196 Search Results for "Farach-Colton, Martin"


Volume

LIPIcs, Volume 274

31st Annual European Symposium on Algorithms (ESA 2023)

ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands

Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman

Volume

LIPIcs, Volume 157

10th International Conference on Fun with Algorithms (FUN 2021)

FUN 2021, May 30 to June 1, 2021, Favignana Island, Sicily, Italy

Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara

Document
Non-Boolean OMv: One More Reason to Believe Lower Bounds for Dynamic Problems

Authors: Bingbing Hu and Adam Polak

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Most of the known tight lower bounds for dynamic problems are based on the Online Boolean Matrix-Vector Multiplication (OMv) Hypothesis, which is not as well studied and understood as some more popular hypotheses in fine-grained complexity. It would be desirable to base hardness of dynamic problems on a more believable hypothesis. We propose analogues of the OMv Hypothesis for variants of matrix multiplication that are known to be harder than Boolean product in the offline setting, namely: equality, dominance, min-witness, min-max, and bounded monotone min-plus products. These hypotheses are a priori weaker assumptions than the standard (Boolean) OMv Hypothesis and yet we show that they are actually equivalent to it. This establishes the first such fine-grained equivalence class for dynamic problems.

Cite as

Bingbing Hu and Adam Polak. Non-Boolean OMv: One More Reason to Believe Lower Bounds for Dynamic Problems. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 54:1-54:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{hu_et_al:LIPIcs.ESA.2025.54,
  author =	{Hu, Bingbing and Polak, Adam},
  title =	{{Non-Boolean OMv: One More Reason to Believe Lower Bounds for Dynamic Problems}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{54:1--54:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.54},
  URN =		{urn:nbn:de:0030-drops-245228},
  doi =		{10.4230/LIPIcs.ESA.2025.54},
  annote =	{Keywords: Fine-grained complexity, OMv hypothesis, reductions, equivalence class}
}
Document
Fast Computation of k-Runs, Parameterized Squares, and Other Generalised Squares

Authors: Yuto Nakashima, Jakub Radoszewski, and Tomasz Waleń

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A k-mismatch square is a string of the form XY where X and Y are two equal-length strings that have at most k mismatches. Kolpakov and Kucherov [Theor. Comput. Sci., 2003] defined two notions of k-mismatch repeats, called k-repetitions and k-runs, each representing a sequence of consecutive k-mismatch squares of equal length. They proposed algorithms for computing k-repetitions and k-runs working in 𝒪(nklog k+output) time for a string of length n over an integer alphabet, where output is the number of the reported repeats. We show that output = 𝒪(nk log k), both in case of k-repetitions and k-runs, which implies that the complexity of their algorithms is actually 𝒪(nk log k). We apply this result to computing parameterized squares. A parameterized square is a string of the form XY such that X and Y parameterized-match, i.e., there exists a bijection f on the alphabet such that f(X) = Y. Two parameterized squares XY and X'Y' are equivalent if they parameterized match. Recently Hamai et al. [SPIRE 2024] showed that a string of length n over an alphabet of size σ contains less than nσ non-equivalent parameterized squares, improving an earlier bound by Kociumaka et al. [Theor. Comput. Sci., 2016]. We apply our bound for k-mismatch repeats to propose an algorithm that reports all non-equivalent parameterized squares in 𝒪(nσ log σ) time. We also show that the number of non-equivalent parameterized squares can be computed in 𝒪(n log n) time. This last algorithm applies to squares under any substring compatible equivalence relation and also to counting squares that are distinct as strings. In particular, this improves upon the 𝒪(nσ)-time algorithm of Gawrychowski et al. [CPM 2023] for counting order-preserving squares that are distinct as strings if σ = ω(log n).

Cite as

Yuto Nakashima, Jakub Radoszewski, and Tomasz Waleń. Fast Computation of k-Runs, Parameterized Squares, and Other Generalised Squares. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 8:1-8:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{nakashima_et_al:LIPIcs.ESA.2025.8,
  author =	{Nakashima, Yuto and Radoszewski, Jakub and Wale\'{n}, Tomasz},
  title =	{{Fast Computation of k-Runs, Parameterized Squares, and Other Generalised Squares}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{8:1--8:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.8},
  URN =		{urn:nbn:de:0030-drops-244768},
  doi =		{10.4230/LIPIcs.ESA.2025.8},
  annote =	{Keywords: string algorithm, k-mismatch square, parameterized square, order-preserving square, maximum gapped repeat}
}
Document
Constructing Long Paths in Graph Streams

Authors: Christian Konrad and Chhaya Trehan

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
In the graph stream model of computation, an algorithm processes the edges of an n-vertex input graph in one or more sequential passes while using a memory that is sublinear in the input size. The streaming model poses significant challenges for algorithmically constructing long paths. Many known algorithms that are tasked with extending an existing path as a subroutine require an entire pass over the input to add a single additional edge. This raises a fundamental question: Are multiple passes inherently necessary to construct paths of non-trivial lengths, or can a single pass suffice? To address this question, we systematically study the Longest Path problem in the one-pass streaming model. In this problem, given a desired approximation factor α, the objective is to compute a path of length at least lp(G)/α, where lp(G) is the length of a longest path in the input graph G. We study the problem in the insertion-only and the insertion-deletion streaming models, and we give algorithms as well as space lower bounds for both undirected and directed graphs. Our results are: 1) We show that for undirected graphs, in both the insertion-only and the insertion-deletion models, there are semi-streaming algorithms, i.e., algorithms that use space O(n poly log n), that compute a path of length at least d/3 with high probability, where d is the average degree of the input graph. These algorithms can also yield an α-approximation to Longest Path using space Õ(n²/α). 2) Next, we show that such a result cannot be achieved for directed graphs, even in the insertion-only model. We show that computing a (n^{1-o(1)})-approximation to Longest Path in directed graphs in the insertion-only model requires space Ω(n²). This result is in line with recent results that demonstrate that processing directed graphs is often significantly harder than undirected graphs in the streaming model. 3) We further complement our results with two additional lower bounds. First, we show that semi-streaming space is insufficient for small constant factor approximations to Longest Path for undirected graphs in the insertion-only model. Last, in undirected graphs in the insertion-deletion model, we show that computing an α-approximation requires space Ω(n²/α³).

Cite as

Christian Konrad and Chhaya Trehan. Constructing Long Paths in Graph Streams. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 22:1-22:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{konrad_et_al:LIPIcs.ESA.2025.22,
  author =	{Konrad, Christian and Trehan, Chhaya},
  title =	{{Constructing Long Paths in Graph Streams}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{22:1--22:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.22},
  URN =		{urn:nbn:de:0030-drops-244902},
  doi =		{10.4230/LIPIcs.ESA.2025.22},
  annote =	{Keywords: Longest Path Problem, Streaming Algorithms, One-way Two-party Communication Complexity}
}
Document
Fast and Memory-Efficient BWT Construction of Repetitive Texts Using Lyndon Grammars

Authors: Jannik Olbrich

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The Burrows-Wheeler Transform (BWT) serves as the basis for many important sequence indexes. On very large datasets (e.g. genomic databases), classical BWT construction algorithms are often infeasible because they usually need to have the entire dataset in main memory. Fortunately, such large datasets are often highly repetitive. It can thus be beneficial to compute the BWT from a compressed representation. We propose an algorithm for computing the BWT via the Lyndon straight-line program, a grammar based on the standard factorization of Lyndon words. Our algorithm can also be used to compute the extended BWT (eBWT) of a multiset of sequences. We empirically evaluate our implementation and find that we can compute the BWT and eBWT of very large datasets faster and/or with less memory than competing methods.

Cite as

Jannik Olbrich. Fast and Memory-Efficient BWT Construction of Repetitive Texts Using Lyndon Grammars. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 60:1-60:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{olbrich:LIPIcs.ESA.2025.60,
  author =	{Olbrich, Jannik},
  title =	{{Fast and Memory-Efficient BWT Construction of Repetitive Texts Using Lyndon Grammars}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{60:1--60:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.60},
  URN =		{urn:nbn:de:0030-drops-245286},
  doi =		{10.4230/LIPIcs.ESA.2025.60},
  annote =	{Keywords: Burrows-Wheeler Transform, Grammar compression}
}
Document
A Dynamic Piecewise-Linear Geometric Index with Worst-Case Guarantees

Authors: Emil Toftegaard Gæde, Ivor van der Hoog, Eva Rotenberg, and Tord Stordalen

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Indexing data is a fundamental problem in computer science. The input is a set S of n distinct integers from a universe 𝒰. Indexing queries take a value q ∈ 𝒰 and return the membership, predecessor or rank of q in S. A range query takes two values q, r ∈ 𝒰 and returns the set S ∩ [q,r]. Recently, various papers study a special case where the the input data behaves in an approximately piece-wise linear way. Given the sorted (rank,value) pairs, and given some constant ε, one wants to maintain a small number of axis-disjoint line-segments such that, for each rank, the value is within ± ε of the corresponding line-segment. Ferragina and Vinciguerra (VLDB 2020) observe that this geometric problem is useful for solving indexing problems, particularly when the number of line-segments is small compared to the size of the dataset. We study the dynamic version of this geometric problem. In the dynamic setting, inserting or deleting just one data point may cause up to three line-segments to be merged, or one line-segment to be split at most three-way. To determine and compute this, we use techniques from dynamic maintenance of convex hulls, and provide new algorithms with worst-case guarantees, including an O(log n) algorithm to compute a separating line between two non-intersecting convex hulls - an operation previously missing from the literature. We then use our fully-dynamic geometry-based subroutine in an indexing data structure, combining it with a natural hashing technique. The resulting indexing data structure has theoretically efficient worst-case guarantees in expectation. We compare its practical performance to the solution of Ferragina and Vinciguerra, which was shown to perform better in certain structured settings [Sun, Zhou, Li VLDB 2023]. Our empirical analysis shows that our solution supports more efficient range queries in the special case where the update sequence contains many deletions.

Cite as

Emil Toftegaard Gæde, Ivor van der Hoog, Eva Rotenberg, and Tord Stordalen. A Dynamic Piecewise-Linear Geometric Index with Worst-Case Guarantees. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 64:1-64:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gaede_et_al:LIPIcs.ESA.2025.64,
  author =	{G{\ae}de, Emil Toftegaard and van der Hoog, Ivor and Rotenberg, Eva and Stordalen, Tord},
  title =	{{A Dynamic Piecewise-Linear Geometric Index with Worst-Case Guarantees}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{64:1--64:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.64},
  URN =		{urn:nbn:de:0030-drops-245323},
  doi =		{10.4230/LIPIcs.ESA.2025.64},
  annote =	{Keywords: Algorithms Engineering, Data Structures, Indexing, Convex Hulls}
}
Document
Improved Dominance Filtering for Unions and Minkowski Sums of Pareto Sets

Authors: Konstantinos Karathanasis, Spyros Kontogiannis, and Christos Zaroliagis

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A key task in multi-objective optimization is to compute the Pareto frontier (a.k.a. Pareto subset) P of a given d-dimensional objective space F; that is, a maximal subset P ⊆ F such that every element in P is non-dominated (i.e., it is better in at least one criterion, against any other point) within F. This process, called dominance-filtering, often involves handling objective spaces derived from either the union or the Minkowski sum of two given partial objective spaces which are Pareto sets themselves, and constitutes a major bottleneck in several multi-objective optimization techniques. In this work, we introduce three new data structures, ND^{+}-trees, QND^{+}-trees and TND^{+}-trees, which are designed for efficiently indexing non-dominated objective vectors and performing dominance-checks. We also devise three new algorithms that efficiently filter out dominated objective vectors from the union or the Minkowski sum of two Pareto sets. An extensive experimental evaluation on both synthetically generated and real-world data sets reveals that our new algorithms outperform state-of-art techniques for dominance-filtering of unions and Minkowski sums of Pareto sets, and scale well w.r.t. the number of d ≥ 3 criteria and the sets' sizes.

Cite as

Konstantinos Karathanasis, Spyros Kontogiannis, and Christos Zaroliagis. Improved Dominance Filtering for Unions and Minkowski Sums of Pareto Sets. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 59:1-59:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{karathanasis_et_al:LIPIcs.ESA.2025.59,
  author =	{Karathanasis, Konstantinos and Kontogiannis, Spyros and Zaroliagis, Christos},
  title =	{{Improved Dominance Filtering for Unions and Minkowski Sums of Pareto Sets}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{59:1--59:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.59},
  URN =		{urn:nbn:de:0030-drops-245277},
  doi =		{10.4230/LIPIcs.ESA.2025.59},
  annote =	{Keywords: Multi-Objective Optimization, Multi-Dimensional Data Structures, Pareto Sets, Algorithm Engineering}
}
Document
Hardness of Median and Center in the Ulam Metric

Authors: Nick Fischer, Elazar Goldenberg, Mursalin Habib, and Karthik C. S.

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The classical rank aggregation problem seeks to combine a set X of n permutations into a single representative "consensus" permutation. In this paper, we investigate two fundamental rank aggregation tasks under the well-studied Ulam metric: computing a median permutation (which minimizes the sum of Ulam distances to X) and computing a center permutation (which minimizes the maximum Ulam distance to X) in two settings. - Continuous Setting: In the continuous setting, the median/center is allowed to be any permutation. It is known that computing a center in the Ulam metric is NP-hard and we add to this by showing that computing a median is NP-hard as well via a simple reduction from the Max-Cut problem. While this result may not be unexpected, it had remained elusive until now and confirms a speculation by Chakraborty, Das, and Krauthgamer [SODA '21]. - Discrete Setting: In the discrete setting, the median/center must be a permutation from the input set. We fully resolve the fine-grained complexity of the discrete median and discrete center problems under the Ulam metric, proving that the naive Õ(n² L)-time algorithm (where L is the length of the permutation) is conditionally optimal. This resolves an open problem raised by Abboud, Bateni, Cohen-Addad, Karthik C. S., and Seddighin [APPROX '23]. Our reductions are inspired by the known fine-grained lower bounds for similarity measures, but we face and overcome several new highly technical challenges.

Cite as

Nick Fischer, Elazar Goldenberg, Mursalin Habib, and Karthik C. S.. Hardness of Median and Center in the Ulam Metric. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 111:1-111:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{fischer_et_al:LIPIcs.ESA.2025.111,
  author =	{Fischer, Nick and Goldenberg, Elazar and Habib, Mursalin and Karthik C. S.},
  title =	{{Hardness of Median and Center in the Ulam Metric}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{111:1--111:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.111},
  URN =		{urn:nbn:de:0030-drops-245809},
  doi =		{10.4230/LIPIcs.ESA.2025.111},
  annote =	{Keywords: Ulam distance, median, center, rank aggregation, fine-grained complexity}
}
Document
Bootstrapping Dynamic APSP via Sparsification

Authors: Rasmus Kyng, Simon Meierhans, and Gernot Zöcklein

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We give a simple algorithm for the dynamic approximate All-Pairs Shortest Paths (APSP) problem. Given a graph G = (V, E, l) with polynomially bounded edge lengths, our data structure processes |E| edge insertions and deletions in total time |E|^{1+o(1)} and provides query access to |E|^o(1)-approximate distances in time Õ(1) per query. We produce a data structure that mimics Thorup-Zwick distance oracles [Thorup and Zwick, 2005], but is dynamic and deterministic. Our algorithm selects a small number of pivot vertices. Then, for every other vertex, it reduces distance computation to maintaining distances to a small neighborhood around that vertex and to the nearest pivot. We maintain distances between pivots efficiently by representing them in a smaller graph and recursing. We maintain these smaller graphs by (a) reducing vertex count using the dynamic distance-preserving core graphs of Kyng-Meierhans-Probst Gutenberg [Kyng et al., 2024] in a black-box manner and (b) reducing edge-count using a dynamic spanner akin to Chen-Kyng-Liu-Meierhans-Probst Gutenberg [Chen et al., 2024]. Our dynamic spanner internally uses an APSP data structure. Choosing a large enough size reduction factor in the first step allows us to simultaneously bootstrap a spanner and a dynamic APSP data structure. Notably, our approach does not need expander graphs, an otherwise ubiquitous tool in derandomization.

Cite as

Rasmus Kyng, Simon Meierhans, and Gernot Zöcklein. Bootstrapping Dynamic APSP via Sparsification. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 113:1-113:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kyng_et_al:LIPIcs.ESA.2025.113,
  author =	{Kyng, Rasmus and Meierhans, Simon and Z\"{o}cklein, Gernot},
  title =	{{Bootstrapping Dynamic APSP via Sparsification}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{113:1--113:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.113},
  URN =		{urn:nbn:de:0030-drops-245826},
  doi =		{10.4230/LIPIcs.ESA.2025.113},
  annote =	{Keywords: Dynamic Graph Algorithms, Spanners, Vertex Sparsification, Bootstrapping}
}
Document
Tight Bounds for Some Classical Problems Parameterized by Cutwidth

Authors: Narek Bojikian, Vera Chekan, and Stefan Kratsch

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Cutwidth is a widely studied parameter and it quantifies how well a graph can be decomposed along small edge-cuts. It complements pathwidth, which captures decomposition by small vertex separators, and it is well-known that cutwidth upper-bounds pathwidth. The SETH-tight parameterized complexity of problems on graphs of bounded pathwidth (and treewidth) has been actively studied over the past decade while for cutwidth the complexity of many classical problems remained open. For Hamiltonian Cycle, it is known that a (2+√2)^{pw} n^𝒪(1) algorithm is optimal for pathwidth under SETH [Cygan et al. JACM 2018]. Van Geffen et al. [J. Graph Algorithms Appl. 2020] and Bojikian et al. [STACS 2023] asked which running time is optimal for this problem parameterized by cutwidth. We answer this question with (1+√2)^{ctw} n^𝒪(1) by providing matching upper and lower bounds. Second, as our main technical contribution, we close the gap left by van Heck [2018] for Partition Into Triangles (and Triangle Packing) by improving both upper and lower bound and getting a tight bound of ∛{3}^{ctw} n^𝒪(1), which to our knowledge exhibits the only known tight non-integral basis apart from Hamiltonian Cycle [Cygan et al. JACM 2018] and C₄-Hitting Set [SODA 2025]. We show that the cuts inducing a disjoint union of paths of length three (unions of so-called Z-cuts) lie at the core of the complexity of the problem - usually lower-bound constructions use simpler cuts inducing either a matching or a disjoint union of bicliques. Finally, we determine the optimal running times for Max Cut (2^{ctw} n^𝒪(1)) and Induced Matching (3^{ctw} n^𝒪(1)) by providing matching lower bounds for the existing algorithms - the latter result also answers an open question for treewidth by Chaudhary and Zehavi [WG 2023].

Cite as

Narek Bojikian, Vera Chekan, and Stefan Kratsch. Tight Bounds for Some Classical Problems Parameterized by Cutwidth. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 13:1-13:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bojikian_et_al:LIPIcs.ESA.2025.13,
  author =	{Bojikian, Narek and Chekan, Vera and Kratsch, Stefan},
  title =	{{Tight Bounds for Some Classical Problems Parameterized by Cutwidth}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{13:1--13:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.13},
  URN =		{urn:nbn:de:0030-drops-244815},
  doi =		{10.4230/LIPIcs.ESA.2025.13},
  annote =	{Keywords: Parameterized complexity, cutwidth, Hamiltonian cycle, triangle packing, max cut, induced matching}
}
Document
Going Beyond Surfaces in Diameter Approximation

Authors: Michał Włodarczyk

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Calculating the diameter of an undirected graph requires quadratic running time under the Strong Exponential Time Hypothesis and this barrier works even against any approximation better than 3/2. For planar graphs with positive edge weights, there are known (1+ε)-approximation algorithms with running time poly(1/ε, log n)⋅ n. However, these algorithms rely on shortest path separators and this technique falls short to yield efficient algorithms beyond graphs of bounded genus. In this work we depart from embedding-based arguments and obtain diameter approximations relying on VC set systems and the local treewidth property. We present two orthogonal extensions of the planar case by giving (1+ε)-approximation algorithms with the following running times: - 𝒪_h((1/ε)^𝒪(h) ⋅ nlog² n)-time algorithm for graphs excluding an apex graph of size h as a minor, - 𝒪_d((1/ε)^𝒪(d) ⋅ nlog² n)-time algorithm for the class of d-apex graphs. As a stepping stone, we obtain efficient (1+ε)-approximate distance oracles for graphs excluding an apex graph of size h as a minor. Our oracle has preprocessing time 𝒪_h((1/ε)⁸⋅ nlog nlog W) and query time 𝒪_h((1/ε)²⋅log n log W), where W is the metric stretch. Such oracles have been so far only known for bounded genus graphs. All our algorithms are deterministic.

Cite as

Michał Włodarczyk. Going Beyond Surfaces in Diameter Approximation. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 39:1-39:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{wlodarczyk:LIPIcs.ESA.2025.39,
  author =	{W{\l}odarczyk, Micha{\l}},
  title =	{{Going Beyond Surfaces in Diameter Approximation}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{39:1--39:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.39},
  URN =		{urn:nbn:de:0030-drops-245076},
  doi =		{10.4230/LIPIcs.ESA.2025.39},
  annote =	{Keywords: diameter, approximation, distance oracles, graph minors, treewidth}
}
Document
(Multivariate) k-SUM as Barrier to Succinct Computation

Authors: Geri Gokaj, Marvin Künnemann, Sabine Storandt, and Carina Truschel

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
How does the time complexity of a problem change when the input is given succinctly rather than explicitly? We study this question for several geometric problems defined on a set X of N points in ℤ^d. As succinct representation, we choose a sumset (or Minkowski sum) representation: Instead of receiving X explicitly, we are given sets A,B of n points that define X as A+B = {a+b∣ a ∈ A,b ∈ B}. We investigate the fine-grained complexity of this succinct version for several Õ(N)-time computable geometric primitives. Remarkably, we can tie their complexity tightly to the complexity of corresponding k-SUM problems. Specifically, we introduce as All-ints 3-SUM(n,n,k) the following multivariate, multi-output variant of 3-SUM: given sets A,B of size n and set C of size k, determine for all c ∈ C whether there are a ∈ A and b ∈ B with a+b = c. We obtain the following results: 1) Succinct closest L_∞-pair requires time N^{1-o(1)} under the 3-SUM hypothesis, while succinct furthest L_∞-pair can be solved in time Õ(n). 2) Succinct bichromatic closest L_∞-Pair requires time N^{1-o(1)} iff the 4-SUM hypothesis holds. 3) The following problems are fine-grained equivalent to All-ints 3-SUM(n,n,k): succinct skyline computation in 2D with output size k and succinct batched orthogonal range search with k given ranges. This establishes conditionally tight Õ(min{nk, N})-time algorithms for these problems. We obtain further connections with All-ints 3-SUM(n,n,k) for succinctly computing independent sets in unit interval graphs. Thus, (Multivariate) k-SUM problems precisely capture the barrier for enabling sumset-succinct computation for various geometric primitives.

Cite as

Geri Gokaj, Marvin Künnemann, Sabine Storandt, and Carina Truschel. (Multivariate) k-SUM as Barrier to Succinct Computation. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 42:1-42:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gokaj_et_al:LIPIcs.ESA.2025.42,
  author =	{Gokaj, Geri and K\"{u}nnemann, Marvin and Storandt, Sabine and Truschel, Carina},
  title =	{{(Multivariate) k-SUM as Barrier to Succinct Computation}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{42:1--42:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.42},
  URN =		{urn:nbn:de:0030-drops-245101},
  doi =		{10.4230/LIPIcs.ESA.2025.42},
  annote =	{Keywords: Fine-grained complexity theory, sumsets, additive combinatorics, succinct inputs, computational geometry}
}
Document
Efficient Contractions of Dynamic Graphs - With Applications

Authors: Monika Henzinger, Evangelos Kosinas, Robin Münk, and Harald Räcke

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A non-trivial minimum cut (NMC) sparsifier is a multigraph Ĝ that preserves all non-trivial minimum cuts of a given undirected graph G. We introduce a flexible data structure for fully dynamic graphs that can efficiently provide an NMC sparsifier upon request at any point during the sequence of updates. We employ simple dynamic forest data structures to achieve a fast from-scratch construction of the sparsifier at query time. Based on the strength of the adversary and desired type of time bounds, the data structure comes with different guarantees. Specifically, let G be a fully dynamic simple graph with n vertices and minimum degree δ. Then our data structure supports an insertion/deletion of an edge to/from G in n^o(1) worst-case time. Furthermore, upon request, it can return w.h.p. an NMC sparsifier of G that has O(n/δ) vertices and O(n) edges, in Ô(n) time. The probabilistic guarantees hold against an adaptive adversary. Alternatively, the update and query times can be improved to Õ(1) and Õ(n) respectively, if amortized-time guarantees are sufficient, or if the adversary is oblivious. Throughout the paper, we use Õ to hide polylogarithmic factors and Ô to hide subpolynomial (i.e., n^o(1)) factors. We discuss two applications of our new data structure. First, it can be used to efficiently report a cactus representation of all minimum cuts of a fully dynamic simple graph. Building this cactus for the NMC sparsifier instead of the original graph allows for a construction time that is sublinear in the number of edges. Against an adaptive adversary, we can with high probability output the cactus representation in worst-case Ô(n) time. Second, our data structure allows us to efficiently compute the maximal k-edge-connected subgraphs of undirected simple graphs, by repeatedly applying a minimum cut algorithm on the NMC sparsifier. Specifically, we can compute with high probability the maximal k-edge-connected subgraphs of a simple graph with n vertices and m edges in Õ(m+n²/k) time. This improves the best known time bounds for k = Ω(n^{1/8}) and naturally extends to the case of fully dynamic graphs.

Cite as

Monika Henzinger, Evangelos Kosinas, Robin Münk, and Harald Räcke. Efficient Contractions of Dynamic Graphs - With Applications. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 36:1-36:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{henzinger_et_al:LIPIcs.ESA.2025.36,
  author =	{Henzinger, Monika and Kosinas, Evangelos and M\"{u}nk, Robin and R\"{a}cke, Harald},
  title =	{{Efficient Contractions of Dynamic Graphs - With Applications}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{36:1--36:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.36},
  URN =		{urn:nbn:de:0030-drops-245047},
  doi =		{10.4230/LIPIcs.ESA.2025.36},
  annote =	{Keywords: Graph Algorithms, Cut Sparsifiers, Dynamic Algorithms}
}
Document
Buffered Partially-Persistent External-Memory Search Trees

Authors: Gerth Stølting Brodal, Casper Moldrup Rysgaard, and Rolf Svenning

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We present an optimal partially-persistent external-memory search tree with amortized I/O bounds matching those achieved by the non-persistent B^{ε}-tree by Brodal and Fagerberg [SODA 2003]. In a partially-persistent data structure, each update creates a new version. All past versions can be queried, but only the current version can be updated. Operations should be efficient with respect to the size N_v of the accessed version v. For any parameter 0 < ε < 1, our data structure supports insertions and deletions in amortized 𝒪(1/(ε B^{1 - ε}) log_B N_v) I/Os, where B is the external-memory block size. It also supports successor and range reporting queries in amortized 𝒪(1/ε log_B N_v + K/B) I/Os, where K is the number of keys reported. The space usage of the data structure is linear in the total number of updates. We make the standard and minimal assumption that the internal memory has size M ≥ 2B. The previous state-of-the-art external-memory partially-persistent search tree by Arge, Danner and Teh [JEA 2003] supports all operations in worst-case 𝒪(log_B N_v + K/B) I/Os, matching the bounds achieved by the classical B-tree by Bayer and McCreight [Acta Informatica 1972]. Our data structure successfully combines buffering updates with partial persistence. The I/O bounds can also be achieved in the worst-case sense, by slightly modifying our data structure and under the requirement that the memory size M = Ω(B^{1-ε} log₂(max_v N_v)). For updates, where the I/O bound is o(1), we assume that the I/Os are performed evenly spread out among the updates (by performing buffer-overflows incrementally). The worst-case result slightly improves the memory requirement over the previous ephemeral external-memory dictionary by Das, Iacono, and Nekrich (ISAAC 2022), who achieved matching worst-case I/O bounds but required M = Ω(B log_B N), where N is the size of the current dictionary.

Cite as

Gerth Stølting Brodal, Casper Moldrup Rysgaard, and Rolf Svenning. Buffered Partially-Persistent External-Memory Search Trees. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 82:1-82:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{brodal_et_al:LIPIcs.ESA.2025.82,
  author =	{Brodal, Gerth St{\o}lting and Rysgaard, Casper Moldrup and Svenning, Rolf},
  title =	{{Buffered Partially-Persistent External-Memory Search Trees}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{82:1--82:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.82},
  URN =		{urn:nbn:de:0030-drops-245507},
  doi =		{10.4230/LIPIcs.ESA.2025.82},
  annote =	{Keywords: B-tree, buffered updates, partial persistence, external memory}
}
  • Refine by Type
  • 194 Document/PDF
  • 51 Document/HTML
  • 2 Volume

  • Refine by Publication Year
  • 51 2025
  • 1 2024
  • 108 2023
  • 1 2022
  • 29 2020
  • Show More...

  • Refine by Author
  • 7 Farach-Colton, Martin
  • 7 Farach-Colton, Martín
  • 5 Gørtz, Inge Li
  • 5 Saurabh, Saket
  • 4 Radoszewski, Jakub
  • Show More...

  • Refine by Series/Journal
  • 190 LIPIcs
  • 2 OASIcs
  • 2 DagRep

  • Refine by Classification
  • 24 Theory of computation → Design and analysis of algorithms
  • 24 Theory of computation → Parameterized complexity and exact algorithms
  • 23 Theory of computation → Graph algorithms analysis
  • 21 Theory of computation → Computational geometry
  • 16 Mathematics of computing → Graph algorithms
  • Show More...

  • Refine by Keyword
  • 7 Approximation Algorithms
  • 6 Parameterized Complexity
  • 5 parameterized complexity
  • 4 Burrows-Wheeler Transform
  • 4 external memory
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail