27 Search Results for "Levin, Asaf"


Document
Separable Convex Mixed-Integer Optimization: Improved Algorithms and Lower Bounds

Authors: Cornelius Brand, Martin Koutecký, Alexandra Lassota, and Sebastian Ordyniak

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We provide several novel algorithms and lower bounds in central settings of mixed-integer (non-)linear optimization, shedding new light on classic results in the field. This includes an improvement on record running time bounds obtained from a slight extension of Lenstra’s 1983 algorithm [Math. Oper. Res. '83] to optimizing under few constraints with small coefficients. This is important for ubiquitous tasks like knapsack-, subset sum- or scheduling problems [Eisenbrand and Weismantel, SODA'18, Jansen and Rohwedder, ITCS'19]. Further, we extend our algorithm to an intermediate linear optimization problem when the matrix has many rows that exhibit 2-stage stochastic structure, which adds to a prominent line of recent results on this and similarly restricted cases [Jansen et al. ICALP'19, Cslovjecsek et al. SODA'21, Brand et al. AAAI'21, Klein, Reuter SODA'22, Cslovjecsek et al. SODA'24]. We also show that the generalization of two fundamental classes of structured constraints from these works (n-fold and 2-stage stochastic programs) to separable-convex mixed-integer optimization are harder than their mixed-integer, linear counterparts. This counters a widespread belief popularized initially by an influential paper of Hochbaum and Shanthikumar, namely that "convex separable optimization is not much harder than linear optimization" [J. ACM '90]. To obtain our algorithms, we employ the mixed Graver basis introduced by Hemmecke [Math. Prog. '03], and our work is the first to give bounds on the norm of its elements. Importantly, we use these bounds differently from how purely-integer Graver bounds are exploited in related approaches, and prove that, surprisingly, this cannot be avoided.

Cite as

Cornelius Brand, Martin Koutecký, Alexandra Lassota, and Sebastian Ordyniak. Separable Convex Mixed-Integer Optimization: Improved Algorithms and Lower Bounds. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 32:1-32:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{brand_et_al:LIPIcs.ESA.2024.32,
  author =	{Brand, Cornelius and Kouteck\'{y}, Martin and Lassota, Alexandra and Ordyniak, Sebastian},
  title =	{{Separable Convex Mixed-Integer Optimization: Improved Algorithms and Lower Bounds}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{32:1--32:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.32},
  URN =		{urn:nbn:de:0030-drops-211033},
  doi =		{10.4230/LIPIcs.ESA.2024.32},
  annote =	{Keywords: Mixed-Integer Programming, Separable Convex Optimization, Parameterized Algorithms, Parameterized Complexity}
}
Document
Online Flexible Busy Time Scheduling on Heterogeneous Machines

Authors: Gruia Călinescu, Sami Davies, Samir Khuller, and Shirley Zhang

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We study the online busy time scheduling model on heterogeneous machines. In our setting, jobs with uniform length arrive online with a deadline that becomes known to the algorithm at the job’s arrival time. An algorithm has access to machines, each with different associated capacities and costs. The goal is to schedule jobs on machines by their deadline, so that the total cost incurred by the scheduling algorithm is minimized. While busy time scheduling has been well-studied, relatively little is known when machines are heterogeneous (i.e., have different costs and capacities), despite this natural theoretical generalization being the most practical model for clients using cloud computing services. We make significant progress in understanding this model by designing an 8-competitive algorithm for the problem on unit-length jobs and provide a lower bound of 2 on the competitive ratio. The lower bound is tight in the setting when jobs form non-nested intervals. Our 8-competitive algorithm generalizes to one with competitive ratio 8(2p-1)/p < 16 when all jobs have uniform length p.

Cite as

Gruia Călinescu, Sami Davies, Samir Khuller, and Shirley Zhang. Online Flexible Busy Time Scheduling on Heterogeneous Machines. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 37:1-37:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{calinescu_et_al:LIPIcs.ESA.2024.37,
  author =	{C\u{a}linescu, Gruia and Davies, Sami and Khuller, Samir and Zhang, Shirley},
  title =	{{Online Flexible Busy Time Scheduling on Heterogeneous Machines}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{37:1--37:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.37},
  URN =		{urn:nbn:de:0030-drops-211083},
  doi =		{10.4230/LIPIcs.ESA.2024.37},
  annote =	{Keywords: Online algorithms, Scheduling, Competitive analysis}
}
Document
Approximation Algorithms for Hop Constrained and Buy-At-Bulk Network Design via Hop Constrained Oblivious Routing

Authors: Chandra Chekuri and Rhea Jain

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We consider two-cost network design models in which edges of the input graph have an associated cost and length. We build upon recent advances in hop-constrained oblivious routing to obtain two sets of results. We address multicommodity buy-at-bulk network design in the nonuniform setting. Existing poly-logarithmic approximations are based on the junction tree approach [Chekuri et al., 2010; Guy Kortsarz and Zeev Nutov, 2011]. We obtain a new polylogarithmic approximation via a natural LP relaxation. This establishes an upper bound on its integrality gap and affirmatively answers an open question raised in [Chekuri et al., 2010]. The rounding is based on recent results in hop-constrained oblivious routing [Ghaffari et al., 2021], and this technique yields a polylogarithmic approximation in more general settings such as set connectivity. Our algorithm for buy-at-bulk network design is based on an LP-based reduction to h-hop constrained network design for which we obtain LP-based bicriteria approximation algorithms. We also consider a fault-tolerant version of h-hop constrained network design where one wants to design a low-cost network to guarantee short paths between a given set of source-sink pairs even when k-1 edges can fail. This model has been considered in network design [Luis Gouveia and Markus Leitner, 2017; Gouveia et al., 2018; Arslan et al., 2020] but no approximation algorithms were known. We obtain polylogarithmic bicriteria approximation algorithms for the single-source setting for any fixed k. We build upon the single-source algorithm and the junction-tree approach to obtain an approximation algorithm for the multicommodity setting when at most one edge can fail.

Cite as

Chandra Chekuri and Rhea Jain. Approximation Algorithms for Hop Constrained and Buy-At-Bulk Network Design via Hop Constrained Oblivious Routing. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 41:1-41:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chekuri_et_al:LIPIcs.ESA.2024.41,
  author =	{Chekuri, Chandra and Jain, Rhea},
  title =	{{Approximation Algorithms for Hop Constrained and Buy-At-Bulk Network Design via Hop Constrained Oblivious Routing}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{41:1--41:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.41},
  URN =		{urn:nbn:de:0030-drops-211124},
  doi =		{10.4230/LIPIcs.ESA.2024.41},
  annote =	{Keywords: Buy-at-bulk, Hop-constrained network design, LP integrality gap, Fault-tolerant network design}
}
Document
Bicriterial Approximation for the Incremental Prize-Collecting Steiner-Tree Problem

Authors: Yann Disser, Svenja M. Griesbach, Max Klimm, and Annette Lutz

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We consider an incremental variant of the rooted prize-collecting Steiner-tree problem with a growing budget constraint. While no incremental solution exists that simultaneously approximates the optimum for all budgets, we show that a bicriterial (α,μ)-approximation is possible, i.e., a solution that with budget B+α for all B ∈ ℝ_{≥ 0} is a multiplicative μ-approximation compared to the optimum solution with budget B. For the case that the underlying graph is a tree, we present a polynomial-time density-greedy algorithm that computes a (χ,1)-approximation, where χ denotes the eccentricity of the root vertex in the underlying graph, and show that this is best possible. An adaptation of the density-greedy algorithm for general graphs is (γ,2)-competitive where γ is the maximal length of a vertex-disjoint path starting in the root. While this algorithm does not run in polynomial time, it can be adapted to a (γ,3)-competitive algorithm that runs in polynomial time. We further devise a capacity-scaling algorithm that guarantees a (3χ,8)-approximation and, more generally, a ((4𝓁 - 1)χ, (2^{𝓁 + 2})/(2^𝓁 -1))-approximation for every fixed 𝓁 ∈ ℕ.

Cite as

Yann Disser, Svenja M. Griesbach, Max Klimm, and Annette Lutz. Bicriterial Approximation for the Incremental Prize-Collecting Steiner-Tree Problem. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 47:1-47:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{disser_et_al:LIPIcs.ESA.2024.47,
  author =	{Disser, Yann and Griesbach, Svenja M. and Klimm, Max and Lutz, Annette},
  title =	{{Bicriterial Approximation for the Incremental Prize-Collecting Steiner-Tree Problem}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{47:1--47:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.47},
  URN =		{urn:nbn:de:0030-drops-211188},
  doi =		{10.4230/LIPIcs.ESA.2024.47},
  annote =	{Keywords: incremental optimization, competitive analysis, prize-collecting Steiner-tree}
}
Document
Scheduling with Obligatory Tests

Authors: Konstantinos Dogeas, Thomas Erlebach, and Ya-Chun Liang

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Motivated by settings such as medical treatments or aircraft maintenance, we consider a scheduling problem with jobs that consist of two operations, a test and a processing part. The time required to execute the test is known in advance while the time required to execute the processing part becomes known only upon completion of the test. We use competitive analysis to study algorithms for minimizing the sum of completion times for n given jobs on a single machine. As our main result, we prove using a novel analysis technique that the natural 1-SORT algorithm has competitive ratio at most 1.861. For the special case of uniform test times, we show that a simple threshold-based algorithm has competitive ratio at most 1.585. We also prove a lower bound that shows that no deterministic algorithm can be better than √2-competitive even in the case of uniform test times.

Cite as

Konstantinos Dogeas, Thomas Erlebach, and Ya-Chun Liang. Scheduling with Obligatory Tests. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 48:1-48:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dogeas_et_al:LIPIcs.ESA.2024.48,
  author =	{Dogeas, Konstantinos and Erlebach, Thomas and Liang, Ya-Chun},
  title =	{{Scheduling with Obligatory Tests}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{48:1--48:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.48},
  URN =		{urn:nbn:de:0030-drops-211194},
  doi =		{10.4230/LIPIcs.ESA.2024.48},
  annote =	{Keywords: Competitive ratio, Online algorithm, Scheduling with testing, Sum of completion times}
}
Document
Semi-Streaming Algorithms for Weighted k-Disjoint Matchings

Authors: S M Ferdous, Bhargav Samineni, Alex Pothen, Mahantesh Halappanavar, and Bala Krishnamoorthy

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We design and implement two single-pass semi-streaming algorithms for the maximum weight k-disjoint matching (k-DM) problem. Given an integer k, the k-DM problem is to find k pairwise edge-disjoint matchings such that the sum of the weights of the matchings is maximized. For k ≥ 2, this problem is NP-hard. Our first algorithm is based on the primal-dual framework of a linear programming relaxation of the problem and is 1/(3+ε)-approximate. We also develop an approximation preserving reduction from k-DM to the maximum weight b-matching problem. Leveraging this reduction and an existing semi-streaming b-matching algorithm, we design a (1/(2+ε))(1 - 1/(k+1))-approximate semi-streaming algorithm for k-DM. For any constant ε > 0, both of these algorithms require O(nk log_{1+ε}² n) bits of space. To the best of our knowledge, this is the first study of semi-streaming algorithms for the k-DM problem. We compare our two algorithms to state-of-the-art offline algorithms on 95 real-world and synthetic test problems, including thirteen graphs generated from data center network traces. On these instances, our streaming algorithms used significantly less memory (ranging from 6× to 512× less) and were faster in runtime than the offline algorithms. Our solutions were often within 5% of the best weights from the offline algorithms. We highlight that the existing offline algorithms run out of 1 TB memory for most of the large instances (> 1 billion edges), whereas our streaming algorithms can solve these problems using only 100 GB memory for k = 8.

Cite as

S M Ferdous, Bhargav Samineni, Alex Pothen, Mahantesh Halappanavar, and Bala Krishnamoorthy. Semi-Streaming Algorithms for Weighted k-Disjoint Matchings. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 53:1-53:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ferdous_et_al:LIPIcs.ESA.2024.53,
  author =	{Ferdous, S M and Samineni, Bhargav and Pothen, Alex and Halappanavar, Mahantesh and Krishnamoorthy, Bala},
  title =	{{Semi-Streaming Algorithms for Weighted k-Disjoint Matchings}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{53:1--53:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.53},
  URN =		{urn:nbn:de:0030-drops-211245},
  doi =		{10.4230/LIPIcs.ESA.2024.53},
  annote =	{Keywords: Matchings, Semi-Streaming Algorithms, Approximation Algorithms}
}
Document
APPROX
Speed-Robust Scheduling Revisited

Authors: Josef Minařík and Jiří Sgall

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
Speed-robust scheduling is the following two-stage problem of scheduling n jobs on m uniformly related machines. In the first stage, the algorithm receives the value of m and the processing times of n jobs; it has to partition the jobs into b groups called bags. In the second stage, the machine speeds are revealed and the bags are assigned to the machines, i.e., the algorithm produces a schedule where all the jobs in the same bag are assigned to the same machine. The objective is to minimize the makespan (the length of the schedule). The algorithm is compared to the optimal schedule and it is called ρ-robust, if its makespan is always at most ρ times the optimal one. Our main result is an improved bound for equal-size jobs for b = m. We give an upper bound of 1.6. This improves previous bound of 1.8 and it is almost tight in the light of previous lower bound of 1.58. Second, for infinitesimally small jobs, we give tight upper and lower bounds for the case when b ≥ m. This generalizes and simplifies the previous bounds for b = m. Finally, we introduce a new special case with relatively small jobs for which we give an algorithm whose robustness is close to that of infinitesimal jobs and thus gives better than 2-robust for a large class of inputs.

Cite as

Josef Minařík and Jiří Sgall. Speed-Robust Scheduling Revisited. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 8:1-8:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{minarik_et_al:LIPIcs.APPROX/RANDOM.2024.8,
  author =	{Mina\v{r}{\'\i}k, Josef and Sgall, Ji\v{r}{\'\i}},
  title =	{{Speed-Robust Scheduling Revisited}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{8:1--8:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.8},
  URN =		{urn:nbn:de:0030-drops-210010},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.8},
  annote =	{Keywords: scheduling, approximation algorithms, makespan, uniform speeds}
}
Document
APPROX
Weighted Matching in the Random-Order Streaming and Robust Communication Models

Authors: Diba Hashemi and Weronika Wrzos-Kaminska

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We study the maximum weight matching problem in the random-order semi-streaming model and in the robust communication model. Unlike many other sublinear models, in these two frameworks, there is a large gap between the guarantees of the best known algorithms for the unweighted and weighted versions of the problem. In the random-order semi-streaming setting, the edges of an n-vertex graph arrive in a stream in a random order. The goal is to compute an approximate maximum weight matching with a single pass over the stream using O(npolylog n) space. Our main result is a (2/3-ε)-approximation algorithm for maximum weight matching in random-order streams, using space O(n log n log R), where R is the ratio between the heaviest and the lightest edge in the graph. Our result nearly matches the best known unweighted (2/3+ε₀)-approximation (where ε₀ ∼ 10^{-14} is a small constant) achieved by Assadi and Behnezhad [Assadi and Behnezhad, 2021], and significantly improves upon previous weighted results. Our techniques also extend to the related robust communication model, in which the edges of a graph are partitioned randomly between Alice and Bob. Alice sends a single message of size O(npolylog n) to Bob, who must compute an approximate maximum weight matching. We achieve a (5/6-ε)-approximation using O(n log n log R) words of communication, matching the results of Azarmehr and Behnezhad [Azarmehr and Behnezhad, 2023] for unweighted graphs.

Cite as

Diba Hashemi and Weronika Wrzos-Kaminska. Weighted Matching in the Random-Order Streaming and Robust Communication Models. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 16:1-16:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hashemi_et_al:LIPIcs.APPROX/RANDOM.2024.16,
  author =	{Hashemi, Diba and Wrzos-Kaminska, Weronika},
  title =	{{Weighted Matching in the Random-Order Streaming and Robust Communication Models}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{16:1--16:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.16},
  URN =		{urn:nbn:de:0030-drops-210097},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.16},
  annote =	{Keywords: Maximum Weight Matching, Streaming, Random-Order Streaming, Robust Communication Complexity}
}
Document
APPROX
An EPTAS for Cardinality Constrained Multiple Knapsack via Iterative Randomized Rounding

Authors: Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
In [Math. Oper. Res., 2011], Fleischer et al. introduced a powerful technique for solving the generic class of separable assignment problems (SAP), in which a set of items of given values and weights needs to be packed into a set of bins subject to separable assignment constraints, so as to maximize the total value. The approach of Fleischer at al. relies on solving a configuration LP and sampling a configuration for each bin independently based on the LP solution. While there is a SAP variant for which this approach yields the best possible approximation ratio, for various special cases, there are discrepancies between the approximation ratios obtained using the above approach and the state-of-the-art approximations. This raises the following natural question: Can we do better by iteratively solving the configuration LP and sampling a few bins at a time? To assess the potential of the iterative approach we consider a specific SAP variant as a case-study, Uniform Cardinality Constrained Multiple Knapsack, for which we answer this question affirmatively. The input is a set of items, each has a value and a weight, and a set of uniform capacity bins. The goal is to assign a subset of the items of maximum total value to the bins such that (i) the capacity of any bin is not exceeded, and (ii) the number of items assigned to each bin satisfies a given cardinality constraint. While the technique of Fleischer et al. yields a (1-1/e)-approximation for the problem, we show that iterative randomized rounding leads to efficient polynomial time approximation scheme (EPTAS), thus essentially resolving the complexity status of the problem. Our analysis of iterative randomized rounding may be useful for solving other SAP variants.

Cite as

Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An EPTAS for Cardinality Constrained Multiple Knapsack via Iterative Randomized Rounding. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 27:1-27:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{doronarad_et_al:LIPIcs.APPROX/RANDOM.2024.27,
  author =	{Doron-Arad, Ilan and Kulik, Ariel and Shachnai, Hadas},
  title =	{{An EPTAS for Cardinality Constrained Multiple Knapsack via Iterative Randomized Rounding}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{27:1--27:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.27},
  URN =		{urn:nbn:de:0030-drops-210204},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.27},
  annote =	{Keywords: multiple knapsack, cardinality constraint, EPTAS, iterative randomized rounding}
}
Document
RANDOM
Nearly Optimal Local Algorithms for Constructing Sparse Spanners of Clusterable Graphs

Authors: Reut Levi, Moti Medina, and Omer Tubul

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
In this paper, we study the problem of locally constructing a sparse spanning subgraph (LSSG), introduced by Levi, Ron, and Rubinfeld (ALGO'20). In this problem, the goal is to locally decide for each e ∈ E if it is in G' where G' is a connected subgraph of G (determined only by G and the randomness of the algorithm). We provide an LSSG that receives as a parameter a lower bound, ϕ, on the conductance of G whose query complexity is Õ(√n/ϕ²). This is almost optimal when ϕ is a constant since Ω(√n) queries are necessary even when G is an expander. Furthermore, this improves the state of the art of Õ(n^{2/3}) queries for ϕ = Ω(1/n^{1/12}). We then extend our result for (k, ϕ_in, ϕ_out)-clusterable graphs and provide an algorithm whose query complexity is Õ(√n + ϕ_out n) for constant k and ϕ_in. This bound is almost optimal when ϕ_out = O(1/√n).

Cite as

Reut Levi, Moti Medina, and Omer Tubul. Nearly Optimal Local Algorithms for Constructing Sparse Spanners of Clusterable Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 60:1-60:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{levi_et_al:LIPIcs.APPROX/RANDOM.2024.60,
  author =	{Levi, Reut and Medina, Moti and Tubul, Omer},
  title =	{{Nearly Optimal Local Algorithms for Constructing Sparse Spanners of Clusterable Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{60:1--60:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.60},
  URN =		{urn:nbn:de:0030-drops-210537},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.60},
  annote =	{Keywords: Locally Computable Algorithms, Sublinear algorithms, Spanning Subgraphs, Clusterbale Graphs}
}
Document
Finding Maximum Common Contractions Between Phylogenetic Networks

Authors: Bertrand Marchand, Nadia Tahiri, Olivier Tremblay-Savard, and Manuel Lafond

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
In this paper, we lay the groundwork on the comparison of phylogenetic networks based on edge contractions and expansions as edit operations, as originally proposed by Robinson and Foulds to compare trees. We prove that these operations connect the space of all phylogenetic networks on the same set of leaves, even if we forbid contractions that create cycles. This allows to define an operational distance on this space, as the minimum number of contractions and expansions required to transform one network into another. We highlight the difference between this distance and the computation of the maximum common contraction between two networks. Given its ability to outline a common structure between them, which can provide valuable biological insights, we study the algorithmic aspects of the latter. We first prove that computing a maximum common contraction between two networks is NP-hard, even when the maximum degree, the size of the common contraction, or the number of leaves is bounded. We also provide lower bounds to the problem based on the Exponential-Time Hypothesis. Nonetheless, we do provide a polynomial-time algorithm for weakly galled trees, a generalization of galled trees.

Cite as

Bertrand Marchand, Nadia Tahiri, Olivier Tremblay-Savard, and Manuel Lafond. Finding Maximum Common Contractions Between Phylogenetic Networks. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 16:1-16:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{marchand_et_al:LIPIcs.WABI.2024.16,
  author =	{Marchand, Bertrand and Tahiri, Nadia and Tremblay-Savard, Olivier and Lafond, Manuel},
  title =	{{Finding Maximum Common Contractions Between Phylogenetic Networks}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{16:1--16:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.16},
  URN =		{urn:nbn:de:0030-drops-206606},
  doi =		{10.4230/LIPIcs.WABI.2024.16},
  annote =	{Keywords: Phylogenetic networks, contractions, algorithms, weakly galled trees}
}
Document
Equitable Connected Partition and Structural Parameters Revisited: N-Fold Beats Lenstra

Authors: Václav Blažej, Dušan Knop, Jan Pokorný, and Šimon Schierreich

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
In the Equitable Connected Partition (ECP for short) problem, we are given a graph G = (V,E) together with an integer p ∈ ℕ, and our goal is to find a partition of V into p parts such that each part induces a connected sub-graph of G and the size of each two parts differs by at most 1. On the one hand, the problem is known to be NP-hard in general and W[1]-hard with respect to the path-width, the feedback-vertex set, and the number of parts p combined. On the other hand, fixed-parameter algorithms are known for parameters the vertex-integrity and the max leaf number. In this work, we systematically study ECP with respect to various structural restrictions of the underlying graph and provide a clear dichotomy of its parameterised complexity. Specifically, we show that the problem is in FPT when parameterized by the modular-width and the distance to clique. Next, we prove W[1]-hardness with respect to the distance to cluster, the 4-path vertex cover number, the distance to disjoint paths, and the feedback-edge set, and NP-hardness for constant shrub-depth graphs. Our hardness results are complemented by matching algorithmic upper-bounds: we give an XP algorithm for parameterisation by the tree-width and the distance to cluster. We also give an improved FPT algorithm for parameterisation by the vertex integrity and the first explicit FPT algorithm for the 3-path vertex cover number. The main ingredient of these algorithms is a formulation of ECP as N-fold IP, which clearly indicates that such formulations may, in certain scenarios, significantly outperform existing algorithms based on the famous algorithm of Lenstra.

Cite as

Václav Blažej, Dušan Knop, Jan Pokorný, and Šimon Schierreich. Equitable Connected Partition and Structural Parameters Revisited: N-Fold Beats Lenstra. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 29:1-29:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{blazej_et_al:LIPIcs.MFCS.2024.29,
  author =	{Bla\v{z}ej, V\'{a}clav and Knop, Du\v{s}an and Pokorn\'{y}, Jan and Schierreich, \v{S}imon},
  title =	{{Equitable Connected Partition and Structural Parameters Revisited: N-Fold Beats Lenstra}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{29:1--29:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.29},
  URN =		{urn:nbn:de:0030-drops-205857},
  doi =		{10.4230/LIPIcs.MFCS.2024.29},
  annote =	{Keywords: Equitable Connected Partition, structural parameters, fixed-parameter tractability, N-fold integer programming, tree-width, shrub-depth, modular-width}
}
Document
Scheduling with Locality by Routing

Authors: Alison Hsiang-Hsuan Liu and Fu-Hong Liu

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
This work examines a strongly NP-hard routing problem on trees, in which multiple servers need to serve a given set of requests (on vertices), where the routes of the servers start from a common source and end at their respective terminals. Each server can travel free of cost on its source-to-terminal path but has to pay for travel on other edges. The objective is to minimize the maximum cost over all servers. As the servers may pay different costs for traveling through a common edge, balancing the loads of the servers can be difficult. We propose a polynomial-time 4-approximation algorithm that applies the parametric pruning framework but consists of two phases. The first phase of the algorithm partitions the requests into packets, and the second phase of the algorithm assigns the packets to the servers. Unlike the standard parametric pruning techniques, the challenge of our algorithm design and analysis is to harmoniously relate the quality of the partition in the first phase, the balances of the servers' loads in the second phase, and the hypothetical optimal values of the framework. For the problem in general graphs, we show that there is no algorithm better than 2-approximate unless P = NP. The problem is a generalization of unrelated machine scheduling and other classic scheduling problems. It also models scheduling problems where the job processing times depend on the machine serving the job and the other jobs served by that machine. This modeling provides a framework that physicalizes scheduling problems through the graph’s point of view.

Cite as

Alison Hsiang-Hsuan Liu and Fu-Hong Liu. Scheduling with Locality by Routing. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 69:1-69:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{liu_et_al:LIPIcs.MFCS.2024.69,
  author =	{Liu, Alison Hsiang-Hsuan and Liu, Fu-Hong},
  title =	{{Scheduling with Locality by Routing}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{69:1--69:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.69},
  URN =		{urn:nbn:de:0030-drops-206250},
  doi =		{10.4230/LIPIcs.MFCS.2024.69},
  annote =	{Keywords: Makespan minimization, Approximation algorithms, Routing problems, Parametric pruning framework}
}
Document
Streaming Matching and Edge Cover in Practice

Authors: S M Ferdous, Alex Pothen, and Mahantesh Halappanavar

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Graph algorithms with polynomial space and time requirements often become infeasible for massive graphs with billions of edges or more. State-of-the-art approaches therefore employ approximate serial, parallel, and distributed algorithms to tackle these challenges. However, such approaches require storing the entire graph in memory and thus need access to costly computing resources such as clusters and supercomputers. In this paper, we present practical streaming approaches for solving massive graph problems using limited memory for two prototypical graph problems: maximum weighted matching and minimum weighted edge cover. For matching, we conduct a thorough computational study on two of the semi-streaming algorithms including a recent breakthrough result that achieves a 1/(2+ε)-approximation of the weight while using O(n log W /ε) memory (here n is the number of vertices and W is the maximum edge weight), designed by Paz and Schwartzman [SODA, 2017]. Empirically, we show that the semi-streaming algorithms produce matchings whose weight is close to the best 1/2-approximate offline algorithm while requiring less time and an order-of-magnitude less memory. For minimum weighted edge cover, we develop three novel semi-streaming algorithms. Two of these algorithms require a single pass through the input graph, require O(n log n) memory, and provide a 2-approximation guarantee on the objective. We also leverage a relationship between approximate maximum weighted matching and approximate minimum weighted edge cover to develop a two-pass 3/2+ε-approximate algorithm with the memory requirement of Paz and Schwartzman’s semi-streaming matching algorithm. These streaming approaches are compared against the state-of-the-art 3/2-approximate offline algorithm. The semi-streaming matching and the novel edge cover algorithms proposed in this paper can process graphs with several billions of edges in under 30 minutes using 6 GB of memory, which is at least an order of magnitude improvement from the offline (non-streaming) algorithms. For the largest graph, the best alternative offline parallel approximation algorithm (GPA+ROMA) could not finish in three hours even while employing hundreds of processors and 1 TB of memory. We also demonstrate an application of semi-streaming algorithm by computing a matching using linearly bounded memory on intersection graphs derived from three machine learning datasets, while the existing offline algorithms could not complete on one of these datasets since its memory requirement exceeded 1TB.

Cite as

S M Ferdous, Alex Pothen, and Mahantesh Halappanavar. Streaming Matching and Edge Cover in Practice. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 12:1-12:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ferdous_et_al:LIPIcs.SEA.2024.12,
  author =	{Ferdous, S M and Pothen, Alex and Halappanavar, Mahantesh},
  title =	{{Streaming Matching and Edge Cover in Practice}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{12:1--12:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.12},
  URN =		{urn:nbn:de:0030-drops-203773},
  doi =		{10.4230/LIPIcs.SEA.2024.12},
  annote =	{Keywords: Matching, Edge Cover, Semi-Streaming Algorithm, Parallel Algorithms, Algorithm Engineering}
}
Document
Track A: Algorithms, Complexity and Games
Vital Edges for (s,t)-Mincut: Efficient Algorithms, Compact Structures, & Optimal Sensitivity Oracles

Authors: Surender Baswana and Koustav Bhanja

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Let G be a directed weighted graph on n vertices and m edges with designated source and sink vertices s and t. An edge in G is vital if its removal reduces the capacity of (s,t)-mincut. Since the seminal work of Ford and Fulkerson [CJM 1956], a long line of work has been done on computing the most vital edge and all vital edges of G. However, even after 60 years, the existing results are for either undirected or unweighted graphs. We present the following result for directed weighted graphs that also solves an open problem by Ausiello, Franciosa, Lari, and Ribichini [NETWORKS 2019]. 1. Algorithmic Results: There is an algorithm that computes all vital edges as well as the most vital edge of G using {O}(n) maximum (s,t)-flow computations. Vital edges play a crucial role in the design of sensitivity oracle for (s,t)-mincut - a compact data structure for reporting (s,t)-mincut after insertion/failure of any edge. For directed graphs, the only existing sensitivity oracle is for unweighted graphs by Picard and Queyranne [MPS 1982]. We present the first and optimal sensitivity oracle for directed weighted graphs as follows. 2. Sensitivity Oracles: a) There is an optimal O(n²) space data structure that can report an (s,t)-mincut C in O(|C|) time after the failure/insertion of any edge. b) There is an O(n) space data structure that can report the capacity of (s,t)-mincut after failure or insertion of any edge e in O(1) time if the capacity of edge e is known. A mincut for a vital edge e is an (s,t)-cut of the least capacity in which edge e is outgoing. For unweighted graphs, in a classical work, Picard and Queyranne [MPS 1982] designed an O(m) space directed acyclic graph (DAG) that stores and characterizes all mincuts for all vital edges. Conversely, there is a set containing at most n-1 (s,t)-cuts such that at least one mincut for every vital edge belongs to the set. We generalize these results for directed weighted graphs as follows. 3. Structural & Combinatorial Results: a) There is a set M containing at most n-1 (s,t)-cuts such that at least one mincut for every vital edge belongs to the set. This bound is tight as well. We also show that set M can be computed using O(n) maximum (s,t)-flow computations. b) We design two compact structures for storing and characterizing all mincuts for all vital edges - (i) an O(m) space DAG for partial and (ii) an O(mn) space structure for complete characterization. To arrive at our results, we develop new techniques, especially a generalization of maxflow-mincut Theorem by Ford and Fulkerson [CJM 1956], which might be of independent interest.

Cite as

Surender Baswana and Koustav Bhanja. Vital Edges for (s,t)-Mincut: Efficient Algorithms, Compact Structures, & Optimal Sensitivity Oracles. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 17:1-17:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{baswana_et_al:LIPIcs.ICALP.2024.17,
  author =	{Baswana, Surender and Bhanja, Koustav},
  title =	{{Vital Edges for (s,t)-Mincut: Efficient Algorithms, Compact Structures, \& Optimal Sensitivity Oracles}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{17:1--17:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.17},
  URN =		{urn:nbn:de:0030-drops-201601},
  doi =		{10.4230/LIPIcs.ICALP.2024.17},
  annote =	{Keywords: maxflow, vital edges, graph algorithms, structures, st-cuts, sensitivity oracle}
}
  • Refine by Author
  • 10 Levin, Asaf
  • 8 Epstein, Leah
  • 2 Balogh, János
  • 2 Doron-Arad, Ilan
  • 2 Ferdous, S M
  • Show More...

  • Refine by Classification
  • 5 Theory of computation → Graph algorithms analysis
  • 4 Mathematics of computing → Graph algorithms
  • 4 Theory of computation → Online algorithms
  • 4 Theory of computation → Scheduling algorithms
  • 4 Theory of computation → Streaming, sublinear and near linear time algorithms
  • Show More...

  • Refine by Keyword
  • 3 Online algorithms
  • 3 online algorithms
  • 2 Approximation algorithms
  • 2 Bin packing
  • 2 Matchings
  • Show More...

  • Refine by Type
  • 27 document

  • Refine by Publication Year
  • 17 2024
  • 2 2018
  • 1 2005
  • 1 2007
  • 1 2010
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail