199 Search Results for "Nguyen, An"


Document
Conversational Agents: A Framework for Evaluation (CAFE) (Dagstuhl Perspectives Workshop 24352)

Authors: Christine Bauer, Li Chen, Nicola Ferro, Norbert Fuhr, Avishek Anand, Timo Breuer, Guglielmo Faggioli, Ophir Frieder, Hideo Joho, Jussi Karlgren, Johannes Kiesel, Bart P. Knijnenburg, Aldo Lipani, Lien Michiels, Andrea Papenmeier, Maria Soledad Pera, Mark Sanderson, Scott Sanner, Benno Stein, Johanne R. Trippas, Karin Verspoor, and Martijn C. Willemsen

Published in: Dagstuhl Manifestos, Volume 11, Issue 1 (2025)


Abstract
During the workshop, we deeply discussed what CONversational Information ACcess (CONIAC) is and its unique features, proposing a world model abstracting it, and defined the Conversational Agents Framework for Evaluation (CAFE) for the evaluation of CONIAC systems, consisting of six major components: 1) goals of the system’s stakeholders, 2) user tasks to be studied in the evaluation, 3) aspects of the users carrying out the tasks, 4) evaluation criteria to be considered, 5) evaluation methodology to be applied, and 6) measures for the quantitative criteria chosen.

Cite as

Christine Bauer, Li Chen, Nicola Ferro, Norbert Fuhr, Avishek Anand, Timo Breuer, Guglielmo Faggioli, Ophir Frieder, Hideo Joho, Jussi Karlgren, Johannes Kiesel, Bart P. Knijnenburg, Aldo Lipani, Lien Michiels, Andrea Papenmeier, Maria Soledad Pera, Mark Sanderson, Scott Sanner, Benno Stein, Johanne R. Trippas, Karin Verspoor, and Martijn C. Willemsen. Conversational Agents: A Framework for Evaluation (CAFE) (Dagstuhl Perspectives Workshop 24352). In Dagstuhl Manifestos, Volume 11, Issue 1, pp. 19-67, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{bauer_et_al:DagMan.11.1.19,
  author =	{Bauer, Christine and Chen, Li and Ferro, Nicola and Fuhr, Norbert and Anand, Avishek and Breuer, Timo and Faggioli, Guglielmo and Frieder, Ophir and Joho, Hideo and Karlgren, Jussi and Kiesel, Johannes and Knijnenburg, Bart P. and Lipani, Aldo and Michiels, Lien and Papenmeier, Andrea and Pera, Maria Soledad and Sanderson, Mark and Sanner, Scott and Stein, Benno and Trippas, Johanne R. and Verspoor, Karin and Willemsen, Martijn C.},
  title =	{{Conversational Agents: A Framework for Evaluation (CAFE) (Dagstuhl Perspectives Workshop 24352)}},
  pages =	{19--67},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2025},
  volume =	{11},
  number =	{1},
  editor =	{Bauer, Christine and Chen, Li and Ferro, Nicola and Fuhr, Norbert and Anand, Avishek and Breuer, Timo and Faggioli, Guglielmo and Frieder, Ophir and Joho, Hideo and Karlgren, Jussi and Kiesel, Johannes and Knijnenburg, Bart P. and Lipani, Aldo and Michiels, Lien and Papenmeier, Andrea and Pera, Maria Soledad and Sanderson, Mark and Sanner, Scott and Stein, Benno and Trippas, Johanne R. and Verspoor, Karin and Willemsen, Martijn C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.11.1.19},
  URN =		{urn:nbn:de:0030-drops-252722},
  doi =		{10.4230/DagMan.11.1.19},
  annote =	{Keywords: Conversational Agents, Evaluation, Information Access}
}
Document
Approximation Schemes for k-Subset Sum Ratio and k-Way Number Partitioning Ratio

Authors: Sotiris Kanellopoulos, Giorgos Mitropoulos, Antonis Antonopoulos, Nikos Leonardos, Aris Pagourtzis, Christos Pergaminelis, Stavros Petsalakis, and Kanellos Tsitouras

Published in: LIPIcs, Volume 359, 36th International Symposium on Algorithms and Computation (ISAAC 2025)


Abstract
The Subset Sum Ratio problem (SSR) asks, given a multiset A of positive integers, to find two disjoint subsets of A such that the largest-to-smallest ratio of their sums is minimized. In this paper we study the k-version of SSR, namely k-Subset Sum Ratio (k-SSR), which asks to minimize the largest-to-smallest ratio of sums of k disjoint subsets of A. We develop an approximation scheme for k-SSR running in O(n^{2k}/ε^{k-1}) time, where n = |A| and ε is the error parameter. To the best of our knowledge, this is the first FPTAS for k-SSR for fixed k > 2. We also study the k-way Number Partitioning Ratio (k-PART) problem, which differs from k-SSR in that the k subsets must constitute a partition of A; this problem in fact corresponds to the objective of minimizing the largest-to-smallest sum ratio in the family of Multiway Number Partitioning problems. We present a more involved FPTAS for k-PART, also achieving O(n^{2k}/ε^{k-1}) time complexity. Notably, k-PART is also equivalent to the Minimum Envy-Ratio problem with identical valuation functions, which has been studied in the context of fair division of indivisible goods. Thus, for the case of identical valuations, our FPTAS represents a significant improvement over the O(n^{4k²+1}/ε^{2k²}) bound obtained by Nguyen and Rothe’s FPTAS [Trung Thanh Nguyen and Jörg Rothe, 2014] for Minimum Envy-Ratio with general additive valuations. Lastly, we propose a second FPTAS for k-SSR, which employs carefully designed calls to the first one; the new scheme has a time complexity of Õ(n/ε^{3k-1}), thus being much faster when n≫ 1/ ε.

Cite as

Sotiris Kanellopoulos, Giorgos Mitropoulos, Antonis Antonopoulos, Nikos Leonardos, Aris Pagourtzis, Christos Pergaminelis, Stavros Petsalakis, and Kanellos Tsitouras. Approximation Schemes for k-Subset Sum Ratio and k-Way Number Partitioning Ratio. In 36th International Symposium on Algorithms and Computation (ISAAC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 359, pp. 44:1-44:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kanellopoulos_et_al:LIPIcs.ISAAC.2025.44,
  author =	{Kanellopoulos, Sotiris and Mitropoulos, Giorgos and Antonopoulos, Antonis and Leonardos, Nikos and Pagourtzis, Aris and Pergaminelis, Christos and Petsalakis, Stavros and Tsitouras, Kanellos},
  title =	{{Approximation Schemes for k-Subset Sum Ratio and k-Way Number Partitioning Ratio}},
  booktitle =	{36th International Symposium on Algorithms and Computation (ISAAC 2025)},
  pages =	{44:1--44:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-408-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{359},
  editor =	{Chen, Ho-Lin and Hon, Wing-Kai and Tsai, Meng-Tsung},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2025.44},
  URN =		{urn:nbn:de:0030-drops-249521},
  doi =		{10.4230/LIPIcs.ISAAC.2025.44},
  annote =	{Keywords: Fully polynomial-time approximation schemes, Subset Sum Ratio, Number Partitioning, Fair division, Envy minimization, Pseudo-polynomial time algorithms}
}
Document
Lower Bounds for k-Set Agreement in Fault-Prone Networks

Authors: Pierre Fraigniaud, Minh Hang Nguyen, Ami Paz, Ulrich Schmid, and Hugo Rincon-Galeana

Published in: LIPIcs, Volume 356, 39th International Symposium on Distributed Computing (DISC 2025)


Abstract
We develop a new lower bound for k-set agreement in synchronous message-passing systems connected by an arbitrary directed communication network, where up to t processes may crash. Our result thus generalizes the ⌊t/k⌋ + 1 lower bound for complete networks in the t-resilient model by Chaudhuri, Herlihy, Lynch, and Tuttle [JACM 2000]. Moreover, it generalizes two lower bounds for oblivious algorithms in synchronous systems connected by an arbitrary undirected communication network known to the processes, namely, the domination number-based lower bound by Castañeda, Fraigniaud, Paz, Rajsbaum, Roy, and Travers [TCS 2021] for failure-free processes, and the radius-based lower bound in the t-resilient model by Fraigniaud, Nguyen, and Paz [STACS 2024]. Our topological proof non-trivially generalizes and extends the connectivity-based approach for the complete network, as presented in the book by Herlihy, Kozlov, and Rajsbaum (2013). It is based on a sequence of shellable carrier maps that, starting from a shellable input complex, determine the evolution of the protocol complex: During the first ⌊t/k⌋ rounds, carrier maps that crash exactly k processes per round are used, which ensure high connectivity of their images. A Sperner’s lemma style argument can thus be used to prove that k-set agreement is still impossible by that round. From round ⌊t/k⌋ + 1 up to our actual lower bound, a novel carrier map is employed, which maintains high connectivity. As a by-product, our proof also provides a strikingly simple lower-bound for k-set agreement in synchronous systems with an arbitrary communication network, where exactly t ≥ 0 processes crash initially, i.e., before taking any step. We demonstrate that the resulting additional agreement overhead can be expressed via an appropriately defined radius of the communication graphs, and show that the usual input pseudosphere complex for k-set agreement can be replaced by an exponentially smaller input complex based on Kuhn triangulations, which we prove to be also shellable.

Cite as

Pierre Fraigniaud, Minh Hang Nguyen, Ami Paz, Ulrich Schmid, and Hugo Rincon-Galeana. Lower Bounds for k-Set Agreement in Fault-Prone Networks. In 39th International Symposium on Distributed Computing (DISC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 356, pp. 31:1-31:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{fraigniaud_et_al:LIPIcs.DISC.2025.31,
  author =	{Fraigniaud, Pierre and Nguyen, Minh Hang and Paz, Ami and Schmid, Ulrich and Rincon-Galeana, Hugo},
  title =	{{Lower Bounds for k-Set Agreement in Fault-Prone Networks}},
  booktitle =	{39th International Symposium on Distributed Computing (DISC 2025)},
  pages =	{31:1--31:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-402-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{356},
  editor =	{Kowalski, Dariusz R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2025.31},
  URN =		{urn:nbn:de:0030-drops-248480},
  doi =		{10.4230/LIPIcs.DISC.2025.31},
  annote =	{Keywords: Distributed computing, k-set agreement, time complexity, lower bounds, topology}
}
Document
Fast and Lightweight Distributed Suffix Array Construction

Authors: Manuel Haag, Florian Kurpicz, Peter Sanders, and Matthias Schimek

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The suffix array contains the lexicographical order of all suffixes of a text. It is one of the most well-studied text indices with applications in bioinformatics, compression, and pattern matching. The main bottleneck of distributed-memory suffix array construction algorithms is their memory requirements. Even careful implementations require 30×-60× the input size as working memory. We present a scalable and lightweight distributed-memory adaptation of the difference cover (DCX) suffix array construction algorithm. Our approach relies on novel bucketing and random chunk redistribution techniques which reduce our memory requirement to 20×-26× the input size for medium-sized inputs and to 14×-15× for large-sized inputs. Regarding running time, we achieve speedups of up to 5× over current state-of-the-art distributed suffix array construction algorithms.

Cite as

Manuel Haag, Florian Kurpicz, Peter Sanders, and Matthias Schimek. Fast and Lightweight Distributed Suffix Array Construction. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 47:1-47:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{haag_et_al:LIPIcs.ESA.2025.47,
  author =	{Haag, Manuel and Kurpicz, Florian and Sanders, Peter and Schimek, Matthias},
  title =	{{Fast and Lightweight Distributed Suffix Array Construction}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{47:1--47:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.47},
  URN =		{urn:nbn:de:0030-drops-245154},
  doi =		{10.4230/LIPIcs.ESA.2025.47},
  annote =	{Keywords: Distributed Computing, Suffix Array Construction}
}
Document
Max-Distance Sparsification for Diversification and Clustering

Authors: Soh Kumabe

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Let 𝒟 be a set family that is the solution domain of some combinatorial problem. The max-min diversification problem on 𝒟 is the problem to select k sets from 𝒟 such that the Hamming distance between any two selected sets is at least d. FPT algorithms parameterized by k+𝓁, where 𝓁 = max_{D ∈ 𝒟}|D|, and k+d have been actively studied recently for several specific domains. This paper provides unified algorithmic frameworks to solve this problem. Specifically, for each parameterization k+𝓁 and k+d, we provide an FPT oracle algorithm for the max-min diversification problem using oracles related to 𝒟. We then demonstrate that our frameworks provide the first FPT algorithms on several new domains 𝒟, including the domain of t-linear matroid intersection, almost 2-SAT, minimum edge s,t-flows, vertex sets of s,t-mincut, vertex sets of edge bipartization, and Steiner trees. We also demonstrate that our frameworks generalize most of the existing domain-specific tractability results. Our main technical breakthrough is introducing the notion of max-distance sparsifier of 𝒟, a domain on which the max-min diversification problem is equivalent to the same problem on the original domain 𝒟. The core of our framework is to design FPT oracle algorithms that construct a constant-size max-distance sparsifier of 𝒟. Using max-distance sparsifiers, we provide FPT algorithms for the max-min and max-sum diversification problems on 𝒟, as well as k-center and k-sum-of-radii clustering problems on 𝒟, which are also natural problems in the context of diversification and have their own interests.

Cite as

Soh Kumabe. Max-Distance Sparsification for Diversification and Clustering. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 46:1-46:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kumabe:LIPIcs.ESA.2025.46,
  author =	{Kumabe, Soh},
  title =	{{Max-Distance Sparsification for Diversification and Clustering}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{46:1--46:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.46},
  URN =		{urn:nbn:de:0030-drops-245146},
  doi =		{10.4230/LIPIcs.ESA.2025.46},
  annote =	{Keywords: Fixed-Parameter Tractability, Diversification, Clustering}
}
Document
Cut-Query Algorithms with Few Rounds

Authors: Yotam Kenneth-Mordoch and Robert Krauthgamer

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
In the cut-query model, the algorithm can access the input graph G = (V,E) only via cut queries that report, given a set S ⊆ V, the total weight of edges crossing the cut between S and V⧵ S. This model was introduced by Rubinstein, Schramm and Weinberg [ITCS'18] and its investigation has so far focused on the number of queries needed to solve optimization problems, such as global minimum cut. We turn attention to the round complexity of cut-query algorithms, and show that several classical problems can be solved in this model with only a constant number of rounds. Our main results are algorithms for finding a minimum cut in a graph, that offer different tradeoffs between round complexity and query complexity, where n = |V| and δ(G) denotes the minimum degree of G: (i) Õ(n^{4/3}) cut queries in two rounds in unweighted graphs; (ii) Õ(rn^{1+1/r}/δ(G)^{1/r}) queries in 2r+1 rounds for any integer r ≥ 1 again in unweighted graphs; and (iii) Õ(rn^{1+(1+log_n W)/r}) queries in 4r+3 rounds for any r ≥ 1 in weighted graphs. We also provide algorithms that find a minimum (s,t)-cut and approximate the maximum cut in a few rounds.

Cite as

Yotam Kenneth-Mordoch and Robert Krauthgamer. Cut-Query Algorithms with Few Rounds. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 100:1-100:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kennethmordoch_et_al:LIPIcs.ESA.2025.100,
  author =	{Kenneth-Mordoch, Yotam and Krauthgamer, Robert},
  title =	{{Cut-Query Algorithms with Few Rounds}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{100:1--100:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.100},
  URN =		{urn:nbn:de:0030-drops-245692},
  doi =		{10.4230/LIPIcs.ESA.2025.100},
  annote =	{Keywords: Cut Queries, Round Complexity, Submodular Optimization}
}
Document
Counting Small Induced Subgraphs: Scorpions Are Easy but Not Trivial

Authors: Radu Curticapean, Simon Döring, and Daniel Neuen

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
In the parameterized problem #IndSub(Φ) for fixed graph properties Φ, given as input a graph G and an integer k, the task is to compute the number of induced k-vertex subgraphs satisfying Φ. Dörfler et al. [Algorithmica 2022] and Roth et al. [SICOMP 2024] conjectured that #IndSub(Φ) is #W[1]-hard for all non-meager properties Φ, i.e., properties that are nontrivial for infinitely many k. This conjecture has been confirmed for several restricted types of properties, including all hereditary properties [STOC 2022] and all edge-monotone properties [STOC 2024]. We refute this conjecture by showing that induced k-vertex graphs that are scorpions can be counted in time O(n⁴) for all k. Scorpions were introduced more than 50 years ago in the context of the evasiveness conjecture. A simple variant of this construction results in graph properties that achieve arbitrary intermediate complexity assuming ETH. Moreover, we formulate an updated conjecture on the complexity of #IndSub(Φ) that correctly captures the complexity status of scorpions and related constructions.

Cite as

Radu Curticapean, Simon Döring, and Daniel Neuen. Counting Small Induced Subgraphs: Scorpions Are Easy but Not Trivial. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 96:1-96:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{curticapean_et_al:LIPIcs.ESA.2025.96,
  author =	{Curticapean, Radu and D\"{o}ring, Simon and Neuen, Daniel},
  title =	{{Counting Small Induced Subgraphs: Scorpions Are Easy but Not Trivial}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{96:1--96:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.96},
  URN =		{urn:nbn:de:0030-drops-245651},
  doi =		{10.4230/LIPIcs.ESA.2025.96},
  annote =	{Keywords: induced subgraphs, counting complexity, parameterized complexity, scorpions}
}
Document
Sliding Squares in Parallel

Authors: Hugo A. Akitaya, Sándor P. Fekete, Peter Kramer, Saba Molaei, Christian Rieck, Frederick Stock, and Tobias Wallner

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We consider algorithmic problems motivated by modular robotic reconfiguration in the sliding square model, in which we are given n square-shaped modules in a (labeled or unlabeled) start configuration and need to find a schedule of sliding moves to transform it into a desired goal configuration, maintaining connectivity of the configuration at all times. Recent work has aimed at minimizing the total number of moves, resulting in fully sequential schedules that can perform reconfiguration in 𝒪(n²) moves, or 𝒪(nP) for arrangements of bounding box perimeter size P. We provide first results in the sliding square model that exploit parallel motion, performing reconfiguration in worst-case optimal makespan of 𝒪(P). We also provide tight bounds on the complexity of the problem by showing that even deciding the possibility of reconfiguration within makespan 1 is NP-complete in the unlabeled case. In the labeled variant, we note that deciding the same for makespan 2 is NP-complete, while makespan 1 is straightforward.

Cite as

Hugo A. Akitaya, Sándor P. Fekete, Peter Kramer, Saba Molaei, Christian Rieck, Frederick Stock, and Tobias Wallner. Sliding Squares in Parallel. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 28:1-28:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{a.akitaya_et_al:LIPIcs.ESA.2025.28,
  author =	{A. Akitaya, Hugo and Fekete, S\'{a}ndor P. and Kramer, Peter and Molaei, Saba and Rieck, Christian and Stock, Frederick and Wallner, Tobias},
  title =	{{Sliding Squares in Parallel}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{28:1--28:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.28},
  URN =		{urn:nbn:de:0030-drops-244961},
  doi =		{10.4230/LIPIcs.ESA.2025.28},
  annote =	{Keywords: Sliding squares, parallel motion, reconfigurability, motion planning, multi-agent path finding, makespan, swarm robotics, computational geometry}
}
Document
Fréchet Distance in Unweighted Planar Graphs

Authors: Ivor van der Hoog, Thijs van der Horst, Eva Rotenberg, and Lasse Wulf

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The Fréchet distance is a distance measure between trajectories in ℝ^d or walks in a graph G. Given constant-time shortest path queries, the Discrete Fréchet distance D_G(P, Q) between two walks P and Q can be computed in O(|P|⋅|Q|) time using a dynamic program. Driemel, van der Hoog, and Rotenberg [SoCG'22] show that for weighted planar graphs this approach is likely tight, as there can be no strongly-subquadratic algorithm to compute a 1.01-approximation of D_G(P, Q) unless the Orthogonal Vector Hypothesis (OVH) fails. Such quadratic-time conditional lower bounds are common to many Fréchet distance variants. However, they can be circumvented by assuming that the input comes from some well-behaved class: There exist (1+ε)-approximations, both in weighted graphs and in ℝ^d, that take near-linear time for c-packed or κ-straight walks in the graph. In ℝ^d there also exists a near-linear time algorithm to compute the Fréchet distance whenever all input edges are long compared to the distance. We consider computing the Fréchet distance in unweighted planar graphs. We show that there exist no strongly-subquadratic 1.25-approximations of the discrete Fréchet distance between two disjoint simple paths in an unweighted planar graph in strongly subquadratic time, unless OVH fails. This improves the previous lower bound, both in terms of generality and approximation factor. We subsequently show that adding graph structure circumvents this lower bound: If the graph is a regular tiling with unit-weighted edges, then there exists an Õ((|P|+|Q|)^{1.5})-time algorithm to compute D_G(P, Q). Our result has natural implications in the plane, as it allows us to define a new class of well-behaved curves that facilitate (1+ε)-approximations of their discrete Fréchet distance in subquadratic time.

Cite as

Ivor van der Hoog, Thijs van der Horst, Eva Rotenberg, and Lasse Wulf. Fréchet Distance in Unweighted Planar Graphs. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 24:1-24:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{vanderhoog_et_al:LIPIcs.ESA.2025.24,
  author =	{van der Hoog, Ivor and van der Horst, Thijs and Rotenberg, Eva and Wulf, Lasse},
  title =	{{Fr\'{e}chet Distance in Unweighted Planar Graphs}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{24:1--24:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.24},
  URN =		{urn:nbn:de:0030-drops-244924},
  doi =		{10.4230/LIPIcs.ESA.2025.24},
  annote =	{Keywords: Fr\'{e}chet distance, planar graphs, lower bounds, approximation algorithms}
}
Document
Testing Depth First Search Numbering

Authors: Artur Czumaj, Christian Sohler, and Stefan Walzer

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Property Testing is a formal framework to study the computational power and complexity of sampling from combinatorial objects. A central goal in standard graph property testing is to understand which graph properties are testable with sublinear query complexity. Here, a graph property P is testable with a sublinear query complexity if there is an algorithm that makes a sublinear number of queries to the input graph and accepts with probability at least 2/3, if the graph has property P, and rejects with probability at least 2/3 if it is ε-far from every graph that has property P. In this paper, we introduce a new variant of the bounded degree graph model. In this variant, in addition to the standard representation of a bounded degree graph, we assume that every vertex v has a unique label num(v) from {1, … , |V|}, and in addition to the standard queries in the bounded degree graph model, we also allow a property testing algorithm to query for the label of a vertex (but not for a vertex with a given label). Our new model is motivated by certain graph processes such as a DFS traversal, which assign consecutive numbers (labels) to the vertices of the graph. We want to study which of these numberings can be tested in sublinear time. As a first step in understanding such a model, we develop a property testing algorithm for discovery times of a DFS traversal with query complexity O(n^{1/3}/ε) and for constant ε > 0 we give a matching lower bound.

Cite as

Artur Czumaj, Christian Sohler, and Stefan Walzer. Testing Depth First Search Numbering. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 78:1-78:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{czumaj_et_al:LIPIcs.ESA.2025.78,
  author =	{Czumaj, Artur and Sohler, Christian and Walzer, Stefan},
  title =	{{Testing Depth First Search Numbering}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{78:1--78:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.78},
  URN =		{urn:nbn:de:0030-drops-245466},
  doi =		{10.4230/LIPIcs.ESA.2025.78},
  annote =	{Keywords: Randomized Algorithms, Graph Algorithms, Property Testing}
}
Document
Bandwidth vs BFS Width in Matrix Reordering, Graph Reconstruction, and Graph Drawing

Authors: David Eppstein, Michael T. Goodrich, and Songyu (Alfred) Liu

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We provide the first approximation quality guarantees for the Cuthull-McKee heuristic for reordering symmetric matrices to have low bandwidth, and we provide an algorithm for reconstructing bounded-bandwidth graphs from distance oracles with near-linear query complexity. To prove these results we introduce a new width parameter, BFS width, and we prove polylogarithmic upper and lower bounds on the BFS width of graphs of bounded bandwidth. Unlike other width parameters, such as bandwidth, pathwidth, and treewidth, BFS width can easily be computed in polynomial time. Bounded BFS width implies bounded bandwidth, pathwidth, and treewidth, which in turn imply fixed-parameter tractable algorithms for many problems that are NP-hard for general graphs. In addition to their applications to matrix ordering, we also provide applications of BFS width to graph reconstruction, to reconstruct graphs from distance queries, and graph drawing, to construct arc diagrams of small height.

Cite as

David Eppstein, Michael T. Goodrich, and Songyu (Alfred) Liu. Bandwidth vs BFS Width in Matrix Reordering, Graph Reconstruction, and Graph Drawing. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 69:1-69:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{eppstein_et_al:LIPIcs.ESA.2025.69,
  author =	{Eppstein, David and Goodrich, Michael T. and Liu, Songyu (Alfred)},
  title =	{{Bandwidth vs BFS Width in Matrix Reordering, Graph Reconstruction, and Graph Drawing}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{69:1--69:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.69},
  URN =		{urn:nbn:de:0030-drops-245373},
  doi =		{10.4230/LIPIcs.ESA.2025.69},
  annote =	{Keywords: Graph algorithms, graph theory, graph width, bandwidth, treewidth}
}
Document
Linear Layouts Revisited: Stacks, Queues, and Exact Algorithms

Authors: Thomas Depian, Simon D. Fink, Robert Ganian, and Vaishali Surianarayanan

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
In spite of the extensive study of stack and queue layouts, many fundamental questions remain open concerning the complexity-theoretic frontiers for computing stack and queue layouts. A stack (resp. queue) layout places vertices along a line and assigns edges to pages so that no two edges on the same page are crossing (resp. nested). We provide three new algorithms which together substantially expand our understanding of these problems: 1) A fixed-parameter algorithm for computing minimum-page stack and queue layouts w.r.t. the vertex integrity of an n-vertex graph G. This result is motivated by an open question in the literature and generalizes the previous algorithms parameterizing by the vertex cover number of G. The proof relies on a newly developed Ramsey pruning technique. Vertex integrity intuitively measures the vertex deletion distance to a subgraph with only small connected components. 2) An n^𝒪(q 𝓁) algorithm for computing 𝓁-page stack and queue layouts of page width at most q. This is the first algorithm avoiding a double-exponential dependency on the parameters. The page width of a layout measures the maximum number of edges one needs to cross on any page to reach the outer face. 3) A 2^𝒪(n) algorithm for computing 1-page queue layouts. This improves upon the previously fastest n^𝒪(n) algorithm and can be seen as a counterpart to the recent subexponential algorithm for computing 2-page stack layouts [ICALP'24], but relies on an entirely different technique.

Cite as

Thomas Depian, Simon D. Fink, Robert Ganian, and Vaishali Surianarayanan. Linear Layouts Revisited: Stacks, Queues, and Exact Algorithms. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 15:1-15:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{depian_et_al:LIPIcs.ESA.2025.15,
  author =	{Depian, Thomas and Fink, Simon D. and Ganian, Robert and Surianarayanan, Vaishali},
  title =	{{Linear Layouts Revisited: Stacks, Queues, and Exact Algorithms}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{15:1--15:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.15},
  URN =		{urn:nbn:de:0030-drops-244835},
  doi =		{10.4230/LIPIcs.ESA.2025.15},
  annote =	{Keywords: stack layouts, queue layouts, parameterized algorithms, vertex integrity, Ramsey theory}
}
Document
Near-Optimal Differentially Private Graph Algorithms via the Multidimensional AboveThreshold Mechanism

Authors: Laxman Dhulipala, Monika Henzinger, George Z. Li, Quanquan C. Liu, A. R. Sricharan, and Leqi Zhu

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Many differentially private and classical non-private graph algorithms rely crucially on determining whether some property of each vertex meets a threshold. For example, for the k-core decomposition problem, the classic peeling algorithm iteratively removes a vertex if its induced degree falls below a threshold. The sparse vector technique (SVT) is generally used to transform non-private threshold queries into private ones with only a small additive loss in accuracy. However, a naive application of SVT in the graph setting leads to an amplification of the error by a factor of n due to composition, as SVT is applied to every vertex. In this paper, we resolve this problem by formulating a novel generalized sparse vector technique which we call the Multidimensional AboveThreshold (MAT) Mechanism which generalizes SVT (applied to vectors with one dimension) to vectors with multiple dimensions. When applied to vectors with n dimensions, we solve a number of important graph problems with better bounds than previous work. Specifically, we apply our MAT mechanism to obtain a set of improved bounds for a variety of problems including k-core decomposition, densest subgraph, low out-degree ordering, and vertex coloring. We give a tight local edge differentially private (LEDP) algorithm for k-core decomposition that results in an approximation with O(ε^{-1} log n) additive error and no multiplicative error in O(n) rounds. We also give a new (2+η)-factor multiplicative, O(ε^{-1} log n) additive error algorithm in O(log² n) rounds for any constant η > 0. Both of these results are asymptotically tight against our new lower bound of Ω(log n) for any constant-factor approximation algorithm for k-core decomposition. Our new algorithms for k-core decomposition also directly lead to new algorithms for the related problems of densest subgraph and low out-degree ordering. Finally, we give novel LEDP differentially private defective coloring algorithms that use number of colors given in terms of the arboricity of the graph.

Cite as

Laxman Dhulipala, Monika Henzinger, George Z. Li, Quanquan C. Liu, A. R. Sricharan, and Leqi Zhu. Near-Optimal Differentially Private Graph Algorithms via the Multidimensional AboveThreshold Mechanism. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 91:1-91:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dhulipala_et_al:LIPIcs.ESA.2025.91,
  author =	{Dhulipala, Laxman and Henzinger, Monika and Li, George Z. and Liu, Quanquan C. and Sricharan, A. R. and Zhu, Leqi},
  title =	{{Near-Optimal Differentially Private Graph Algorithms via the Multidimensional AboveThreshold Mechanism}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{91:1--91:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.91},
  URN =		{urn:nbn:de:0030-drops-245601},
  doi =		{10.4230/LIPIcs.ESA.2025.91},
  annote =	{Keywords: differential privacy, abovethreshold, densest subgraph}
}
Document
Formalizing the Hidden Number Problem in Isabelle/HOL

Authors: Sage Binder, Eric Ren, and Katherine Kosaian

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
We formalize the hidden number problem (HNP), as introduced in a seminal work by Boneh and Venkatesan in 1996, in Isabelle/HOL. Intuitively, the HNP involves demonstrating the existence of an algorithm (the "adversary") which can compute (with high probability) a hidden number α given access to a bit-leaking oracle. Originally developed to establish the security of Diffie-Hellman key exchange, the HNP has since been used not only for protocol security but also in cryptographic attacks, including notable ones on DSA and ECDSA. Further, as the HNP establishes an expressive paradigm for reasoning about security in the context of information leakage, many HNP variants for other specialized cryptographic applications have since been developed. A main contribution of our work is explicating and clarifying the HNP proof blueprint from the original source material; naturally, formalization forces us to make all assumptions and proof steps precise and transparent. For example, the source material did not explicitly define the adversary and only abstractly defined what information is being leaked; our formalization concretizes both definitions. Additionally, the HNP makes use of an instance of Babai’s nearest plane algorithm, which solves the approximate closest vector problem; we formalize this as a result of independent interest. Our formalizations of Babai’s algorithm and the HNP adversary are executable, setting up potential future work, e.g. in developing formally verified instances of cryptographic attacks.

Cite as

Sage Binder, Eric Ren, and Katherine Kosaian. Formalizing the Hidden Number Problem in Isabelle/HOL. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 23:1-23:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{binder_et_al:LIPIcs.ITP.2025.23,
  author =	{Binder, Sage and Ren, Eric and Kosaian, Katherine},
  title =	{{Formalizing the Hidden Number Problem in Isabelle/HOL}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{23:1--23:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.23},
  URN =		{urn:nbn:de:0030-drops-246216},
  doi =		{10.4230/LIPIcs.ITP.2025.23},
  annote =	{Keywords: hidden number problem, Babai’s nearest plane algorithm, cryptography, interactive theorem proving, Isabelle/HOL}
}
Document
Human-AI Interaction in Space: Insights from a Mars Analog Mission with the Harmony Large Language Model

Authors: Hippolyte Hilgers, Jean Vanderdonckt, and Radu-Daniel Vatavu

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
The operational complexities of space missions require reliable, context-aware technical assistance for astronauts, especially when technical expertise is not available onboard and communication with Earth is delayed or limited. In this context, Large Language Models present a promising opportunity to augment human capabilities. To this end, we present Harmony, a model designed to provide astronauts with real-time technical assistance, fostering human-AI collaboration during analog missions. We report empirical results from an experiment involving seven analog astronauts that evaluated their user experience with Harmony in both a conventional environment and an isolated, confined, and extreme physical setting at the Mars Desert Research Station over four sessions, and discuss how the Mars analog environment impacted their experience. Our findings reveal the extent to which human-AI interactions evolve across various user experience dimensions and suggest how Harmony can be further adapted to suit extreme environments, with a focus on SpaceCHI.

Cite as

Hippolyte Hilgers, Jean Vanderdonckt, and Radu-Daniel Vatavu. Human-AI Interaction in Space: Insights from a Mars Analog Mission with the Harmony Large Language Model. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 1:1-1:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{hilgers_et_al:OASIcs.SpaceCHI.2025.1,
  author =	{Hilgers, Hippolyte and Vanderdonckt, Jean and Vatavu, Radu-Daniel},
  title =	{{Human-AI Interaction in Space: Insights from a Mars Analog Mission with the Harmony Large Language Model}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{1:1--1:20},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.1},
  URN =		{urn:nbn:de:0030-drops-239912},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.1},
  annote =	{Keywords: Extreme user experience, Human-AI interaction, Isolated-confined-extreme environment, Interaction design, Large Language Models, Mars Desert Research Station, Space mission, Technical assistance, Technical documentation, User experience}
}
  • Refine by Type
  • 199 Document/PDF
  • 124 Document/HTML

  • Refine by Publication Year
  • 117 2025
  • 16 2024
  • 19 2023
  • 11 2022
  • 5 2021
  • Show More...

  • Refine by Author
  • 6 Karthik C. S.
  • 5 Woodruff, David P.
  • 4 Ene, Alina
  • 4 Kim Thang, Nguyen
  • 3 Balzer, Stephanie
  • Show More...

  • Refine by Series/Journal
  • 162 LIPIcs
  • 17 OASIcs
  • 1 DARTS
  • 5 LITES
  • 13 TGDK
  • Show More...

  • Refine by Classification
  • 13 Theory of computation → Computational geometry
  • 10 Theory of computation → Graph algorithms analysis
  • 10 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 9 Theory of computation → Approximation algorithms analysis
  • 9 Theory of computation → Design and analysis of algorithms
  • Show More...

  • Refine by Keyword
  • 6 Large Language Models
  • 5 Approximation Algorithms
  • 3 Clustering
  • 3 Combinatorial Optimization
  • 3 Differential Privacy
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail