answers a question posed by Doron, Ta-Shma, and Tell (Computational Complexity, 2022). We use the bounds on the Hilbert function and degree-d closure of sets to prove that a random low-degree polynomial is an extractor for samplable randomness sources. Most notably, we prove the existence of low-degree extractors and dispersers for sources generated by constant-degree polynomials and polynomial-size circuits. Until recently, even the existence of arbitrary deterministic extractors for such sources was not known.

Cite as

Alexander Golovnev, Zeyu Guo, Pooya Hatami, Satyajeet Nagargoje, and Chao Yan. Hilbert Functions and Low-Degree Randomness Extractors. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 41:1-41:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{golovnev_et_al:LIPIcs.APPROX/RANDOM.2024.41,
  author =	{Golovnev, Alexander and Guo, Zeyu and Hatami, Pooya and Nagargoje, Satyajeet and Yan, Chao},
  title =	{{Hilbert Functions and Low-Degree Randomness Extractors}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{41:1--41:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.41},
  URN =		{urn:nbn:de:0030-drops-210345},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.41},
  annote =	{Keywords: Extractors, Dispersers, Circuits, Hilbert Function, Randomness, Low Degree Polynomials}
}
Document
RANDOM
Upper Bounds on the 2-Colorability Threshold of Random d-Regular k-Uniform Hypergraphs for k ≥ 3

Authors: Evan Chang, Neel Kolhe, and Youngtak Sohn

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
For a large class of random constraint satisfaction problems (csp), deep but non-rigorous theory from statistical physics predict the location of the sharp satisfiability transition. The works of Ding, Sly, Sun (2014, 2016) and Coja-Oghlan, Panagiotou (2014) established the satisfiability threshold for random regular k-nae-sat, random k-sat, and random regular k-sat for large enough k ≥ k₀ where k₀ is a large non-explicit constant. Establishing the same for small values of k ≥ 3 remains an important open problem in the study of random csps. In this work, we study two closely related models of random csps, namely the 2-coloring on random d-regular k-uniform hypergraphs and the random d-regular k-nae-sat model. For every k ≥ 3, we prove that there is an explicit d_⋆(k) which gives a satisfiability upper bound for both of the models. Our upper bound d_⋆(k) for k ≥ 3 matches the prediction from statistical physics for the hypergraph 2-coloring by Dall’Asta, Ramezanpour, Zecchina (2008), thus conjectured to be sharp. Moreover, d_⋆(k) coincides with the satisfiability threshold of random regular k-nae-sat for large enough k ≥ k₀ by Ding, Sly, Sun (2014).

Cite as

Evan Chang, Neel Kolhe, and Youngtak Sohn. Upper Bounds on the 2-Colorability Threshold of Random d-Regular k-Uniform Hypergraphs for k ≥ 3. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 47:1-47:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chang_et_al:LIPIcs.APPROX/RANDOM.2024.47,
  author =	{Chang, Evan and Kolhe, Neel and Sohn, Youngtak},
  title =	{{Upper Bounds on the 2-Colorability Threshold of Random d-Regular k-Uniform Hypergraphs for k ≥ 3}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{47:1--47:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.47},
  URN =		{urn:nbn:de:0030-drops-210402},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.47},
  annote =	{Keywords: Random constraint satisfaction problem, replica symmetry breaking, interpolation bound}
}
Document
RANDOM
Towards Simpler Sorting Networks and Monotone Circuits for Majority

Authors: Natalia Dobrokhotova-Maikova, Alexander Kozachinskiy, and Vladimir Podolskii

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
In this paper, we study the problem of computing the majority function by low-depth monotone circuits and a related problem of constructing low-depth sorting networks. We consider both the classical setting with elementary operations of arity 2 and the generalized setting with operations of arity k, where k is a parameter. For both problems and both settings, there are various constructions known, the minimal known depth being logarithmic. However, there is currently no known efficient deterministic construction that simultaneously achieves sub-log-squared depth, simplicity, and has a potential to be used in practice. In this paper we make progress towards resolution of this problem. For computing majority by standard monotone circuits (gates of arity 2) we provide an explicit monotone circuit of depth O(log₂^{5/3} n). The construction is a combination of several known and not too complicated ideas. Essentially, for this result we gradually derandomize the construction of Valiant (1984). As one of the intermediate steps in our result we need an efficient construction of a sorting network with gates of arity k for arbitrary fixed k. For this we provide a new sorting network architecture inspired by representation of inputs as a high-dimensional cube. As a result we obtain a simple construction that improves previous upper bound of 4 log_k² n to 2 log_k² n. We prove the similar bound for the depth of the circuit computing majority of n bits consisting of gates computing majority of k bits. Note, that for both problems there is an explicit construction of depth O(log_k n) known, but the construction is complicated and the constant hidden in O-notation is huge.

Cite as

Natalia Dobrokhotova-Maikova, Alexander Kozachinskiy, and Vladimir Podolskii. Towards Simpler Sorting Networks and Monotone Circuits for Majority. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 50:1-50:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dobrokhotovamaikova_et_al:LIPIcs.APPROX/RANDOM.2024.50,
  author =	{Dobrokhotova-Maikova, Natalia and Kozachinskiy, Alexander and Podolskii, Vladimir},
  title =	{{Towards Simpler Sorting Networks and Monotone Circuits for Majority}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{50:1--50:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.50},
  URN =		{urn:nbn:de:0030-drops-210436},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.50},
  annote =	{Keywords: Sorting networks, constant depth, lower bounds, threshold circuits}
}
Document
Musketeer: Incentive-Compatible Rebalancing for Payment Channel Networks

Authors: Zeta Avarikioti, Stefan Schmid, and Samarth Tiwari

Published in: LIPIcs, Volume 316, 6th Conference on Advances in Financial Technologies (AFT 2024)


Abstract
In this work, we revisit the severely limited throughput problem of cryptocurrencies and propose a novel rebalancing approach for Payment Channel Networks (PCNs). PCNs are a popular solution for increasing the blockchain throughput, however, their benefit depends on the overall users' liquidity. Rebalancing mechanisms are the state-of-the-art approach to maintaining high liquidity in PCNs. However, existing opt-in rebalancing mechanisms exclude users that may assist in rebalancing for small service fees, leading to suboptimal solutions and under-utilization of the PCNs' bounded liquidity. We introduce the first rebalancing approach for PCNs that includes all users, following a "all for one and one for all" design philosophy that yields optimal throughput. The proposed approach introduces a double-auction rebalancing problem, which we term Musketeer, where users can participate as buyers (paying fees to rebalance) or sellers (charging fees to route transactions). The desired properties tailored to the unique characteristics of PCNs are formally defined, including the novel game-theoretic property of cyclic budget balance that is a stronger variation of strong budget balance. Basic results derived from auction theory, including an impossibility and multiple mechanisms that either achieve all desiderata under a relaxed model or sacrifice one of the properties, are presented. We also propose a novel mechanism that leverages time delays as an additional cost to users. This mechanism is provably truthful, cyclic budget balanced, individually rational and economic efficient but only with respect to liquidity.

Cite as

Zeta Avarikioti, Stefan Schmid, and Samarth Tiwari. Musketeer: Incentive-Compatible Rebalancing for Payment Channel Networks. In 6th Conference on Advances in Financial Technologies (AFT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 316, pp. 13:1-13:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{avarikioti_et_al:LIPIcs.AFT.2024.13,
  author =	{Avarikioti, Zeta and Schmid, Stefan and Tiwari, Samarth},
  title =	{{Musketeer: Incentive-Compatible Rebalancing for Payment Channel Networks}},
  booktitle =	{6th Conference on Advances in Financial Technologies (AFT 2024)},
  pages =	{13:1--13:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-345-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{316},
  editor =	{B\"{o}hme, Rainer and Kiffer, Lucianna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.13},
  URN =		{urn:nbn:de:0030-drops-209494},
  doi =		{10.4230/LIPIcs.AFT.2024.13},
  annote =	{Keywords: Blockchains, Payment Channel Networks, Rebalancing, Game Theory}
}
Document
Dynamically Generating Callback Summaries for Enhancing Static Analysis

Authors: Steven Arzt, Marc Miltenberger, and Julius Näumann

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Interprocedural static analyses require a complete and precise callgraph. Since third-party libraries are responsible for large portions of the code of an app, a substantial fraction of the effort in callgraph generation is therefore spent on the library code for each app. For analyses that are oblivious to the inner workings of a library and only require the user code to be processed, the library can be replaced with a summary that allows to reconstruct the callbacks from library code back to user code. To improve performance, we propose the automatic generation and use of precise pre-computed callgraph summaries for commonly used libraries. Reflective method calls within libraries and callback-driven APIs pose further challenges for generating precise callgraphs using static analysis. Pre-computed summaries can also help analyses avoid these challenges. We present CGMiner, an approach for automatically generating callgraph models for library code. It dynamically observes sample apps that use one or more particular target libraries. As we show, CGMiner yields more than 94% of correct edges, whereas existing work only achieves around 33% correct edges. CGMiner avoids the high false positive rate of existing tools. We show that CGMiner integrated into FlowDroid uncovers 40% more data flows than our baseline without callback summaries.

Cite as

Steven Arzt, Marc Miltenberger, and Julius Näumann. Dynamically Generating Callback Summaries for Enhancing Static Analysis. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 4:1-4:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{arzt_et_al:LIPIcs.ECOOP.2024.4,
  author =	{Arzt, Steven and Miltenberger, Marc and N\"{a}umann, Julius},
  title =	{{Dynamically Generating Callback Summaries for Enhancing Static Analysis}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{4:1--4:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.4},
  URN =		{urn:nbn:de:0030-drops-208533},
  doi =		{10.4230/LIPIcs.ECOOP.2024.4},
  annote =	{Keywords: dynamic analysis, callback detection, java, android}
}
Document
Mutation-Based Lifted Repair of Software Product Lines

Authors: Aleksandar S. Dimovski

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
This paper presents a novel lifted repair algorithm for program families (Software Product Lines - SPLs) based on code mutations. The inputs of our algorithm are an erroneous SPL and a specification given in the form of assertions. We use variability encoding to transform the given SPL into a single program, called family simulator, which is translated into a set of SMT formulas whose conjunction is satisfiable iff the simulator (i.e., the input SPL) violates an assertion. We use a predefined set of mutations applied to feature and program expressions of the given SPL. The algorithm repeatedly mutates the erroneous family simulator and checks if it becomes (bounded) correct. Since mutating an expression corresponds to mutating a formula in the set of SMT formulas encoding the family simulator, the search for a correct mutant is reduced to searching an unsatisfiable set of SMT formulas. To efficiently explore the huge state space of mutants, we call SAT and SMT solvers in an incremental way. The outputs of our algorithm are all minimal repairs in the form of minimal number of (feature and program) expression replacements such that the repaired SPL is (bounded) correct with respect to a given set of assertions. We have implemented our algorithm in a prototype tool and evaluated it on a set of #ifdef-based C programs (i.e., annotative SPLs). The experimental results show that our approach is able to successfully repair various interesting SPLs.

Cite as

Aleksandar S. Dimovski. Mutation-Based Lifted Repair of Software Product Lines. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 12:1-12:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dimovski:LIPIcs.ECOOP.2024.12,
  author =	{Dimovski, Aleksandar S.},
  title =	{{Mutation-Based Lifted Repair of Software Product Lines}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{12:1--12:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.12},
  URN =		{urn:nbn:de:0030-drops-208613},
  doi =		{10.4230/LIPIcs.ECOOP.2024.12},
  annote =	{Keywords: Program repair, Software Product Lines, Code mutations, Variability encoding}
}
Document
A CFL-Reachability Formulation of Callsite-Sensitive Pointer Analysis with Built-In On-The-Fly Call Graph Construction

Authors: Dongjie He, Jingbo Lu, and Jingling Xue

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
In object-oriented languages, the traditional CFL-reachability formulation for k-callsite-sensitive pointer analysis (kCFA) focuses on modeling field accesses and calling contexts, but it relies on a separate algorithm for call graph construction. This division can result in a loss of precision in kCFA, a problem that persists even when using the most precise call graphs, whether pre-constructed or generated on the fly. Moreover, pre-analyses based on this framework aiming to improve the efficiency of kCFA may inadvertently reduce its precision, due to the framework’s lack of native call graph construction, essential for precise analysis. Addressing this gap, this paper introduces a novel CFL-reachability formulation of kCFA for Java, uniquely integrating on-the-fly call graph construction. This advancement not only addresses the precision loss inherent in the traditional CFL-reachability-based approach but also enhances its overall applicability. In a significant secondary contribution, we present the first precision-preserving pre-analysis to accelerate kCFA. This pre-analysis leverages selective context sensitivity to improve the efficiency of kCFA without sacrificing its precision. Collectively, these contributions represent a substantial step forward in pointer analysis, offering both theoretical and practical advancements that could benefit future developments in the field.

Cite as

Dongjie He, Jingbo Lu, and Jingling Xue. A CFL-Reachability Formulation of Callsite-Sensitive Pointer Analysis with Built-In On-The-Fly Call Graph Construction. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 18:1-18:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{he_et_al:LIPIcs.ECOOP.2024.18,
  author =	{He, Dongjie and Lu, Jingbo and Xue, Jingling},
  title =	{{A CFL-Reachability Formulation of Callsite-Sensitive Pointer Analysis with Built-In On-The-Fly Call Graph Construction}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{18:1--18:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.18},
  URN =		{urn:nbn:de:0030-drops-208674},
  doi =		{10.4230/LIPIcs.ECOOP.2024.18},
  annote =	{Keywords: Pointer Analysis, CFL Reachability, Call Graph Construction}
}
Document
Geometric Enumeration of Localized DNA Strand Displacement Reaction Networks

Authors: Matthew R. Lakin and Sarika Kumar

Published in: LIPIcs, Volume 314, 30th International Conference on DNA Computing and Molecular Programming (DNA 30) (2024)


Abstract
Localized molecular devices are a powerful tool for engineering complex information-processing circuits and molecular robots. Their practical advantages include speed and scalability of interactions between components tethered near to each other on an underlying nanostructure, and the ability to restrict interactions between more distant components. The latter is a critical feature that must be factored into computational tools for the design and simulation of localized molecular devices: unlike in solution-phase systems, the geometries of molecular interactions must be accounted for when attempting to determine the network of possible reactions in a tethered molecular system. This work aims to address that challenge by integrating, for the first time, automated approaches to analysis of molecular geometry with reaction enumeration algorithms for DNA strand displacement reaction networks that can be applied to tethered molecular systems. By adapting a simple approach to solving the biophysical constraints inherent in molecular interactions to be applicable to tethered systems, we produce a localized reaction enumeration system that enhances previous approaches to reaction enumeration in tethered system by not requiring users to explicitly specify the subsets of components that are capable of interacting. This greatly simplifies the user’s task and could also be used as the basis of future systems for automated placement or routing of signal-transmission and logical processing in molecular devices. We apply this system to several published example systems from the literature, including both tethered molecular logic systems and molecular robots.

Cite as

Matthew R. Lakin and Sarika Kumar. Geometric Enumeration of Localized DNA Strand Displacement Reaction Networks. In 30th International Conference on DNA Computing and Molecular Programming (DNA 30). Leibniz International Proceedings in Informatics (LIPIcs), Volume 314, pp. 1:1-1:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lakin_et_al:LIPIcs.DNA.30.1,
  author =	{Lakin, Matthew R. and Kumar, Sarika},
  title =	{{Geometric Enumeration of Localized DNA Strand Displacement Reaction Networks}},
  booktitle =	{30th International Conference on DNA Computing and Molecular Programming (DNA 30)},
  pages =	{1:1--1:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-344-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{314},
  editor =	{Seki, Shinnosuke and Stewart, Jaimie Marie},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DNA.30.1},
  URN =		{urn:nbn:de:0030-drops-209294},
  doi =		{10.4230/LIPIcs.DNA.30.1},
  annote =	{Keywords: Localized circuits, reaction enumeration, DNA strand displacement, geometry, molecular computing}
}
Document
Short Paper
Towards Statistically Significant Taxonomy Aware Co-Location Pattern Detection (Short Paper)

Authors: Subhankar Ghosh, Arun Sharma, Jayant Gupta, and Shashi Shekhar

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
Given a collection of Boolean spatial feature types, their instances, a neighborhood relation (e.g., proximity), and a hierarchical taxonomy of the feature types, the goal is to find the subsets of feature types or their parents whose spatial interaction is statistically significant. This problem is for taxonomy-reliant applications such as ecology (e.g., finding new symbiotic relationships across the food chain), spatial pathology (e.g., immunotherapy for cancer), retail, etc. The problem is computationally challenging due to the exponential number of candidate co-location patterns generated by the taxonomy. Most approaches for co-location pattern detection overlook the hierarchical relationships among spatial features, and the statistical significance of the detected patterns is not always considered, leading to potential false discoveries. This paper introduces two methods for incorporating taxonomies and assessing the statistical significance of co-location patterns. The baseline approach iteratively checks the significance of co-locations between leaf nodes or their ancestors in the taxonomy. Using the Benjamini-Hochberg procedure, an advanced approach is proposed to control the false discovery rate. This approach effectively reduces the risk of false discoveries while maintaining the power to detect true co-location patterns. Experimental evaluation and case study results show the effectiveness of the approach.

Cite as

Subhankar Ghosh, Arun Sharma, Jayant Gupta, and Shashi Shekhar. Towards Statistically Significant Taxonomy Aware Co-Location Pattern Detection (Short Paper). In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 25:1-25:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ghosh_et_al:LIPIcs.COSIT.2024.25,
  author =	{Ghosh, Subhankar and Sharma, Arun and Gupta, Jayant and Shekhar, Shashi},
  title =	{{Towards Statistically Significant Taxonomy Aware Co-Location Pattern Detection}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{25:1--25:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.25},
  URN =		{urn:nbn:de:0030-drops-208404},
  doi =		{10.4230/LIPIcs.COSIT.2024.25},
  annote =	{Keywords: Co-location patterns, spatial data mining, taxonomy, hierarchy, statistical significance, false discovery rate, family-wise error rate}
}
Document
Deep Cooperation of Local Search and Unit Propagation Techniques

Authors: Xiamin Chen, Zhendong Lei, and Pinyan Lu

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Local search (LS) is an efficient method for solving combinatorial optimization problems such as MaxSAT and Pseudo Boolean Problems (PBO). However, due to a lack of reasoning power and global information, LS methods get stuck at local optima easily. In contrast to the LS, Systematic Search utilizes unit propagation and clause learning techniques with strong reasoning capabilities to avoid falling into local optima. Nevertheless, the complete search is generally time-consuming to obtain a global optimal solution. This work proposes a deep cooperation framework combining local search and unit propagation to address their inherent disadvantages. First, we design a mechanism to detect when LS gets stuck, and then a well-designed unit propagation procedure is called upon to help escape the local optima. To the best of our knowledge, we are the first to integrate unit propagation technique within LS to overcome local optima. Experiments based on a broad range of benchmarks from MaxSAT Evaluations, PBO competitions, the Mixed Integer Programming Library, and three real-life cases validate that our method significantly improves three state-of-the-art MaxSAT and PBO local search solvers.

Cite as

Xiamin Chen, Zhendong Lei, and Pinyan Lu. Deep Cooperation of Local Search and Unit Propagation Techniques. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 6:1-6:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.CP.2024.6,
  author =	{Chen, Xiamin and Lei, Zhendong and Lu, Pinyan},
  title =	{{Deep Cooperation of Local Search and Unit Propagation Techniques}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{6:1--6:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.6},
  URN =		{urn:nbn:de:0030-drops-206918},
  doi =		{10.4230/LIPIcs.CP.2024.6},
  annote =	{Keywords: PBO, Partial MaxSAT, LS, CDCL}
}
  • Refine by Author
  • 1 Allen, Bradley P.
  • 1 An, Shinwoo
  • 1 Anderson, James H.
  • 1 Arzt, Steven
  • 1 Avarikioti, Zeta
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Graph algorithms analysis
  • 2 Applied computing → Computational genomics
  • 2 Computing methodologies → Knowledge representation and reasoning
  • 2 Information systems → Semantic web description languages
  • 2 Theory of computation → Distributed algorithms
  • Show More...

  • Refine by Keyword
  • 1 AC⁰ circuits
  • 1 Activity Recognition
  • 1 Affine
  • 1 Algorithm Engineering
  • 1 Approximation
  • Show More...

  • Refine by Type
  • 29 document

  • Refine by Publication Year
  • 27 2024
  • 1 2007
  • 1 2017

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail