77 Search Results for "Lu, Yang"


Document
Survey
Resilience in Knowledge Graph Embeddings

Authors: Arnab Sharma, N'Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo

Published in: TGDK, Volume 3, Issue 2 (2025). Transactions on Graph Data and Knowledge, Volume 3, Issue 2


Abstract
In recent years, knowledge graphs have gained interest and witnessed widespread applications in various domains, such as information retrieval, question-answering, recommendation systems, amongst others. Large-scale knowledge graphs to this end have demonstrated their utility in effectively representing structured knowledge. To further facilitate the application of machine learning techniques, knowledge graph embedding models have been developed. Such models can transform entities and relationships within knowledge graphs into vectors. However, these embedding models often face challenges related to noise, missing information, distribution shift, adversarial attacks, etc. This can lead to sub-optimal embeddings and incorrect inferences, thereby negatively impacting downstream applications. While the existing literature has focused so far on adversarial attacks on KGE models, the challenges related to the other critical aspects remain unexplored. In this paper, we, first of all, give a unified definition of resilience, encompassing several factors such as generalisation, in-distribution generalization, distribution adaption, and robustness. After formalizing these concepts for machine learning in general, we define them in the context of knowledge graphs. To find the gap in the existing works on resilience in the context of knowledge graphs, we perform a systematic survey, taking into account all these aspects mentioned previously. Our survey results show that most of the existing works focus on a specific aspect of resilience, namely robustness. After categorizing such works based on their respective aspects of resilience, we discuss the challenges and future research directions.

Cite as

Arnab Sharma, N'Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo. Resilience in Knowledge Graph Embeddings. In Transactions on Graph Data and Knowledge (TGDK), Volume 3, Issue 2, pp. 1:1-1:38, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{sharma_et_al:TGDK.3.2.1,
  author =	{Sharma, Arnab and Kouagou, N'Dah Jean and Ngomo, Axel-Cyrille Ngonga},
  title =	{{Resilience in Knowledge Graph Embeddings}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{1:1--1:38},
  ISSN =	{2942-7517},
  year =	{2025},
  volume =	{3},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.3.2.1},
  URN =		{urn:nbn:de:0030-drops-248117},
  doi =		{10.4230/TGDK.3.2.1},
  annote =	{Keywords: Knowledge graphs, Resilience, Robustness}
}
Document
Connected Partitions via Connected Dominating Sets

Authors: Aikaterini Niklanovits, Kirill Simonov, Shaily Verma, and Ziena Zeif

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The classical theorem due to Győri and Lovász states that any k-connected graph G admits a partition into k connected subgraphs, where each subgraph has a prescribed size and contains a prescribed vertex, as long as the total size of target subgraphs is equal to the size of G. However, this result is notoriously evasive in terms of efficient constructions, and it is still unknown whether such a partition can be computed in polynomial time, even for k = 5. We make progress towards an efficient constructive version of the Győri-Lovász theorem by considering a natural strengthening of the k-connectivity requirement. Specifically, we show that the desired connected partition can be found in polynomial time, if G contains k disjoint connected dominating sets. As a consequence of this result, we give several efficient approximate and exact constructive versions of the original Győri-Lovász theorem: - On general graphs, a Győri-Lovász partition with k parts can be computed in polynomial time when the input graph has connectivity Ω(k ⋅ log² n); - On convex bipartite graphs, connectivity of 4k is sufficient; - On biconvex graphs and interval graphs, connectivity of k is sufficient, meaning that our algorithm gives a "true" constructive version of the theorem on these graph classes.

Cite as

Aikaterini Niklanovits, Kirill Simonov, Shaily Verma, and Ziena Zeif. Connected Partitions via Connected Dominating Sets. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 10:1-10:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{niklanovits_et_al:LIPIcs.ESA.2025.10,
  author =	{Niklanovits, Aikaterini and Simonov, Kirill and Verma, Shaily and Zeif, Ziena},
  title =	{{Connected Partitions via Connected Dominating Sets}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{10:1--10:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.10},
  URN =		{urn:nbn:de:0030-drops-244785},
  doi =		{10.4230/LIPIcs.ESA.2025.10},
  annote =	{Keywords: Gy\H{o}ri-Lov\'{a}sz theorem, connected dominating sets, graph classes}
}
Document
On the Satisfiability of Random 3-SAT Formulas with k-Wise Independent Clauses

Authors: Ioannis Caragiannis, Nick Gravin, and Zhile Jiang

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The problem of identifying the satisfiability threshold of random 3-SAT formulas has received a lot of attention during the last decades and has inspired the study of other threshold phenomena in random combinatorial structures. The classical assumption in this line of research is that, for a given set of n Boolean variables, each clause is drawn uniformly at random among all sets of three literals from these variables, independently from other clauses. Here, we keep the uniform distribution of each clause, but deviate significantly from the independence assumption and consider richer families of probability distributions. For integer parameters n, m, and k, we denote by ℱ_k(n,m) the family of probability distributions that produce formulas with m clauses, each selected uniformly at random from all sets of three literals from the n variables, so that the clauses are k-wise independent. Our aim is to make general statements about the satisfiability or unsatisfiability of formulas produced by distributions in ℱ_k(n,m) for different values of the parameters n, m, and k. Our technical results are as follows: First, all probability distributions in ℱ₂(n,m) with m ∈ Ω(n³) return unsatisfiable formulas with high probability. This result is tight. We show that there exists a probability distribution 𝒟 ∈ ℱ₃(n,m) with m ∈ O(n³) so that a random formula drawn from 𝒟 is almost always satisfiable. In contrast, for m ∈ Ω(n²), any probability distribution 𝒟 ∈ ℱ₄(n,m) returns an unsatisfiable formula with high probability. This is our most surprising and technically involved result. Finally, for any integer k ≥ 2, any probability distribution 𝒟 ∈ ℱ_k(n,m) with m ∈ O(n^{1-1/k}) returns a satisfiable formula with high probability.

Cite as

Ioannis Caragiannis, Nick Gravin, and Zhile Jiang. On the Satisfiability of Random 3-SAT Formulas with k-Wise Independent Clauses. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 103:1-103:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{caragiannis_et_al:LIPIcs.ESA.2025.103,
  author =	{Caragiannis, Ioannis and Gravin, Nick and Jiang, Zhile},
  title =	{{On the Satisfiability of Random 3-SAT Formulas with k-Wise Independent Clauses}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{103:1--103:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.103},
  URN =		{urn:nbn:de:0030-drops-245721},
  doi =		{10.4230/LIPIcs.ESA.2025.103},
  annote =	{Keywords: Random 3-SAT, k-wise independence, Random bipartite graph}
}
Document
MorphisHash: Improving Space Efficiency of ShockHash for Minimal Perfect Hashing

Authors: Stefan Hermann

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A minimal perfect hash function (MPHF) maps a set of n keys to unique positions {1, …, n}. Representing an MPHF requires at least log₂(e)≈ 1.443 bits per key. ShockHash is a technique to construct an MPHF and requires just slightly more space. It gives each key two random candidate positions. If each key can be mapped to one of its two candidate positions such that there is exactly one key mapped to each position, then an MPHF is found. If not, ShockHash repeats the process with a new set of random candidate positions. ShockHash has to store how many repetitions were required and for each key to which of the two candidate positions it is mapped. However, when a given set of candidate positions can be used as MPHF then there is not only one but multiple ways of mapping the keys to one of their candidate positions such that the mapping results in an MPHF. This redundancy makes up for the majority of the remaining space overhead in ShockHash. In this paper, we present MorphisHash which almost completely eliminates this redundancy. Our theoretical result is that MorphisHash saves Θ(ln(n)) bits in expectation compared to ShockHash. This corresponds to a factor of 20 less space overhead in practice. Just like ShockHash, MorphisHash can be used as a building block within RecSplit to obtain MorphisHash-RS. When compared for same space consumption, MorphisHash-RS can be constructed up to 21 times faster than ShockHash-RS. The technique to accomplish this might be of a more general interest to compress data structures.

Cite as

Stefan Hermann. MorphisHash: Improving Space Efficiency of ShockHash for Minimal Perfect Hashing. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 9:1-9:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{hermann:LIPIcs.ESA.2025.9,
  author =	{Hermann, Stefan},
  title =	{{MorphisHash: Improving Space Efficiency of ShockHash for Minimal Perfect Hashing}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{9:1--9:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.9},
  URN =		{urn:nbn:de:0030-drops-244779},
  doi =		{10.4230/LIPIcs.ESA.2025.9},
  annote =	{Keywords: compressed data structure, perfect hashing, random graph, pseudoforest, component}
}
Document
Canonical for Automated Theorem Proving in Lean

Authors: Chase Norman and Jeremy Avigad

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
Canonical is a solver for type inhabitation in dependent type theory, that is, the problem of producing a term of a given type. We present a Lean tactic which invokes Canonical to generate proof terms and synthesize programs. The tactic supports higher-order and dependently-typed goals, structural recursion over indexed inductive types, and definitional equality. Canonical finds proofs for 84% of Natural Number Game problems in 51 seconds total.

Cite as

Chase Norman and Jeremy Avigad. Canonical for Automated Theorem Proving in Lean. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 14:1-14:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{norman_et_al:LIPIcs.ITP.2025.14,
  author =	{Norman, Chase and Avigad, Jeremy},
  title =	{{Canonical for Automated Theorem Proving in Lean}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{14:1--14:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.14},
  URN =		{urn:nbn:de:0030-drops-246128},
  doi =		{10.4230/LIPIcs.ITP.2025.14},
  annote =	{Keywords: Automated Reasoning, Interactive Theorem Proving, Dependent Type Theory, Inhabitation, Unification, Program Synthesis, Formal Methods}
}
Document
Integrating Human-In-The-Loop AI to Tackle Space Communication Delay Challenges

Authors: Nikos Mavrakis, Effie Lai-Chong Law, and Hubert P. H. Shum

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
Deep space missions face significant communication delays that disrupt both operational workflows and psychological support for crew members. Unlike low Earth orbit operations, delays ranging from several minutes to nearly an hour make real-time communication with mission control infeasible, forcing crews to act with greater independence under uncertain conditions. This position paper examines how human-in-the-loop AI, digital twins, and edge AI can be integrated to mitigate these delays while maintaining astronaut autonomy and engagement. We argue that human-in-the-loop AI enables decision-making processes that are responsive to local context while remaining adaptable to changing mission demands. Digital twins offer real-time simulation and predictive modelling capabilities, allowing astronauts to explore options and troubleshoot without waiting for ground input. Edge AI brings computation closer to data sources, enabling low-latency inference onboard spacecraft for time-critical decisions. These ideas are explored through two use cases: using deepfakes to support emotionally resonant communication with loved ones, and applying visual-language models for onboard fault diagnosis and adaptive task replanning. We conclude with reflections on system design challenges under constrained and high-stakes conditions.

Cite as

Nikos Mavrakis, Effie Lai-Chong Law, and Hubert P. H. Shum. Integrating Human-In-The-Loop AI to Tackle Space Communication Delay Challenges. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 15:1-15:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{mavrakis_et_al:OASIcs.SpaceCHI.2025.15,
  author =	{Mavrakis, Nikos and Law, Effie Lai-Chong and Shum, Hubert P. H.},
  title =	{{Integrating Human-In-The-Loop AI to Tackle Space Communication Delay Challenges}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{15:1--15:16},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.15},
  URN =		{urn:nbn:de:0030-drops-240051},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.15},
  annote =	{Keywords: Human-in-the-loop AI, communication delays, human spaceflight}
}
Document
Toward an Earth-Independent System for EVA Mission Planning: Integrating Physical Models, Domain Knowledge, and Agentic RAG to Provide Explainable LLM-Based Decision Support

Authors: Kaisheng Li and Richard S. Whittle

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
We propose a unified framework for an Earth‑independent AI system that provides explainable, context‑aware decision support for EVA mission planning by integrating six core components: a fine‑tuned EVA domain LLM, a retrieval‑augmented knowledge base, a short-term memory store, physical simulation models, an agentic orchestration layer, and a multimodal user interface. To ground our design, we analyze the current roles and substitution potential of the Mission Control Center - identifying which procedural and analytical functions can be automated onboard while preserving human oversight for experiential and strategic tasks. Building on this framework, we introduce RASAGE (Retrieval & Simulation Augmented Guidance Agent for Exploration), a proof‑of‑concept toolset that combines Microsoft Phi‑4‑mini‑instruct with a FAISS (Facebook AI Similarity Search)‑powered EVA knowledge base and custom A* path planning and hypogravity metabolic models to generate grounded, traceable EVA plans. We outline a staged validation strategy to evaluate improvements in route efficiency, metabolic prediction accuracy, anomaly response effectiveness, and crew trust under realistic communication delays. Our findings demonstrate the feasibility of replicating key Mission Control functions onboard, enhancing crew autonomy, reducing cognitive load, and improving safety for deep‑space exploration missions.

Cite as

Kaisheng Li and Richard S. Whittle. Toward an Earth-Independent System for EVA Mission Planning: Integrating Physical Models, Domain Knowledge, and Agentic RAG to Provide Explainable LLM-Based Decision Support. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 6:1-6:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{li_et_al:OASIcs.SpaceCHI.2025.6,
  author =	{Li, Kaisheng and Whittle, Richard S.},
  title =	{{Toward an Earth-Independent System for EVA Mission Planning: Integrating Physical Models, Domain Knowledge, and Agentic RAG to Provide Explainable LLM-Based Decision Support}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{6:1--6:17},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.6},
  URN =		{urn:nbn:de:0030-drops-239967},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.6},
  annote =	{Keywords: Human-AI Interaction for Space Exploration, Extravehicular Activities, Cognitive load and Human Performance Issues, Human Systems Exploration, Lunar Exploration, LLM}
}
Document
Monitoring the Structural Health of Space Habitats Through Immersive Data Art Visualization

Authors: Ze Gao, Yuan Zhuang, Kunqi Wang, and Mengyao Guo

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
As humanity advances toward long-term space habitation, traditional SHM systems - reliant on abstract data representations - struggle to support rapid decision-making in extreme environments. This study addresses this critical gap by introducing an engineering-art-human factors framework that transforms SHM through immersive data-art visualization. By integrating sensor networks and machine learning, structural data (stress, vibration, deformation) is converted into intuitive visual languages: dynamic color gradients and biomimetic morphologies leverage perceptual laws (e.g., Weber-Fechner) to amplify critical signals. Multimodal interfaces (AR, haptic feedback) and natural elements mitigate cognitive load and psychological stress in confined habitats. Our contribution lies in redefining SHM as a synergy of precision and intuition, enabling "at-a-glance" assessments while balancing functionality and human-centric design. The urgency of this research stems from the inadequacy of conventional systems in extreme space conditions and the growing demand for astronaut safety and operational efficiency. This framework not only pioneers a sustainable monitoring paradigm for space habitats but also extends to terrestrial high-risk infrastructure, demonstrating the necessity of interdisciplinary innovation in extreme environments.

Cite as

Ze Gao, Yuan Zhuang, Kunqi Wang, and Mengyao Guo. Monitoring the Structural Health of Space Habitats Through Immersive Data Art Visualization. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 31:1-31:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gao_et_al:OASIcs.SpaceCHI.2025.31,
  author =	{Gao, Ze and Zhuang, Yuan and Wang, Kunqi and Guo, Mengyao},
  title =	{{Monitoring the Structural Health of Space Habitats Through Immersive Data Art Visualization}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{31:1--31:18},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.31},
  URN =		{urn:nbn:de:0030-drops-240217},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.31},
  annote =	{Keywords: Structural health monitoring, space habitats, immersive visualization, human-centered design, interdisciplinary innovation}
}
Document
On the Effectiveness of Interpreter-Guided Compiler Testing

Authors: Federico Lochbaum and Guillermo Polito

Published in: OASIcs, Volume 134, Companion Proceedings of the 9th International Conference on the Art, Science, and Engineering of Programming (Programming 2025)


Abstract
Guaranteeing that a compiler behaves correctly is a complex task often approached through test generation and fuzzing. Compiler test generation must not only ensure that a compiler generates code that does not break, but also that it implements the programming language semantics. Recently, interpreter-guided test generation has been proposed to test JIT compilers: Concolic-execution on the interpreter yields test cases for the language semantics which are then validated between differential testing of the interpreter and compiler. In previous work, this solution has been shown to find interpreter/compiler differences. However, little has been said about the effectiveness and the solution limits. In this paper we study the behavior of this technique, to shed light on future improvements and research. We experiment with this technique on the JIT compiler for the Pharo programming language, on two different backends: ARMv7 and x86. We explore how effective the solution is in terms of compiler coverage and its limitations, and we discuss how future research can overcome them. Moreover, we investigate how this technique combined with random constraint mutations increases backend compiler coverage.

Cite as

Federico Lochbaum and Guillermo Polito. On the Effectiveness of Interpreter-Guided Compiler Testing. In Companion Proceedings of the 9th International Conference on the Art, Science, and Engineering of Programming (Programming 2025). Open Access Series in Informatics (OASIcs), Volume 134, pp. 20:1-20:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{lochbaum_et_al:OASIcs.Programming.2025.20,
  author =	{Lochbaum, Federico and Polito, Guillermo},
  title =	{{On the Effectiveness of Interpreter-Guided Compiler Testing}},
  booktitle =	{Companion Proceedings of the 9th International Conference on the Art, Science, and Engineering of Programming (Programming 2025)},
  pages =	{20:1--20:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-382-9},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{134},
  editor =	{Edwards, Jonathan and Perera, Roly and Petricek, Tomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Programming.2025.20},
  URN =		{urn:nbn:de:0030-drops-243040},
  doi =		{10.4230/OASIcs.Programming.2025.20},
  annote =	{Keywords: Virtual Machines, Concolic Testing, JIT compilers, interpreters, Differential Testing, Constraint Mutations, Compiler Coverage}
}
Document
RANDOM
Rapid Mixing via Coupling Independence for Spin Systems with Unbounded Degree

Authors: Xiaoyu Chen and Weiming Feng

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We develop a new framework to prove the mixing or relaxation time for the Glauber dynamics on spin systems with unbounded degree. It works for general spin systems including both 2-spin and multi-spin systems. As applications for this approach: - We prove the optimal O(n) relaxation time for the Glauber dynamics of random q-list-coloring on an n-vertices triangle-tree graph with maximum degree Δ such that q/Δ > α^⋆, where α^⋆ ≈ 1.763 is the unique positive solution of the equation α = exp(1/α). This improves the n^{1+o(1)} relaxation time for Glauber dynamics obtained by the previous work of Jain, Pham, and Vuong (2022). Besides, our framework can also give a near-linear time sampling algorithm under the same condition. - We prove the optimal O(n) relaxation time and near-optimal Õ(n) mixing time for the Glauber dynamics on hardcore models with parameter λ in balanced bipartite graphs such that λ < λ_c(Δ_L) for the max degree Δ_L in left part and the max degree Δ_R of right part satisfies Δ_R = O(Δ_L). This improves the previous result by Chen, Liu, and Yin (2023). At the heart of our proof is the notion of coupling independence which allows us to consider multiple vertices as a huge single vertex with exponentially large domain and do a "coarse-grained" local-to-global argument on spin systems. The technique works for general (multi) spin systems and helps us obtain some new comparison results for Glauber dynamics.

Cite as

Xiaoyu Chen and Weiming Feng. Rapid Mixing via Coupling Independence for Spin Systems with Unbounded Degree. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 68:1-68:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.APPROX/RANDOM.2025.68,
  author =	{Chen, Xiaoyu and Feng, Weiming},
  title =	{{Rapid Mixing via Coupling Independence for Spin Systems with Unbounded Degree}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{68:1--68:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.68},
  URN =		{urn:nbn:de:0030-drops-244345},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.68},
  annote =	{Keywords: coupling independence, Glauber dynamics, mixing times, relaxation times, spin systems}
}
Document
Compositional Reasoning for Parametric Probabilistic Automata

Authors: Hannah Mertens, Tim Quatmann, and Joost-Pieter Katoen

Published in: LIPIcs, Volume 348, 36th International Conference on Concurrency Theory (CONCUR 2025)


Abstract
We establish an assume-guarantee (AG) framework for compositional reasoning about multi-objective queries in parametric probabilistic automata (pPA) - an extension to probabilistic automata (PA), where transition probabilities are functions over a finite set of parameters. We lift an existing framework for PA to the pPA setting, incorporating asymmetric, circular, and interleaving proof rules. Our approach enables the verification of a broad spectrum of multi-objective queries for pPA, encompassing probabilistic properties and (parametric) expected total rewards. Additionally, we introduce a rule for reasoning about monotonicity in composed pPAs.

Cite as

Hannah Mertens, Tim Quatmann, and Joost-Pieter Katoen. Compositional Reasoning for Parametric Probabilistic Automata. In 36th International Conference on Concurrency Theory (CONCUR 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 348, pp. 31:1-31:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{mertens_et_al:LIPIcs.CONCUR.2025.31,
  author =	{Mertens, Hannah and Quatmann, Tim and Katoen, Joost-Pieter},
  title =	{{Compositional Reasoning for Parametric Probabilistic Automata}},
  booktitle =	{36th International Conference on Concurrency Theory (CONCUR 2025)},
  pages =	{31:1--31:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-389-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{348},
  editor =	{Bouyer, Patricia and van de Pol, Jaco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2025.31},
  URN =		{urn:nbn:de:0030-drops-239810},
  doi =		{10.4230/LIPIcs.CONCUR.2025.31},
  annote =	{Keywords: Verification, Probabilistic systems, Assume-guarantee reasoning, Parametric Probabilistic Automata, Parameter synthesis}
}
Document
Leveraging Open-Source Satellite-Derived Building Footprints for Height Inference

Authors: Clinton Stipek, Taylor Hauser, Justin Epting, Jessica Moehl, and Daniel Adams

Published in: LIPIcs, Volume 346, 13th International Conference on Geographic Information Science (GIScience 2025)


Abstract
At a global scale, cities are growing and characterizing the built environment is essential for deeper understanding of human population patterns, urban development, energy usage, climate change impacts, among others. Buildings are a key component of the built environment and significant progress has been made in recent years to scale building footprint extractions from satellite datum and other remotely sensed products. Billions of building footprints have recently been released by companies such as Microsoft and Google at a global scale. However, research has shown that depending on the methods leveraged to produce a footprint dataset, discrepancies can arise in both the number and shape of footprints produced. Therefore, each footprint dataset should be examined and used on a case-by-case study. In this work, we find through two experiments on Oak Ridge National Laboratory and Microsoft footprints within the same geographic extent that our approach of inferring height from footprint morphology features is source agnostic. Regardless of the differences associated with the methods used to produce a building footprint dataset, our approach of inferring height was able to overcome these discrepancies between the products and generalize, as evidenced by 98% of our results being within 3m of the ground-truthed height. This signifies that our approach can be applied to the billions of open-source footprints which are freely available to infer height, a key building metric. This work impacts the broader domain of urban science in which building height is a key, and limiting factor.

Cite as

Clinton Stipek, Taylor Hauser, Justin Epting, Jessica Moehl, and Daniel Adams. Leveraging Open-Source Satellite-Derived Building Footprints for Height Inference. In 13th International Conference on Geographic Information Science (GIScience 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 346, pp. 1:1-1:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{stipek_et_al:LIPIcs.GIScience.2025.1,
  author =	{Stipek, Clinton and Hauser, Taylor and Epting, Justin and Moehl, Jessica and Adams, Daniel},
  title =	{{Leveraging Open-Source Satellite-Derived Building Footprints for Height Inference}},
  booktitle =	{13th International Conference on Geographic Information Science (GIScience 2025)},
  pages =	{1:1--1:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-378-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{346},
  editor =	{Sila-Nowicka, Katarzyna and Moore, Antoni and O'Sullivan, David and Adams, Benjamin and Gahegan, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2025.1},
  URN =		{urn:nbn:de:0030-drops-238306},
  doi =		{10.4230/LIPIcs.GIScience.2025.1},
  annote =	{Keywords: Building Height, Big Data, Machine Learning}
}
Document
Large Multi-Modal Model Cartographic Map Comprehension for Textual Locality Georeferencing

Authors: Kalana Wijegunarathna, Kristin Stock, and Christopher B. Jones

Published in: LIPIcs, Volume 346, 13th International Conference on Geographic Information Science (GIScience 2025)


Abstract
Millions of biological sample records collected in the last few centuries archived in natural history collections are un-georeferenced. Georeferencing complex locality descriptions associated with these collection samples is a highly labour-intensive task collection agencies struggle with. None of the existing automated methods exploit maps that are an essential tool for georeferencing complex relations. We present preliminary experiments and results of a novel method that exploits multi-modal capabilities of recent Large Multi-Modal Models (LMM). This method enables the model to visually contextualize spatial relations it reads in the locality description. We use a grid-based approach to adapt these auto-regressive models for this task in a zero-shot setting. Our experiments conducted on a small manually annotated dataset show impressive results for our approach (∼1 km Average distance error) compared to uni-modal georeferencing with Large Language Models and existing georeferencing tools. The paper also discusses the findings of the experiments in light of an LMM’s ability to comprehend fine-grained maps. Motivated by these results, a practical framework is proposed to integrate this method into a georeferencing workflow.

Cite as

Kalana Wijegunarathna, Kristin Stock, and Christopher B. Jones. Large Multi-Modal Model Cartographic Map Comprehension for Textual Locality Georeferencing. In 13th International Conference on Geographic Information Science (GIScience 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 346, pp. 12:1-12:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{wijegunarathna_et_al:LIPIcs.GIScience.2025.12,
  author =	{Wijegunarathna, Kalana and Stock, Kristin and Jones, Christopher B.},
  title =	{{Large Multi-Modal Model Cartographic Map Comprehension for Textual Locality Georeferencing}},
  booktitle =	{13th International Conference on Geographic Information Science (GIScience 2025)},
  pages =	{12:1--12:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-378-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{346},
  editor =	{Sila-Nowicka, Katarzyna and Moore, Antoni and O'Sullivan, David and Adams, Benjamin and Gahegan, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2025.12},
  URN =		{urn:nbn:de:0030-drops-238412},
  doi =		{10.4230/LIPIcs.GIScience.2025.12},
  annote =	{Keywords: Large Multi-Modal Models, Large Language Models, LLM, Georeferencing, Natural History collections}
}
Document
Assessing Map Reproducibility with Visual Question-Answering: An Empirical Evaluation

Authors: Eftychia Koukouraki, Auriol Degbelo, and Christian Kray

Published in: LIPIcs, Volume 346, 13th International Conference on Geographic Information Science (GIScience 2025)


Abstract
Reproducibility is a key principle of the modern scientific method. Maps, as an important means of communicating scientific results in GIScience and across disciplines, should be reproducible. Currently, map reproducibility assessment is done manually, which makes the assessment process tedious and time-consuming, ultimately limiting its efficiency. Hence, this work explores the extent to which Visual Question-Answering (VQA) can be used to automate some tasks relevant to map reproducibility assessment. We selected five state-of-the-art vision language models (VLMs) and followed a three-step approach to evaluate their ability to discriminate between maps and other images, interpret map content, and compare two map images using VQA. Our results show that current VLMs already possess map-reading capabilities and demonstrate understanding of spatial concepts, such as cardinal directions, geographic scope, and legend interpretation. Our paper demonstrates the potential of using VQA to support reproducibility assessment and highlights the outstanding issues that need to be addressed to achieve accurate, trustworthy map descriptions, thereby reducing the time and effort required by human evaluators.

Cite as

Eftychia Koukouraki, Auriol Degbelo, and Christian Kray. Assessing Map Reproducibility with Visual Question-Answering: An Empirical Evaluation. In 13th International Conference on Geographic Information Science (GIScience 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 346, pp. 13:1-13:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{koukouraki_et_al:LIPIcs.GIScience.2025.13,
  author =	{Koukouraki, Eftychia and Degbelo, Auriol and Kray, Christian},
  title =	{{Assessing Map Reproducibility with Visual Question-Answering: An Empirical Evaluation}},
  booktitle =	{13th International Conference on Geographic Information Science (GIScience 2025)},
  pages =	{13:1--13:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-378-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{346},
  editor =	{Sila-Nowicka, Katarzyna and Moore, Antoni and O'Sullivan, David and Adams, Benjamin and Gahegan, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2025.13},
  URN =		{urn:nbn:de:0030-drops-238426},
  doi =		{10.4230/LIPIcs.GIScience.2025.13},
  annote =	{Keywords: map comparison, computational reproducibility, visual question answering, large language models, GeoAI}
}
Document
Accommodating Space-Time Scaling Issues in GAM-Based Varying Coefficient Models

Authors: Alexis Comber, Paul Harris, and Chris Brunsdon

Published in: LIPIcs, Volume 346, 13th International Conference on Geographic Information Science (GIScience 2025)


Abstract
The paper describes modifications to spatial and temporal varying coefficient (STVC) modelling, using Generalized Additive Models (GAMs). Previous work developed tools using Gaussian Process (GP) thin plate splines parameterised with location and time variables, and has presented a space-time toolkit in the stgam R package, providing wrapper functions to the mgcv R package. However, whilst thin plate smooths with GP bases are acceptable for working with spatial problems they are not for working with space and time combined. A more robust approach is to use a tensor product smooth with GP basis. However, these in turn require correlation function length scale or range parameters (ρ) to be defined. These are distances (in space or time) at which the correlation function falls below some value, and can be used to indicate the scale of spatial and temporal dependencies between response and predictor variables (similar to geographically weighted bandwidths). The paper describes the problem in detail, illustrates an approach for optimising ρ and methods for determining model specification.

Cite as

Alexis Comber, Paul Harris, and Chris Brunsdon. Accommodating Space-Time Scaling Issues in GAM-Based Varying Coefficient Models. In 13th International Conference on Geographic Information Science (GIScience 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 346, pp. 15:1-15:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{comber_et_al:LIPIcs.GIScience.2025.15,
  author =	{Comber, Alexis and Harris, Paul and Brunsdon, Chris},
  title =	{{Accommodating Space-Time Scaling Issues in GAM-Based Varying Coefficient Models}},
  booktitle =	{13th International Conference on Geographic Information Science (GIScience 2025)},
  pages =	{15:1--15:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-378-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{346},
  editor =	{Sila-Nowicka, Katarzyna and Moore, Antoni and O'Sullivan, David and Adams, Benjamin and Gahegan, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2025.15},
  URN =		{urn:nbn:de:0030-drops-238440},
  doi =		{10.4230/LIPIcs.GIScience.2025.15},
  annote =	{Keywords: Spatial Analysis, Spatiotemproal Analysis}
}
  • Refine by Type
  • 77 Document/PDF
  • 71 Document/HTML

  • Refine by Publication Year
  • 64 2025
  • 2 2024
  • 7 2023
  • 1 2022
  • 1 2017
  • Show More...

  • Refine by Author
  • 3 Biswas, Russa
  • 3 de Melo, Gerard
  • 2 Baruah, Sanjoy
  • 2 Chen, Jiaoyan
  • 2 Kaffee, Lucie-Aimée
  • Show More...

  • Refine by Series/Journal
  • 53 LIPIcs
  • 10 OASIcs
  • 2 LITES
  • 11 TGDK
  • 1 DagSemProc

  • Refine by Classification
  • 5 Computer systems organization → Real-time systems
  • 4 Computing methodologies → Knowledge representation and reasoning
  • 4 Software and its engineering → Software testing and debugging
  • 3 Computer systems organization → Embedded and cyber-physical systems
  • 3 Computing methodologies → Machine learning
  • Show More...

  • Refine by Keyword
  • 4 Large Language Models
  • 3 Knowledge Graphs
  • 3 real-time systems
  • 2 Blockchain
  • 2 Explainable AI
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail