42 Search Results for "He, Meng"


Document
Fast Computation of k-Runs, Parameterized Squares, and Other Generalised Squares

Authors: Yuto Nakashima, Jakub Radoszewski, and Tomasz Waleń

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A k-mismatch square is a string of the form XY where X and Y are two equal-length strings that have at most k mismatches. Kolpakov and Kucherov [Theor. Comput. Sci., 2003] defined two notions of k-mismatch repeats, called k-repetitions and k-runs, each representing a sequence of consecutive k-mismatch squares of equal length. They proposed algorithms for computing k-repetitions and k-runs working in 𝒪(nklog k+output) time for a string of length n over an integer alphabet, where output is the number of the reported repeats. We show that output = 𝒪(nk log k), both in case of k-repetitions and k-runs, which implies that the complexity of their algorithms is actually 𝒪(nk log k). We apply this result to computing parameterized squares. A parameterized square is a string of the form XY such that X and Y parameterized-match, i.e., there exists a bijection f on the alphabet such that f(X) = Y. Two parameterized squares XY and X'Y' are equivalent if they parameterized match. Recently Hamai et al. [SPIRE 2024] showed that a string of length n over an alphabet of size σ contains less than nσ non-equivalent parameterized squares, improving an earlier bound by Kociumaka et al. [Theor. Comput. Sci., 2016]. We apply our bound for k-mismatch repeats to propose an algorithm that reports all non-equivalent parameterized squares in 𝒪(nσ log σ) time. We also show that the number of non-equivalent parameterized squares can be computed in 𝒪(n log n) time. This last algorithm applies to squares under any substring compatible equivalence relation and also to counting squares that are distinct as strings. In particular, this improves upon the 𝒪(nσ)-time algorithm of Gawrychowski et al. [CPM 2023] for counting order-preserving squares that are distinct as strings if σ = ω(log n).

Cite as

Yuto Nakashima, Jakub Radoszewski, and Tomasz Waleń. Fast Computation of k-Runs, Parameterized Squares, and Other Generalised Squares. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 8:1-8:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{nakashima_et_al:LIPIcs.ESA.2025.8,
  author =	{Nakashima, Yuto and Radoszewski, Jakub and Wale\'{n}, Tomasz},
  title =	{{Fast Computation of k-Runs, Parameterized Squares, and Other Generalised Squares}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{8:1--8:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.8},
  URN =		{urn:nbn:de:0030-drops-244768},
  doi =		{10.4230/LIPIcs.ESA.2025.8},
  annote =	{Keywords: string algorithm, k-mismatch square, parameterized square, order-preserving square, maximum gapped repeat}
}
Document
Near-Optimal Differentially Private Graph Algorithms via the Multidimensional AboveThreshold Mechanism

Authors: Laxman Dhulipala, Monika Henzinger, George Z. Li, Quanquan C. Liu, A. R. Sricharan, and Leqi Zhu

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Many differentially private and classical non-private graph algorithms rely crucially on determining whether some property of each vertex meets a threshold. For example, for the k-core decomposition problem, the classic peeling algorithm iteratively removes a vertex if its induced degree falls below a threshold. The sparse vector technique (SVT) is generally used to transform non-private threshold queries into private ones with only a small additive loss in accuracy. However, a naive application of SVT in the graph setting leads to an amplification of the error by a factor of n due to composition, as SVT is applied to every vertex. In this paper, we resolve this problem by formulating a novel generalized sparse vector technique which we call the Multidimensional AboveThreshold (MAT) Mechanism which generalizes SVT (applied to vectors with one dimension) to vectors with multiple dimensions. When applied to vectors with n dimensions, we solve a number of important graph problems with better bounds than previous work. Specifically, we apply our MAT mechanism to obtain a set of improved bounds for a variety of problems including k-core decomposition, densest subgraph, low out-degree ordering, and vertex coloring. We give a tight local edge differentially private (LEDP) algorithm for k-core decomposition that results in an approximation with O(ε^{-1} log n) additive error and no multiplicative error in O(n) rounds. We also give a new (2+η)-factor multiplicative, O(ε^{-1} log n) additive error algorithm in O(log² n) rounds for any constant η > 0. Both of these results are asymptotically tight against our new lower bound of Ω(log n) for any constant-factor approximation algorithm for k-core decomposition. Our new algorithms for k-core decomposition also directly lead to new algorithms for the related problems of densest subgraph and low out-degree ordering. Finally, we give novel LEDP differentially private defective coloring algorithms that use number of colors given in terms of the arboricity of the graph.

Cite as

Laxman Dhulipala, Monika Henzinger, George Z. Li, Quanquan C. Liu, A. R. Sricharan, and Leqi Zhu. Near-Optimal Differentially Private Graph Algorithms via the Multidimensional AboveThreshold Mechanism. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 91:1-91:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dhulipala_et_al:LIPIcs.ESA.2025.91,
  author =	{Dhulipala, Laxman and Henzinger, Monika and Li, George Z. and Liu, Quanquan C. and Sricharan, A. R. and Zhu, Leqi},
  title =	{{Near-Optimal Differentially Private Graph Algorithms via the Multidimensional AboveThreshold Mechanism}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{91:1--91:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.91},
  URN =		{urn:nbn:de:0030-drops-245601},
  doi =		{10.4230/LIPIcs.ESA.2025.91},
  annote =	{Keywords: differential privacy, abovethreshold, densest subgraph}
}
Document
Multi-Axis, Multi-Material Additive Fabrication of Multi-Layer Conformal SMD Circuitry to Support In-Space Mission Resilience

Authors: Ivan Revenga Riesco, Borut Lampret, Connor Myant, and David Boyle

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
This work presents the development and evaluation of multi-material, multi-axis Material Extrusion (MEX) additive manufacturing combined with electroplating for the fabrication of complex conformal circuitry. The proposed approach enables the direct printing of functional electronics onto conformal surfaces, while offering a lower-cost and lower-complexity alternative to conventional PCB manufacturing and other in-space electronics fabrication methods. A key contribution of this work is the introduction of small multi-material bridges as a lightweight and scalable solution to miniaturisation challenges in 3D-printed electronics. The printed circuits' physical dimensions were analysed and compared among samples, and their electrical performance was benchmarked against traditional FR4 PCBs. Lastly, the role of such a system is evaluated in the context of a space exploration mission. While the printed circuits exhibited increased noise and reduced reliability, they successfully demonstrated the ability to regulate and deliver current. The results highlight the potential of MEX-based additive manufacturing as a potential lower-cost alternative technique to proposed in-space additive electronics manufacturing processes.

Cite as

Ivan Revenga Riesco, Borut Lampret, Connor Myant, and David Boyle. Multi-Axis, Multi-Material Additive Fabrication of Multi-Layer Conformal SMD Circuitry to Support In-Space Mission Resilience. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 19:1-19:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{revengariesco_et_al:OASIcs.SpaceCHI.2025.19,
  author =	{Revenga Riesco, Ivan and Lampret, Borut and Myant, Connor and Boyle, David},
  title =	{{Multi-Axis, Multi-Material Additive Fabrication of Multi-Layer Conformal SMD Circuitry to Support In-Space Mission Resilience}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{19:1--19:17},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.19},
  URN =		{urn:nbn:de:0030-drops-240093},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.19},
  annote =	{Keywords: Space Digital Fabrication, Additive Manufactured Electronics Systems, 3D printed electronics, In-space manufacturing}
}
Document
Succinct Data Structures for Chordal Graph with Bounded Leafage or Vertex Leafage

Authors: Meng He and Kaiyu Wu

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
We improve the recent succinct data structure result of Balakrishnan et al. for chordal graphs with bounded vertex leafage (SWAT 2024). A chordal graph is a widely studied graph class which can be characterized as the intersection graph of subtrees of a host tree, denoted as a tree representation of the chordal graph. The vertex leafage and leafage parameters of a chordal graph deal with the existence of a tree representation with a bounded number of leaves in either the subtrees representing the vertices or the host tree itself. We simplify the lower bound proof of Balakrishnan et al. which applied to only chordal graphs with bounded vertex leafage, and extend it to a lower bound proof for chordal graphs with bounded leafage as well. For both classes of graphs, the information-theoretic lower bound we (re-)obtain for k = o(n) is (k-1)nlog n - knlog k - o(knlog n) bits, where the leafage or vertex leafage of the graph is at most k = o(n). We further extend the range of the parameter k to Θ(n) as well. Then we give a succinct data structure using (k-1)nlog (n/k) + o(knlog n) bits to answer adjacent queries, which test the adjacency between pairs of vertices, in O((log k)/(log log n) + 1) time compared to the O(klog n) time of the data structure of Balakrishnan et al. For the neighborhood query which lists the neighbours of a given vertex, our query time is O((log n)/(log log n)) per neighbour compared to O(k²log n) per neighbour. We also extend the data structure ideas to obtain a succinct data structure for chordal graphs with bounded leafage k, answering an open question of Balakrishnan et al. Our succinct data structure, which uses (k-1)nlog (n/k) + o(knlog n) bits, has query time O(1) for the adjacent query and O(1) per neighbour for the neighborhood query. Using slightly more space (an additional (1+ε)nlog n bits for any ε > 0) allows distance queries, which compute the number of edges in the shortest path between two given vertices, to be answered in O(1) time as well.

Cite as

Meng He and Kaiyu Wu. Succinct Data Structures for Chordal Graph with Bounded Leafage or Vertex Leafage. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 35:1-35:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{he_et_al:LIPIcs.WADS.2025.35,
  author =	{He, Meng and Wu, Kaiyu},
  title =	{{Succinct Data Structures for Chordal Graph with Bounded Leafage or Vertex Leafage}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{35:1--35:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.35},
  URN =		{urn:nbn:de:0030-drops-242660},
  doi =		{10.4230/LIPIcs.WADS.2025.35},
  annote =	{Keywords: Chordal Graph, Leafage, Vertex Leafage, Succinct Data Structure}
}
Document
Enriching Location Representation with Detailed Semantic Information

Authors: Junyuan Liu, Xinglei Wang, and Tao Cheng

Published in: LIPIcs, Volume 346, 13th International Conference on Geographic Information Science (GIScience 2025)


Abstract
Spatial representations that capture both structural and semantic characteristics of urban environments are essential for urban modeling. Traditional spatial embeddings often prioritize spatial proximity while underutilizing fine-grained contextual information from places. To address this limitation, we introduce CaLLiPer+, an extension of the CaLLiPer model that systematically integrates Point-of-Interest (POI) names alongside categorical labels within a multimodal contrastive learning framework. We evaluate its effectiveness on two downstream tasks - land use classification and socioeconomic status distribution mapping - demonstrating consistent performance gains of 4% to 11% over baseline methods. Additionally, we show that incorporating POI names enhances location retrieval, enabling models to capture complex urban concepts with greater precision. Ablation studies further reveal the complementary role of POI names and the advantages of leveraging pretrained text encoders for spatial representations. Overall, our findings highlight the potential of integrating fine-grained semantic attributes and multimodal learning techniques to advance the development of urban foundation models.

Cite as

Junyuan Liu, Xinglei Wang, and Tao Cheng. Enriching Location Representation with Detailed Semantic Information. In 13th International Conference on Geographic Information Science (GIScience 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 346, pp. 3:1-3:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{liu_et_al:LIPIcs.GIScience.2025.3,
  author =	{Liu, Junyuan and Wang, Xinglei and Cheng, Tao},
  title =	{{Enriching Location Representation with Detailed Semantic Information}},
  booktitle =	{13th International Conference on Geographic Information Science (GIScience 2025)},
  pages =	{3:1--3:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-378-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{346},
  editor =	{Sila-Nowicka, Katarzyna and Moore, Antoni and O'Sullivan, David and Adams, Benjamin and Gahegan, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2025.3},
  URN =		{urn:nbn:de:0030-drops-238322},
  doi =		{10.4230/LIPIcs.GIScience.2025.3},
  annote =	{Keywords: Location Embedding, Contrastive Learning, Pretrained Model}
}
Document
Research
Encoding Data Structures for Range Queries on Arrays

Authors: Seungbum Jo and Srinivasa Rao Satti

Published in: OASIcs, Volume 132, From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday (2025)


Abstract
Efficiently processing range queries on arrays is a fundamental problem in computer science, with applications spanning diverse domains such as database management, computational biology, and geographic information systems. A range query retrieves information about a specific segment of an array, such as the sum, minimum, maximum, or median of elements within a given range. The challenge lies in designing data structures that allow such queries to be answered quickly, often in constant or logarithmic time, while keeping space overhead (and preprocessing time) small. Encoding data structures for range queries has emerged as a pivotal area of research due to the increasing demand for high-performance systems handling massive datasets. These structures consider the data together with the queries and aim to store only as much information about the data as is needed to answer the queries. The data structure does not need to access the original data to answer the queries. Encoding-based solutions often leverage techniques from succinct data structures, bit manipulation, and combinatorial optimization to achieve both space and time efficiency. By encoding the array in a manner that preserves critical information, these methods strike a balance between query time and space usage. In this survey article, we explore the landscape of encoding data structures for range queries on arrays, providing a comprehensive overview of some important results on space-efficient encodings for various types of range query.

Cite as

Seungbum Jo and Srinivasa Rao Satti. Encoding Data Structures for Range Queries on Arrays. In From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday. Open Access Series in Informatics (OASIcs), Volume 132, pp. 12:1-12:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{jo_et_al:OASIcs.Grossi.12,
  author =	{Jo, Seungbum and Satti, Srinivasa Rao},
  title =	{{Encoding Data Structures for Range Queries on Arrays}},
  booktitle =	{From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday},
  pages =	{12:1--12:12},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-391-1},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{132},
  editor =	{Conte, Alessio and Marino, Andrea and Rosone, Giovanna and Vitter, Jeffrey Scott},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Grossi.12},
  URN =		{urn:nbn:de:0030-drops-238116},
  doi =		{10.4230/OASIcs.Grossi.12},
  annote =	{Keywords: range queries, RMQ, Cartesian tree, top-k queries, range median, range mode}
}
Document
From Prediction to Action: A Constraint-Based Approach to Predictive Policing

Authors: Younes Mechqrane and Ismail Elabbassi

Published in: LIPIcs, Volume 340, 31st International Conference on Principles and Practice of Constraint Programming (CP 2025)


Abstract
Crime prevention in urban environments demands both accurate crime forecasting and the efficient deployment of limited law enforcement resources. In this paper, we present an integrated framework that combines a machine learning module (i.e. PredRNN++ [Wang et al., 2018]) for spatiotemporal crime prediction with a constraint programming module for patrol route optimization. Our approach operates within the ICON loop framework [Bessiere et al., 2017], facilitating iterative refinement of predictions and immediate adaptation of patrol strategies. We validate our method using the City of Chicago Crime Dataset. Experimental results show that routes informed by crime predictions significantly outperform strategies relying solely on historical patterns or operational constraints. These findings illustrate how coupling predictive analytics with constraint programming can substantially enhance resource allocation and overall crime deterrence.

Cite as

Younes Mechqrane and Ismail Elabbassi. From Prediction to Action: A Constraint-Based Approach to Predictive Policing. In 31st International Conference on Principles and Practice of Constraint Programming (CP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 340, pp. 29:1-29:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{mechqrane_et_al:LIPIcs.CP.2025.29,
  author =	{Mechqrane, Younes and Elabbassi, Ismail},
  title =	{{From Prediction to Action: A Constraint-Based Approach to Predictive Policing}},
  booktitle =	{31st International Conference on Principles and Practice of Constraint Programming (CP 2025)},
  pages =	{29:1--29:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-380-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{340},
  editor =	{de la Banda, Maria Garcia},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2025.29},
  URN =		{urn:nbn:de:0030-drops-238902},
  doi =		{10.4230/LIPIcs.CP.2025.29},
  annote =	{Keywords: Inductive Constraint Programming (ICON) Loop, Next Frame Prediction, PredRNN++}
}
Document
Track A: Algorithms, Complexity and Games
Minimizing Recourse in an Adaptive Balls and Bins Game

Authors: Adi Fine, Haim Kaplan, and Uri Stemmer

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We consider a simple load-balancing game between an algorithm and an adaptive adversary. In a simplified version of this game, the adversary observes the assignment of jobs to machines and selects a machine to kill. The algorithm must then restart the jobs from the failed machine on other machines. The adversary repeats this process, observing the new assignment and eliminating another machine, and so on. The adversary aims to force the algorithm to perform many restarts, while we seek a robust algorithm that minimizes restarts regardless of the adversary’s strategy. This game was recently introduced by Bhattacharya et al. for designing a 3-spanner with low recourse against an adaptive adversary. We prove that a simple algorithm, which assigns each job to a randomly chosen live bin, incurs O(n log n) recourse against an adaptive adversary. This enables us to construct a much simpler 3-spanner with a recourse that is smaller by a factor of O(log² n) compared to the previous construction, without increasing the update time or the size of the spanner. This motivates a careful examination of the range of attacks an adaptive adversary can deploy against simple algorithms before resorting to more complex ones. As our case study demonstrates, this attack space may not be as large as it initially appears, enabling the development of robust algorithms that are both simpler and easier to analyze.

Cite as

Adi Fine, Haim Kaplan, and Uri Stemmer. Minimizing Recourse in an Adaptive Balls and Bins Game. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 77:1-77:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{fine_et_al:LIPIcs.ICALP.2025.77,
  author =	{Fine, Adi and Kaplan, Haim and Stemmer, Uri},
  title =	{{Minimizing Recourse in an Adaptive Balls and Bins Game}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{77:1--77:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.77},
  URN =		{urn:nbn:de:0030-drops-234544},
  doi =		{10.4230/LIPIcs.ICALP.2025.77},
  annote =	{Keywords: Adaptive adversary, load-balancing game, balls-and-bins, randomized algorithms, dynamic 3-spanner, dynamic graph algorithms, adversarial robustness}
}
Document
Track A: Algorithms, Complexity and Games
Fully Dynamic Algorithms for Transitive Reduction

Authors: Gramoz Goranci, Adam Karczmarz, Ali Momeni, and Nikos Parotsidis

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
Given a directed graph G, a transitive reduction G^t of G (first studied by Aho, Garey, Ullman [SICOMP `72]) is a minimal subgraph of G that preserves the reachability relation between every two vertices in G. In this paper, we study the computational complexity of transitive reduction in the dynamic setting. We obtain the first fully dynamic algorithms for maintaining a transitive reduction of a general directed graph undergoing updates such as edge insertions or deletions. Our first algorithm achieves O(m+n log n) amortized update time, which is near-optimal for sparse directed graphs, and can even support extended update operations such as inserting a set of edges all incident to the same vertex, or deleting an arbitrary set of edges. Our second algorithm relies on fast matrix multiplication and achieves O(m+ n^{1.585}) worst-case update time.

Cite as

Gramoz Goranci, Adam Karczmarz, Ali Momeni, and Nikos Parotsidis. Fully Dynamic Algorithms for Transitive Reduction. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 92:1-92:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{goranci_et_al:LIPIcs.ICALP.2025.92,
  author =	{Goranci, Gramoz and Karczmarz, Adam and Momeni, Ali and Parotsidis, Nikos},
  title =	{{Fully Dynamic Algorithms for Transitive Reduction}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{92:1--92:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.92},
  URN =		{urn:nbn:de:0030-drops-234697},
  doi =		{10.4230/LIPIcs.ICALP.2025.92},
  annote =	{Keywords: Spectral sparsification, Dynamic algorithms, (Directed) hypergraphs, Data structures}
}
Document
Track A: Algorithms, Complexity and Games
Optimal Distance Labeling for Permutation Graphs

Authors: Paweł Gawrychowski and Wojciech Janczewski

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
A permutation graph is the intersection graph of a set of segments between two parallel lines. In other words, they are defined by a permutation π on n elements, such that u and v are adjacent if an only if u < v but π(u) > π(v). We consider the problem of computing the distances in such a graph in the setting of informative labeling schemes. The goal of such a scheme is to assign a short bitstring 𝓁(u) to every vertex u, such that the distance between u and v can be computed using only 𝓁(u) and 𝓁(v), and no further knowledge about the whole graph (other than that it is a permutation graph). This elegantly captures the intuition that we would like our data structure to be distributed, and often leads to interesting combinatorial challenges while trying to obtain lower and upper bounds that match up to the lower-order terms. For distance labeling of permutation graphs on n vertices, Katz, Katz, and Peleg [STACS 2000] showed how to construct labels consisting of 𝒪(log² n) bits. Later, Bazzaro and Gavoille [Discret. Math. 309(11)] obtained an asymptotically optimal bound by showing how to construct labels consisting of 9log{n}+𝒪(1) bits, and proving that 3log{n}-𝒪(log{log{n}}) bits are necessary. This however leaves a quite large gap between the known lower and upper bounds. We close this gap by showing how to construct labels consisting of 3log{n}+𝒪(1) bits.

Cite as

Paweł Gawrychowski and Wojciech Janczewski. Optimal Distance Labeling for Permutation Graphs. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 86:1-86:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gawrychowski_et_al:LIPIcs.ICALP.2025.86,
  author =	{Gawrychowski, Pawe{\l} and Janczewski, Wojciech},
  title =	{{Optimal Distance Labeling for Permutation Graphs}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{86:1--86:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.86},
  URN =		{urn:nbn:de:0030-drops-234632},
  doi =		{10.4230/LIPIcs.ICALP.2025.86},
  annote =	{Keywords: informative labeling, permutation graph, distance labeling}
}
Document
Wastrumentation: Portable WebAssembly Dynamic Analysis with Support for Intercession

Authors: Aäron Munsters, Angel Luis Scull Pupo, and Elisa Gonzalez Boix

Published in: LIPIcs, Volume 333, 39th European Conference on Object-Oriented Programming (ECOOP 2025)


Abstract
Dynamic program analyses help in understanding a program’s runtime behavior and detect issues related to security, program comprehension, or profiling. Instrumentation platforms aid analysis developers by offering a high-level API to write the analysis, and inserting the analysis into the target program. However, current instrumentation platforms for WebAssembly (Wasm) restrict analysis portability because they require concrete runtime environments. Moreover, their analysis API only allows the development of analyses that observe the target program but cannot modify it. As a result, many popular dynamic analyses present for other languages, such as runtime hardening, virtual patching or runtime optimization, cannot currently be implemented for Wasm atop a dynamic analysis platform. Instead, they need to be built manually, which requires knowledge of low-level details of the Wasm’s semantics and instruction set, and how to safely manipulate it. This paper introduces Wastrumentation, the first dynamic analysis platform for WebAssembly that supports intercession. Our solution, based on source code instrumentation, weaves the analysis code directly into the target program code. Inlining the analysis into the target’s source code avoids dependencies on the runtime environment, making analyses portable across Wasm VMs. Moreover, it enables the implementation of analyses in any Wasm-compatible language. We evaluate our solution in two ways. First, we compare it against a state-of-the-art source code instrumentation platform using the WasmR3 benchmarks. The results show improved memory consumption and competitive performance overhead. Second, we develop an extensive portfolio of dynamic analyses, including novel analyses previously unattainable with source code instrumentation platforms, such as memoization, safe heap access, and the removal of NaN non-determinism.

Cite as

Aäron Munsters, Angel Luis Scull Pupo, and Elisa Gonzalez Boix. Wastrumentation: Portable WebAssembly Dynamic Analysis with Support for Intercession. In 39th European Conference on Object-Oriented Programming (ECOOP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 333, pp. 23:1-23:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{munsters_et_al:LIPIcs.ECOOP.2025.23,
  author =	{Munsters, A\"{a}ron and Scull Pupo, Angel Luis and Gonzalez Boix, Elisa},
  title =	{{Wastrumentation: Portable WebAssembly Dynamic Analysis with Support for Intercession}},
  booktitle =	{39th European Conference on Object-Oriented Programming (ECOOP 2025)},
  pages =	{23:1--23:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-373-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{333},
  editor =	{Aldrich, Jonathan and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2025.23},
  URN =		{urn:nbn:de:0030-drops-233153},
  doi =		{10.4230/LIPIcs.ECOOP.2025.23},
  annote =	{Keywords: WebAssembly, dynamic analysis, instrumentation platform, intercession}
}
Document
Survey
Uncertainty Management in the Construction of Knowledge Graphs: A Survey

Authors: Lucas Jarnac, Yoan Chabot, and Miguel Couceiro

Published in: TGDK, Volume 3, Issue 1 (2025). Transactions on Graph Data and Knowledge, Volume 3, Issue 1


Abstract
Knowledge Graphs (KGs) are a major asset for companies thanks to their great flexibility in data representation and their numerous applications, e.g., vocabulary sharing, Q&A or recommendation systems. To build a KG, it is a common practice to rely on automatic methods for extracting knowledge from various heterogeneous sources. However, in a noisy and uncertain world, knowledge may not be reliable and conflicts between data sources may occur. Integrating unreliable data would directly impact the use of the KG, therefore such conflicts must be resolved. This could be done manually by selecting the best data to integrate. This first approach is highly accurate, but costly and time-consuming. That is why recent efforts focus on automatic approaches, which represent a challenging task since it requires handling the uncertainty of extracted knowledge throughout its integration into the KG. We survey state-of-the-art approaches in this direction and present constructions of both open and enterprise KGs. We then describe different knowledge extraction methods and discuss downstream tasks after knowledge acquisition, including KG completion using embedding models, knowledge alignment, and knowledge fusion in order to address the problem of knowledge uncertainty in KG construction. We conclude with a discussion on the remaining challenges and perspectives when constructing a KG taking into account uncertainty.

Cite as

Lucas Jarnac, Yoan Chabot, and Miguel Couceiro. Uncertainty Management in the Construction of Knowledge Graphs: A Survey. In Transactions on Graph Data and Knowledge (TGDK), Volume 3, Issue 1, pp. 3:1-3:48, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{jarnac_et_al:TGDK.3.1.3,
  author =	{Jarnac, Lucas and Chabot, Yoan and Couceiro, Miguel},
  title =	{{Uncertainty Management in the Construction of Knowledge Graphs: A Survey}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:48},
  ISSN =	{2942-7517},
  year =	{2025},
  volume =	{3},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.3.1.3},
  URN =		{urn:nbn:de:0030-drops-233733},
  doi =		{10.4230/TGDK.3.1.3},
  annote =	{Keywords: Knowledge reconciliation, Uncertainty, Heterogeneous sources, Knowledge graph construction}
}
Document
Succinct Data Structures for Segments

Authors: Philip Bille, Inge Li Gørtz, and Simon R. Tarnow

Published in: LIPIcs, Volume 331, 36th Annual Symposium on Combinatorial Pattern Matching (CPM 2025)


Abstract
We consider succinct data structures for representing a set of n horizontal line segments in the plane given in rank space to support segment access, segment selection, and segment rank queries. A segment access query finds the segment (x₁, x₂, y) given its y-coordinate (y-coordinates of the segments are distinct), a segment selection query finds the jth smallest segment (the segment with the jth smallest y-coordinate) among the segments crossing the vertical line for a given x-coordinate, and a segment rank query finds the number of segments crossing the vertical line through x-coordinate i with y-coordinate at most y, for a given x and y. This problem is a central component in compressed data structures for persistent strings supporting random access. Our main result is a data structure using 2n lg n + O(n lg n / lg lg n) bits of space and O(lg n / lg lg n) query time for all operations. We show that this space bound is optimal up to lower-order terms. We will also show that the query time for segment rank is optimal. The query time for segment selection is also optimal by a previous bound. To obtain our results, we present a novel segment wavelet tree data structure of independent interest. This structure is inspired by and extends the classic wavelet tree for sequences. This leads to a simple, succinct solution with O(log n) query times. We then extend this solution to obtain optimal query time. Our space lower bound follows from a simple counting argument, and our lower bound for segment rank is obtained by a reduction from 2-dimensional counting.

Cite as

Philip Bille, Inge Li Gørtz, and Simon R. Tarnow. Succinct Data Structures for Segments. In 36th Annual Symposium on Combinatorial Pattern Matching (CPM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 331, pp. 27:1-27:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bille_et_al:LIPIcs.CPM.2025.27,
  author =	{Bille, Philip and G{\o}rtz, Inge Li and Tarnow, Simon R.},
  title =	{{Succinct Data Structures for Segments}},
  booktitle =	{36th Annual Symposium on Combinatorial Pattern Matching (CPM 2025)},
  pages =	{27:1--27:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-369-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{331},
  editor =	{Bonizzoni, Paola and M\"{a}kinen, Veli},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2025.27},
  URN =		{urn:nbn:de:0030-drops-231218},
  doi =		{10.4230/LIPIcs.CPM.2025.27},
  annote =	{Keywords: Succinct, Data structures, Selection}
}
Document
Tool Paper
Scar: Verification-Based Development of Smart Contracts (Tool Paper)

Authors: Jonas Schiffl and Bernhard Beckert

Published in: OASIcs, Volume 129, 6th International Workshop on Formal Methods for Blockchains (FMBC 2025)


Abstract
Compared to other kinds of computer programs, smart contracts have some unique characteristics, e.g., immutability, and the public availability of source code. This means that any vulnerability has a large probability of being exploited. Since smart contracts cannot be patched, it is very important that smart contracts are correct and secure upon deployment. While much research has been invested in this goal, smart contract correctness and security remains a challenging problem. In this paper, we present the Scar approach for model-driven development of correct and secure smart contract applications. Before implementing an application, smart contract developers first describe it in terms of an intuitive, platform-agnostic metamodel. Within this model, they can also specify high-level security and behavioral correctness properties, and check whether the model contains any inconsistencies. Finally, a combination of code generation, static analyses, and formal verification of automatically generated formal annotations leads to an implementation that is correct and secure w.r.t. the initial model.

Cite as

Jonas Schiffl and Bernhard Beckert. Scar: Verification-Based Development of Smart Contracts (Tool Paper). In 6th International Workshop on Formal Methods for Blockchains (FMBC 2025). Open Access Series in Informatics (OASIcs), Volume 129, pp. 14:1-14:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{schiffl_et_al:OASIcs.FMBC.2025.14,
  author =	{Schiffl, Jonas and Beckert, Bernhard},
  title =	{{Scar: Verification-Based Development of Smart Contracts}},
  booktitle =	{6th International Workshop on Formal Methods for Blockchains (FMBC 2025)},
  pages =	{14:1--14:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-371-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{129},
  editor =	{Marmsoler, Diego and Xu, Meng},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.FMBC.2025.14},
  URN =		{urn:nbn:de:0030-drops-230410},
  doi =		{10.4230/OASIcs.FMBC.2025.14},
  annote =	{Keywords: Smart Contracts, Formal Verification, Security, Safety and Liveness}
}
Document
Formal Verification in Solidity and Move: Insights from a Comparative Analysis

Authors: Massimo Bartoletti, Silvia Crafa, and Enrico Lipparini

Published in: OASIcs, Volume 129, 6th International Workshop on Formal Methods for Blockchains (FMBC 2025)


Abstract
Formal verification plays a crucial role in making smart contracts safer, being able to find bugs or to guarantee their absence, as well as checking whether the business logic is correctly implemented. For Solidity, even though there already exist several mature verification tools, the semantical quirks of the language can make verification quite hard in practice. Move, on the other hand, has been designed with security and verification in mind, and it has been accompanied since its early stages by a formal verification tool, the Move Prover. In this paper, we investigate through a comparative analysis: 1) how the different designs of the two contract languages impact verification, and 2) what is the state-of-the-art of verification tools for the two languages, and how do they compare on three paradigmatic use cases. Our investigation is supported by an open dataset of verification tasks performed in Certora and in the Aptos Move Prover.

Cite as

Massimo Bartoletti, Silvia Crafa, and Enrico Lipparini. Formal Verification in Solidity and Move: Insights from a Comparative Analysis. In 6th International Workshop on Formal Methods for Blockchains (FMBC 2025). Open Access Series in Informatics (OASIcs), Volume 129, pp. 3:1-3:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bartoletti_et_al:OASIcs.FMBC.2025.3,
  author =	{Bartoletti, Massimo and Crafa, Silvia and Lipparini, Enrico},
  title =	{{Formal Verification in Solidity and Move: Insights from a Comparative Analysis}},
  booktitle =	{6th International Workshop on Formal Methods for Blockchains (FMBC 2025)},
  pages =	{3:1--3:18},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-371-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{129},
  editor =	{Marmsoler, Diego and Xu, Meng},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.FMBC.2025.3},
  URN =		{urn:nbn:de:0030-drops-230302},
  doi =		{10.4230/OASIcs.FMBC.2025.3},
  annote =	{Keywords: Smart contracts, Solidity, Move, Verification, Blockchain}
}
  • Refine by Type
  • 42 Document/PDF
  • 25 Document/HTML

  • Refine by Publication Year
  • 18 2025
  • 2 2024
  • 8 2023
  • 2 2022
  • 2 2021
  • Show More...

  • Refine by Author
  • 17 He, Meng
  • 5 Munro, J. Ian
  • 5 Wu, Kaiyu
  • 3 Gao, Younan
  • 3 Kazi, Serikzhan
  • Show More...

  • Refine by Series/Journal
  • 28 LIPIcs
  • 6 OASIcs
  • 8 TGDK

  • Refine by Classification
  • 14 Theory of computation → Data structures design and analysis
  • 5 Information systems → Data structures
  • 4 Computing methodologies → Knowledge representation and reasoning
  • 4 Theory of computation → Data compression
  • 3 Information systems → Graph-based database models
  • Show More...

  • Refine by Keyword
  • 3 data structures
  • 3 path queries
  • 3 range mode
  • 3 range queries
  • 2 Chordal Graph
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail