91 Search Results for "Chakrabarti, Amit"


Volume

LIPIcs, Volume 245

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)

APPROX/RANDOM 2022, September 19-21, 2022, University of Illinois, Urbana-Champaign, USA (Virtual Conference)

Editors: Amit Chakrabarti and Chaitanya Swamy

Document
Almost Optimal Algorithms for Token Collision in Anonymous Networks

Authors: Sirui Bai, Xinyu Fu, Xudong Wu, Penghui Yao, and Chaodong Zheng

Published in: LIPIcs, Volume 319, 38th International Symposium on Distributed Computing (DISC 2024)


Abstract
In distributed systems, situations often arise where some nodes each holds a collection of tokens, and all nodes collectively need to determine whether all tokens are distinct. For example, if each token represents a logged-in user, the problem corresponds to checking whether there are duplicate logins. Similarly, if each token represents a data object or a timestamp, the problem corresponds to checking whether there are conflicting operations in distributed databases. In distributed computing theory, unique identifiers generation is also related to this problem: each node generates one token, which is its identifier, then a verification phase is needed to ensure that all identifiers are unique. In this paper, we formalize and initiate the study of token collision. In this problem, a collection of k tokens, each represented by some length-L bit string, are distributed to n nodes of an anonymous CONGEST network in an arbitrary manner. The nodes need to determine whether there are tokens with an identical value. We present near optimal deterministic algorithms for the token collision problem with Õ(D+k⋅L/log n) round complexity, where D denotes the network diameter. Besides high efficiency, the prior knowledge required by our algorithms is also limited. For completeness, we further present a near optimal randomized algorithm for token collision.

Cite as

Sirui Bai, Xinyu Fu, Xudong Wu, Penghui Yao, and Chaodong Zheng. Almost Optimal Algorithms for Token Collision in Anonymous Networks. In 38th International Symposium on Distributed Computing (DISC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 319, pp. 4:1-4:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bai_et_al:LIPIcs.DISC.2024.4,
  author =	{Bai, Sirui and Fu, Xinyu and Wu, Xudong and Yao, Penghui and Zheng, Chaodong},
  title =	{{Almost Optimal Algorithms for Token Collision in Anonymous Networks}},
  booktitle =	{38th International Symposium on Distributed Computing (DISC 2024)},
  pages =	{4:1--4:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-352-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{319},
  editor =	{Alistarh, Dan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2024.4},
  URN =		{urn:nbn:de:0030-drops-212319},
  doi =		{10.4230/LIPIcs.DISC.2024.4},
  annote =	{Keywords: Token collision, anonymous networks, deterministic algorithms}
}
Document
Improved Algorithms for Maximum Coverage in Dynamic and Random Order Streams

Authors: Amit Chakrabarti, Andrew McGregor, and Anthony Wirth

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
The maximum coverage problem is to select k sets, from a collection of m sets, such that the cardinality of their union, in a universe of size n, is maximized. We consider (1-1/e-ε)-approximation algorithms for this NP-hard problem in three standard data stream models. 1) Dynamic Model. The stream consists of a sequence of sets being inserted and deleted. Our multi-pass algorithm uses ε^{-2} k ⋅ polylog(n,m) space. The best previous result (Assadi and Khanna, SODA 2018) used (n +ε^{-4} k) polylog(n,m) space. While both algorithms use O(ε^{-1} log m) passes, our analysis shows that, when ε ≤ 1/log log m, it is possible to reduce the number of passes by a 1/log log m factor without incurring additional space. 2) Random Order Model. In this model, there are no deletions, and the sets forming the instance are uniformly randomly permuted to form the input stream. We show that a single pass and k polylog(n,m) space suffices for arbitrary small constant ε. The best previous result, by Warneke et al. (ESA 2023), used k² polylog(n,m) space. 3) Insert-Only Model. Lastly, our results, along with numerous previous results, use a sub-sampling technique introduced by McGregor and Vu (ICDT 2017) to sparsify the input instance. We explain how this technique and others used in the paper can be implemented such that the amortized update time of our algorithm is polylogarithmic. This also implies an improvement of the state-of-the-art insert only algorithms in terms of the update time: polylog(m,n) update time suffices, whereas the best previous result by Jaud et al. (SEA 2023) required update time that was linear in k.

Cite as

Amit Chakrabarti, Andrew McGregor, and Anthony Wirth. Improved Algorithms for Maximum Coverage in Dynamic and Random Order Streams. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 40:1-40:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chakrabarti_et_al:LIPIcs.ESA.2024.40,
  author =	{Chakrabarti, Amit and McGregor, Andrew and Wirth, Anthony},
  title =	{{Improved Algorithms for Maximum Coverage in Dynamic and Random Order Streams}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{40:1--40:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.40},
  URN =		{urn:nbn:de:0030-drops-211114},
  doi =		{10.4230/LIPIcs.ESA.2024.40},
  annote =	{Keywords: Data Stream Computation, Maximum Coverage, Submodular Maximization}
}
Document
New Algorithms and Lower Bounds for Streaming Tournaments

Authors: Prantar Ghosh and Sahil Kuchlous

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We study fundamental directed graph (digraph) problems in the streaming model. An initial investigation by Chakrabarti, Ghosh, McGregor, and Vorotnikova [SODA'20] on streaming digraphs showed that while most of these problems are provably hard in general, some of them become tractable when restricted to the well-studied class of tournament graphs where every pair of nodes shares exactly one directed edge. Thus, we focus on tournaments and improve the state of the art for multiple problems in terms of both upper and lower bounds. Our primary upper bound is a deterministic single-pass semi-streaming algorithm (using Õ(n) space for n-node graphs, where Õ(.) hides polylog(n) factors) for decomposing a tournament into strongly connected components (SCC). It improves upon the previously best-known algorithm by Baweja, Jia, and Woodruff [ITCS'22] in terms of both space and passes: for p ⩾ 1, they used (p+1) passes and Õ(n^{1+1/p}) space. We further extend our algorithm to digraphs that are close to tournaments and establish tight bounds demonstrating that the problem’s complexity grows smoothly with the "distance" from tournaments. Applying our SCC-decomposition framework, we obtain improved - and in some cases, optimal - tournament algorithms for s,t-reachability, strong connectivity, Hamiltonian paths and cycles, and feedback arc set. On the other hand, we prove lower bounds exhibiting that some well-studied problems - such as (exact) feedback arc set and s,t-distance - remain hard (require Ω(n²) space) on tournaments. Moreover, we generalize the former problem’s lower bound to establish space-approximation tradeoffs: any single-pass (1± ε)-approximation algorithm requires Ω(n/√{ε}) space. Finally, we settle the streaming complexities of two basic digraph problems studied by prior work: acyclicity testing of tournaments and sink finding in DAGs. As a whole, our collection of results contributes significantly to the growing literature on streaming digraphs.

Cite as

Prantar Ghosh and Sahil Kuchlous. New Algorithms and Lower Bounds for Streaming Tournaments. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 60:1-60:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ghosh_et_al:LIPIcs.ESA.2024.60,
  author =	{Ghosh, Prantar and Kuchlous, Sahil},
  title =	{{New Algorithms and Lower Bounds for Streaming Tournaments}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{60:1--60:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.60},
  URN =		{urn:nbn:de:0030-drops-211318},
  doi =		{10.4230/LIPIcs.ESA.2024.60},
  annote =	{Keywords: tournaments, streaming algorithms, graph algorithms, communication complexity, strongly connected components, reachability, feedback arc set}
}
Document
APPROX
Weighted Matching in the Random-Order Streaming and Robust Communication Models

Authors: Diba Hashemi and Weronika Wrzos-Kaminska

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We study the maximum weight matching problem in the random-order semi-streaming model and in the robust communication model. Unlike many other sublinear models, in these two frameworks, there is a large gap between the guarantees of the best known algorithms for the unweighted and weighted versions of the problem. In the random-order semi-streaming setting, the edges of an n-vertex graph arrive in a stream in a random order. The goal is to compute an approximate maximum weight matching with a single pass over the stream using O(npolylog n) space. Our main result is a (2/3-ε)-approximation algorithm for maximum weight matching in random-order streams, using space O(n log n log R), where R is the ratio between the heaviest and the lightest edge in the graph. Our result nearly matches the best known unweighted (2/3+ε₀)-approximation (where ε₀ ∼ 10^{-14} is a small constant) achieved by Assadi and Behnezhad [Assadi and Behnezhad, 2021], and significantly improves upon previous weighted results. Our techniques also extend to the related robust communication model, in which the edges of a graph are partitioned randomly between Alice and Bob. Alice sends a single message of size O(npolylog n) to Bob, who must compute an approximate maximum weight matching. We achieve a (5/6-ε)-approximation using O(n log n log R) words of communication, matching the results of Azarmehr and Behnezhad [Azarmehr and Behnezhad, 2023] for unweighted graphs.

Cite as

Diba Hashemi and Weronika Wrzos-Kaminska. Weighted Matching in the Random-Order Streaming and Robust Communication Models. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 16:1-16:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hashemi_et_al:LIPIcs.APPROX/RANDOM.2024.16,
  author =	{Hashemi, Diba and Wrzos-Kaminska, Weronika},
  title =	{{Weighted Matching in the Random-Order Streaming and Robust Communication Models}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{16:1--16:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.16},
  URN =		{urn:nbn:de:0030-drops-210097},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.16},
  annote =	{Keywords: Maximum Weight Matching, Streaming, Random-Order Streaming, Robust Communication Complexity}
}
Document
APPROX
Maximum Unique Coverage on Streams: Improved FPT Approximation Scheme and Tighter Space Lower Bound

Authors: Philip Cervenjak, Junhao Gan, Seeun William Umboh, and Anthony Wirth

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We consider the Max Unique Coverage problem, including applications to the data stream model. The input is a universe of n elements, a collection of m subsets of this universe, and a cardinality constraint, k. The goal is to select a subcollection of at most k sets that maximizes unique coverage, i.e, the number of elements contained in exactly one of the selected sets. The Max Unique Coverage problem has applications in wireless networks, radio broadcast, and envy-free pricing. Our first main result is a fixed-parameter tractable approximation scheme (FPT-AS) for Max Unique Coverage, parameterized by k and the maximum element frequency, r, which can be implemented on a data stream. Our FPT-AS finds a (1-ε)-approximation while maintaining a kernel of size Õ(k r/ε), which can be combined with subsampling to use Õ(k² r / ε³) space overall. This significantly improves on the previous-best FPT-AS with the same approximation, but a kernel of size Õ(k² r / ε²). In order to achieve our first result, we show upper bounds on the ratio of a collection’s coverage to the unique coverage of a maximizing subcollection; this is by constructing explicit algorithms that find a subcollection with unique coverage at least a logarithmic ratio of the collection’s coverage. We complement our algorithms with our second main result, showing that Ω(m / k²) space is necessary to achieve a (1.5 + o(1))/(ln k - 1)-approximation in the data stream. This dramatically improves the previous-best lower bound showing that Ω(m / k²) is necessary to achieve better than a e^{-1+1/k}-approximation.

Cite as

Philip Cervenjak, Junhao Gan, Seeun William Umboh, and Anthony Wirth. Maximum Unique Coverage on Streams: Improved FPT Approximation Scheme and Tighter Space Lower Bound. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 25:1-25:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cervenjak_et_al:LIPIcs.APPROX/RANDOM.2024.25,
  author =	{Cervenjak, Philip and Gan, Junhao and Umboh, Seeun William and Wirth, Anthony},
  title =	{{Maximum Unique Coverage on Streams: Improved FPT Approximation Scheme and Tighter Space Lower Bound}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{25:1--25:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.25},
  URN =		{urn:nbn:de:0030-drops-210183},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.25},
  annote =	{Keywords: Maximum unique coverage, maximum coverage, approximate kernel, data streams}
}
Document
RANDOM
On the Amortized Complexity of Approximate Counting

Authors: Ishaq Aden-Ali, Yanjun Han, Jelani Nelson, and Huacheng Yu

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
Naively storing a counter up to value n would require Ω(log n) bits of memory. Nelson and Yu [Jelani Nelson and Huacheng Yu, 2022], following work of Morris [Robert H. Morris, 1978], showed that if the query answers need only be (1+ε)-approximate with probability at least 1 - δ, then O(log log n + log log(1/δ) + log(1/ε)) bits suffice, and in fact this bound is tight. Morris' original motivation for studying this problem though, as well as modern applications, require not only maintaining one counter, but rather k counters for k large. This motivates the following question: for k large, can k counters be simultaneously maintained using asymptotically less memory than k times the cost of an individual counter? That is to say, does this problem benefit from an improved amortized space complexity bound? We answer this question in the negative. Specifically, we prove a lower bound for nearly the full range of parameters showing that, in terms of memory usage, there is no asymptotic benefit possible via amortization when storing multiple counters. Our main proof utilizes a certain notion of "information cost" recently introduced by Braverman, Garg and Woodruff [Mark Braverman et al., 2020] to prove lower bounds for streaming algorithms.

Cite as

Ishaq Aden-Ali, Yanjun Han, Jelani Nelson, and Huacheng Yu. On the Amortized Complexity of Approximate Counting. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 33:1-33:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{adenali_et_al:LIPIcs.APPROX/RANDOM.2024.33,
  author =	{Aden-Ali, Ishaq and Han, Yanjun and Nelson, Jelani and Yu, Huacheng},
  title =	{{On the Amortized Complexity of Approximate Counting}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{33:1--33:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.33},
  URN =		{urn:nbn:de:0030-drops-210264},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.33},
  annote =	{Keywords: streaming, approximate counting, information complexity, lower bounds}
}
Document
RANDOM
Coboundary and Cosystolic Expansion Without Dependence on Dimension or Degree

Authors: Yotam Dikstein and Irit Dinur

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We give new bounds on the cosystolic expansion constants of several families of high dimensional expanders, and the known coboundary expansion constants of order complexes of homogeneous geometric lattices, including the spherical building of SL_n(𝔽_q). The improvement applies to the high dimensional expanders constructed by Lubotzky, Samuels and Vishne, and by Kaufman and Oppenheim. Our new expansion constants do not depend on the degree of the complex nor on its dimension, nor on the group of coefficients. This implies improved bounds on Gromov’s topological overlap constant, and on Dinur and Meshulam’s cover stability, which may have applications for agreement testing. In comparison, existing bounds decay exponentially with the ambient dimension (for spherical buildings) and in addition decay linearly with the degree (for all known bounded-degree high dimensional expanders). Our results are based on several new techniques: - We develop a new "color-restriction" technique which enables proving dimension-free expansion by restricting a multi-partite complex to small random subsets of its color classes. - We give a new "spectral" proof for Evra and Kaufman’s local-to-global theorem, deriving better bounds and getting rid of the dependence on the degree. This theorem bounds the cosystolic expansion of a complex using coboundary expansion and spectral expansion of the links. - We derive absolute bounds on the coboundary expansion of the spherical building (and any order complex of a homogeneous geometric lattice) by constructing a novel family of very short cones.

Cite as

Yotam Dikstein and Irit Dinur. Coboundary and Cosystolic Expansion Without Dependence on Dimension or Degree. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 62:1-62:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dikstein_et_al:LIPIcs.APPROX/RANDOM.2024.62,
  author =	{Dikstein, Yotam and Dinur, Irit},
  title =	{{Coboundary and Cosystolic Expansion Without Dependence on Dimension or Degree}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{62:1--62:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.62},
  URN =		{urn:nbn:de:0030-drops-210556},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.62},
  annote =	{Keywords: High Dimensional Expanders, HDX, Spectral Expansion, Coboundary Expansion, Cocycle Expansion, Cosystolic Expansion}
}
Document
RANDOM
On the Communication Complexity of Finding a King in a Tournament

Authors: Nikhil S. Mande, Manaswi Paraashar, Swagato Sanyal, and Nitin Saurabh

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
A tournament is a complete directed graph. A source in a tournament is a vertex that has no in-neighbours (every other vertex is reachable from it via a path of length 1), and a king in a tournament is a vertex v such that every other vertex is reachable from v via a path of length at most 2. It is well known that every tournament has at least one king. In particular, a maximum out-degree vertex is a king. The tasks of finding a king and a maximum out-degree vertex in a tournament has been relatively well studied in the context of query complexity. We study the communication complexity of finding a king, of finding a maximum out-degree vertex, and of finding a source (if it exists) in a tournament, where the edges are partitioned between two players. The following are our main results for n-vertex tournaments: - We show that the communication task of finding a source in a tournament is equivalent to the well-studied Clique vs. Independent Set (CIS) problem on undirected graphs. As a result, known bounds on the communication complexity of CIS [Yannakakis, JCSS'91, Göös, Pitassi, Watson, SICOMP'18] imply a bound of Θ̃(log² n) for finding a source (if it exists, or outputting that there is no source) in a tournament. - The deterministic and randomized communication complexities of finding a king are Θ(n). The quantum communication complexity of finding a king is Θ̃(√n). - The deterministic, randomized, and quantum communication complexities of finding a maximum out-degree vertex are Θ(n log n), Θ̃(n) and Θ̃(√n), respectively. Our upper bounds above hold for all partitions of edges, and the lower bounds for a specific partition of the edges. One of our lower bounds uses a fooling-set based argument, and all our other lower bounds follow from carefully-constructed reductions from Set-Disjointness. An interesting point to note here is that while the deterministic query complexity of finding a king has been open for over two decades [Shen, Sheng, Wu, SICOMP'03], we are able to essentially resolve the complexity of this problem in a model (communication complexity) that is usually harder to analyze than query complexity.

Cite as

Nikhil S. Mande, Manaswi Paraashar, Swagato Sanyal, and Nitin Saurabh. On the Communication Complexity of Finding a King in a Tournament. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 64:1-64:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mande_et_al:LIPIcs.APPROX/RANDOM.2024.64,
  author =	{Mande, Nikhil S. and Paraashar, Manaswi and Sanyal, Swagato and Saurabh, Nitin},
  title =	{{On the Communication Complexity of Finding a King in a Tournament}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{64:1--64:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.64},
  URN =		{urn:nbn:de:0030-drops-210571},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.64},
  annote =	{Keywords: Communication complexity, tournaments, query complexity}
}
Document
Streaming Zero-Knowledge Proofs

Authors: Graham Cormode, Marcel Dall'Agnol, Tom Gur, and Chris Hickey

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Streaming interactive proofs (SIPs) enable a space-bounded algorithm with one-pass access to a massive stream of data to verify a computation that requires large space, by communicating with a powerful but untrusted prover. This work initiates the study of zero-knowledge proofs for data streams. We define the notion of zero-knowledge in the streaming setting and construct zero-knowledge SIPs for the two main algorithmic building blocks in the streaming interactive proofs literature: the sumcheck and polynomial evaluation protocols. To the best of our knowledge all known streaming interactive proofs are based on either of these tools, and indeed, this allows us to obtain zero-knowledge SIPs for central streaming problems such as index, point and range queries, median, frequency moments, and inner product. Our protocols are efficient in terms of time and space, as well as communication: the verifier algorithm’s space complexity is polylog(n) and, after a non-interactive setup that uses a random string of near-linear length, the remaining parameters are n^o(1). En route, we develop an algorithmic toolkit for designing zero-knowledge data stream protocols, consisting of an algebraic streaming commitment protocol and a temporal commitment protocol. Our analyses rely on delicate algebraic and information-theoretic arguments and reductions from average-case communication complexity.

Cite as

Graham Cormode, Marcel Dall'Agnol, Tom Gur, and Chris Hickey. Streaming Zero-Knowledge Proofs. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 2:1-2:66, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cormode_et_al:LIPIcs.CCC.2024.2,
  author =	{Cormode, Graham and Dall'Agnol, Marcel and Gur, Tom and Hickey, Chris},
  title =	{{Streaming Zero-Knowledge Proofs}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{2:1--2:66},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.2},
  URN =		{urn:nbn:de:0030-drops-203988},
  doi =		{10.4230/LIPIcs.CCC.2024.2},
  annote =	{Keywords: Zero-knowledge proofs, streaming algorithms, computational complexity}
}
Document
Explicit Time and Space Efficient Encoders Exist Only with Random Access

Authors: Joshua Cook and Dana Moshkovitz

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We give the first explicit constant rate, constant relative distance, linear codes with an encoder that runs in time n^{1 + o(1)} and space polylog(n) provided random access to the message. Prior to this work, the only such codes were non-explicit, for instance repeat accumulate codes [Divsalar et al., 1998] and the codes described in [Gál et al., 2013]. To construct our codes, we also give explicit, efficiently invertible, lossless condensers with constant entropy gap and polylogarithmic seed length. In contrast to encoders with random access to the message, we show that encoders with sequential access to the message can not run in almost linear time and polylogarithmic space. Our notion of sequential access is much stronger than streaming access.

Cite as

Joshua Cook and Dana Moshkovitz. Explicit Time and Space Efficient Encoders Exist Only with Random Access. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 5:1-5:54, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cook_et_al:LIPIcs.CCC.2024.5,
  author =	{Cook, Joshua and Moshkovitz, Dana},
  title =	{{Explicit Time and Space Efficient Encoders Exist Only with Random Access}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{5:1--5:54},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.5},
  URN =		{urn:nbn:de:0030-drops-204015},
  doi =		{10.4230/LIPIcs.CCC.2024.5},
  annote =	{Keywords: Time-Space Trade Offs, Error Correcting Codes, Encoders, Explicit Constructions, Streaming Lower Bounds, Sequential Access, Time-Space Lower Bounds, Lossless Condensers, Invertible Condensers, Condensers}
}
Document
Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy

Authors: Sepehr Assadi, Prantar Ghosh, Bruno Loff, Parth Mittal, and Sagnik Mukhopadhyay

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
The following question arises naturally in the study of graph streaming algorithms: Is there any graph problem which is "not too hard", in that it can be solved efficiently with total communication (nearly) linear in the number n of vertices, and for which, nonetheless, any streaming algorithm with Õ(n) space (i.e., a semi-streaming algorithm) needs a polynomial n^Ω(1) number of passes? Assadi, Chen, and Khanna [STOC 2019] were the first to prove that this is indeed the case. However, the lower bounds that they obtained are for rather non-standard graph problems. Our first main contribution is to present the first polynomial-pass lower bounds for natural "not too hard" graph problems studied previously in the streaming model: k-cores and degeneracy. We devise a novel communication protocol for both problems with near-linear communication, thus showing that k-cores and degeneracy are natural examples of "not too hard" problems. Indeed, previous work have developed single-pass semi-streaming algorithms for approximating these problems. In contrast, we prove that any semi-streaming algorithm for exactly solving these problems requires (almost) Ω(n^{1/3}) passes. The lower bound follows by a reduction from a generalization of the hidden pointer chasing (HPC) problem of Assadi, Chen, and Khanna, which is also the basis of their earlier semi-streaming lower bounds. Our second main contribution is improved round-communication lower bounds for the underlying communication problems at the basis of these reductions: - We improve the previous lower bound of Assadi, Chen, and Khanna for HPC to achieve optimal bounds for this problem. - We further observe that all current reductions from HPC can also work with a generalized version of this problem that we call MultiHPC, and prove an even stronger and optimal lower bound for this generalization. These two results collectively allow us to improve the resulting pass lower bounds for semi-streaming algorithms by a polynomial factor, namely, from n^{1/5} to n^{1/3} passes.

Cite as

Sepehr Assadi, Prantar Ghosh, Bruno Loff, Parth Mittal, and Sagnik Mukhopadhyay. Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 7:1-7:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{assadi_et_al:LIPIcs.CCC.2024.7,
  author =	{Assadi, Sepehr and Ghosh, Prantar and Loff, Bruno and Mittal, Parth and Mukhopadhyay, Sagnik},
  title =	{{Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{7:1--7:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.7},
  URN =		{urn:nbn:de:0030-drops-204035},
  doi =		{10.4230/LIPIcs.CCC.2024.7},
  annote =	{Keywords: Graph streaming, Lower bounds, Communication complexity, k-Cores and degeneracy}
}
Document
Information Dissemination via Broadcasts in the Presence of Adversarial Noise

Authors: Klim Efremenko, Gillat Kol, Dmitry Paramonov, Ran Raz, and Raghuvansh R. Saxena

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We initiate the study of error correcting codes over the multi-party adversarial broadcast channel. Specifically, we consider the classic information dissemination problem where n parties, each holding an input bit, wish to know each other’s input. For this, they communicate in rounds, where, in each round, one designated party sends a bit to all other parties over a channel governed by an adversary that may corrupt a constant fraction of the received communication. We mention that the dissemination problem was studied in the stochastic noise model since the 80’s. While stochastic noise in multi-party channels has received quite a bit of attention, the case of adversarial noise has largely been avoided, as such channels cannot handle more than a 1/n-fraction of errors. Indeed, this many errors allow an adversary to completely corrupt the incoming or outgoing communication for one of the parties and fail the protocol. Curiously, we show that by eliminating these "trivial" attacks, one can get a simple protocol resilient to a constant fraction of errors. Thus, a model that rules out such attacks is both necessary and sufficient to get a resilient protocol. The main shortcoming of our dissemination protocol is its length: it requires Θ(n²) communication rounds whereas n rounds suffice in the absence of noise. Our main result is a matching lower bound of Ω(n²) on the length of any dissemination protocol in our model. Our proof first "gets rid" of the channel noise by converting it to a form of "input noise", showing that a noisy dissemination protocol implies a (noiseless) protocol for a version of the direct sum gap-majority problem. We conclude the proof with a tight lower bound for the latter problem, which may be of independent interest.

Cite as

Klim Efremenko, Gillat Kol, Dmitry Paramonov, Ran Raz, and Raghuvansh R. Saxena. Information Dissemination via Broadcasts in the Presence of Adversarial Noise. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 19:1-19:33, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{efremenko_et_al:LIPIcs.CCC.2024.19,
  author =	{Efremenko, Klim and Kol, Gillat and Paramonov, Dmitry and Raz, Ran and Saxena, Raghuvansh R.},
  title =	{{Information Dissemination via Broadcasts in the Presence of Adversarial Noise}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{19:1--19:33},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.19},
  URN =		{urn:nbn:de:0030-drops-204159},
  doi =		{10.4230/LIPIcs.CCC.2024.19},
  annote =	{Keywords: Radio Networks, Interactive Coding, Error Correcting Codes}
}
Document
Finding Missing Items Requires Strong Forms of Randomness

Authors: Amit Chakrabarti and Manuel Stoeckl

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Adversarially robust streaming algorithms are required to process a stream of elements and produce correct outputs, even when each stream element can be chosen as a function of earlier algorithm outputs. As with classic streaming algorithms, which must only be correct for the worst-case fixed stream, adversarially robust algorithms with access to randomness can use significantly less space than deterministic algorithms. We prove that for the Missing Item Finding problem in streaming, the space complexity also significantly depends on how adversarially robust algorithms are permitted to use randomness. (In contrast, the space complexity of classic streaming algorithms does not depend as strongly on the way randomness is used.) For Missing Item Finding on streams of length 𝓁 with elements in {1,…,n}, and ≤ 1/poly(𝓁) error, we show that when 𝓁 = O(2^√{log n}), "random seed" adversarially robust algorithms, which only use randomness at initialization, require 𝓁^Ω(1) bits of space, while "random tape" adversarially robust algorithms, which may make random decisions at any time, may use O(polylog(𝓁)) random bits. When 𝓁 is between n^Ω(1) and O(√n), "random tape" adversarially robust algorithms need 𝓁^Ω(1) space, while "random oracle" adversarially robust algorithms, which can read from a long random string for free, may use O(polylog(𝓁)) space. The space lower bound for the "random seed" case follows, by a reduction given in prior work, from a lower bound for pseudo-deterministic streaming algorithms given in this paper.

Cite as

Amit Chakrabarti and Manuel Stoeckl. Finding Missing Items Requires Strong Forms of Randomness. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 28:1-28:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chakrabarti_et_al:LIPIcs.CCC.2024.28,
  author =	{Chakrabarti, Amit and Stoeckl, Manuel},
  title =	{{Finding Missing Items Requires Strong Forms of Randomness}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{28:1--28:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.28},
  URN =		{urn:nbn:de:0030-drops-204242},
  doi =		{10.4230/LIPIcs.CCC.2024.28},
  annote =	{Keywords: Data streaming, lower bounds, space complexity, adversarial robustness, derandomization, sketching, sampling}
}
Document
Track A: Algorithms, Complexity and Games
Fast Approximate Counting of Cycles

Authors: Keren Censor-Hillel, Tomer Even, and Virginia Vassilevska Williams

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the problem of approximate counting of triangles and longer fixed length cycles in directed graphs. For triangles, Tětek [ICALP'22] gave an algorithm that returns a (1±ε)-approximation in Õ(n^ω/t^{ω-2}) time, where t is the unknown number of triangles in the given n node graph and ω < 2.372 is the matrix multiplication exponent. We obtain an improved algorithm whose running time is, within polylogarithmic factors the same as that for multiplying an n× n/t matrix by an n/t × n matrix. We then extend our framework to obtain the first nontrivial (1± ε)-approximation algorithms for the number of h-cycles in a graph, for any constant h ≥ 3. Our running time is Õ(MM(n,n/t^{1/(h-2)},n)), the time to multiply n × n/(t^{1/(h-2)}) by n/(t^{1/(h-2)) × n matrices. Finally, we show that under popular fine-grained hypotheses, this running time is optimal.

Cite as

Keren Censor-Hillel, Tomer Even, and Virginia Vassilevska Williams. Fast Approximate Counting of Cycles. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 37:1-37:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{censorhillel_et_al:LIPIcs.ICALP.2024.37,
  author =	{Censor-Hillel, Keren and Even, Tomer and Vassilevska Williams, Virginia},
  title =	{{Fast Approximate Counting of Cycles}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{37:1--37:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.37},
  URN =		{urn:nbn:de:0030-drops-201809},
  doi =		{10.4230/LIPIcs.ICALP.2024.37},
  annote =	{Keywords: Approximate triangle counting, Approximate cycle counting Fast matrix multiplication, Fast rectangular matrix multiplication}
}
  • Refine by Author
  • 15 Chakrabarti, Amit
  • 9 Ghosh, Prantar
  • 4 Guruswami, Venkatesan
  • 3 Assadi, Sepehr
  • 3 Bera, Suman K.
  • Show More...

  • Refine by Classification
  • 18 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 12 Theory of computation → Graph algorithms analysis
  • 9 Theory of computation → Approximation algorithms analysis
  • 7 Theory of computation → Sketching and sampling
  • 7 Theory of computation → Streaming models
  • Show More...

  • Refine by Keyword
  • 7 graph algorithms
  • 5 Communication complexity
  • 5 lower bounds
  • 4 Approximation Algorithms
  • 4 communication complexity
  • Show More...

  • Refine by Type
  • 90 document
  • 1 volume

  • Refine by Publication Year
  • 60 2022
  • 19 2024
  • 4 2020
  • 3 2015
  • 2 2019
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail