36 Search Results for "Franco, David"


Document
Connected Partitions via Connected Dominating Sets

Authors: Aikaterini Niklanovits, Kirill Simonov, Shaily Verma, and Ziena Zeif

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The classical theorem due to Győri and Lovász states that any k-connected graph G admits a partition into k connected subgraphs, where each subgraph has a prescribed size and contains a prescribed vertex, as long as the total size of target subgraphs is equal to the size of G. However, this result is notoriously evasive in terms of efficient constructions, and it is still unknown whether such a partition can be computed in polynomial time, even for k = 5. We make progress towards an efficient constructive version of the Győri-Lovász theorem by considering a natural strengthening of the k-connectivity requirement. Specifically, we show that the desired connected partition can be found in polynomial time, if G contains k disjoint connected dominating sets. As a consequence of this result, we give several efficient approximate and exact constructive versions of the original Győri-Lovász theorem: - On general graphs, a Győri-Lovász partition with k parts can be computed in polynomial time when the input graph has connectivity Ω(k ⋅ log² n); - On convex bipartite graphs, connectivity of 4k is sufficient; - On biconvex graphs and interval graphs, connectivity of k is sufficient, meaning that our algorithm gives a "true" constructive version of the theorem on these graph classes.

Cite as

Aikaterini Niklanovits, Kirill Simonov, Shaily Verma, and Ziena Zeif. Connected Partitions via Connected Dominating Sets. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 10:1-10:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{niklanovits_et_al:LIPIcs.ESA.2025.10,
  author =	{Niklanovits, Aikaterini and Simonov, Kirill and Verma, Shaily and Zeif, Ziena},
  title =	{{Connected Partitions via Connected Dominating Sets}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{10:1--10:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.10},
  URN =		{urn:nbn:de:0030-drops-244785},
  doi =		{10.4230/LIPIcs.ESA.2025.10},
  annote =	{Keywords: Gy\H{o}ri-Lov\'{a}sz theorem, connected dominating sets, graph classes}
}
Document
On the Satisfiability of Random 3-SAT Formulas with k-Wise Independent Clauses

Authors: Ioannis Caragiannis, Nick Gravin, and Zhile Jiang

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The problem of identifying the satisfiability threshold of random 3-SAT formulas has received a lot of attention during the last decades and has inspired the study of other threshold phenomena in random combinatorial structures. The classical assumption in this line of research is that, for a given set of n Boolean variables, each clause is drawn uniformly at random among all sets of three literals from these variables, independently from other clauses. Here, we keep the uniform distribution of each clause, but deviate significantly from the independence assumption and consider richer families of probability distributions. For integer parameters n, m, and k, we denote by ℱ_k(n,m) the family of probability distributions that produce formulas with m clauses, each selected uniformly at random from all sets of three literals from the n variables, so that the clauses are k-wise independent. Our aim is to make general statements about the satisfiability or unsatisfiability of formulas produced by distributions in ℱ_k(n,m) for different values of the parameters n, m, and k. Our technical results are as follows: First, all probability distributions in ℱ₂(n,m) with m ∈ Ω(n³) return unsatisfiable formulas with high probability. This result is tight. We show that there exists a probability distribution 𝒟 ∈ ℱ₃(n,m) with m ∈ O(n³) so that a random formula drawn from 𝒟 is almost always satisfiable. In contrast, for m ∈ Ω(n²), any probability distribution 𝒟 ∈ ℱ₄(n,m) returns an unsatisfiable formula with high probability. This is our most surprising and technically involved result. Finally, for any integer k ≥ 2, any probability distribution 𝒟 ∈ ℱ_k(n,m) with m ∈ O(n^{1-1/k}) returns a satisfiable formula with high probability.

Cite as

Ioannis Caragiannis, Nick Gravin, and Zhile Jiang. On the Satisfiability of Random 3-SAT Formulas with k-Wise Independent Clauses. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 103:1-103:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{caragiannis_et_al:LIPIcs.ESA.2025.103,
  author =	{Caragiannis, Ioannis and Gravin, Nick and Jiang, Zhile},
  title =	{{On the Satisfiability of Random 3-SAT Formulas with k-Wise Independent Clauses}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{103:1--103:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.103},
  URN =		{urn:nbn:de:0030-drops-245721},
  doi =		{10.4230/LIPIcs.ESA.2025.103},
  annote =	{Keywords: Random 3-SAT, k-wise independence, Random bipartite graph}
}
Document
Compact Representation of Semilinear and Terrain-Like Graphs

Authors: Jean Cardinal and Yelena Yuditsky

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We consider the existence and construction of biclique covers of graphs, consisting of coverings of their edge sets by complete bipartite graphs. The size of such a cover is the sum of the sizes of the bicliques. Small-size biclique covers of graphs are ubiquitous in computational geometry, and have been shown to be useful compact representations of graphs. We give a brief survey of classical and recent results on biclique covers and their applications, and give new families of graphs having biclique covers of near-linear size. In particular, we show that semilinear graphs, whose edges are defined by linear relations in bounded dimensional space, always have biclique covers of size O(npolylog n). This generalizes many previously known results on special classes of graphs including interval graphs, permutation graphs, and graphs of bounded boxicity, but also new classes such as intersection graphs of L-shapes in the plane. It also directly implies the bounds for Zarankiewicz’s problem derived by Basit, Chernikov, Starchenko, Tao, and Tran (Forum Math. Sigma, 2021). We also consider capped graphs, also known as terrain-like graphs, defined as ordered graphs forbidding a certain ordered pattern on four vertices. Terrain-like graphs contain the induced subgraphs of terrain visibility graphs. We give an elementary proof that these graphs admit biclique partitions of size O(nlog³ n). This provides a simple combinatorial analogue of a classical result from Agarwal, Alon, Aronov, and Suri on polygon visibility graphs (Discrete Comput. Geom. 1994). Finally, we prove that there exists families of unit disk graphs on n vertices that do not admit biclique coverings of size o(n^{4/3}), showing that we are unlikely to improve on Szemerédi-Trotter type incidence bounds for higher-degree semialgebraic graphs.

Cite as

Jean Cardinal and Yelena Yuditsky. Compact Representation of Semilinear and Terrain-Like Graphs. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 67:1-67:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cardinal_et_al:LIPIcs.ESA.2025.67,
  author =	{Cardinal, Jean and Yuditsky, Yelena},
  title =	{{Compact Representation of Semilinear and Terrain-Like Graphs}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{67:1--67:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.67},
  URN =		{urn:nbn:de:0030-drops-245359},
  doi =		{10.4230/LIPIcs.ESA.2025.67},
  annote =	{Keywords: Biclique covers, intersection graphs, visibility graphs, Zarankiewicz’s problem}
}
Document
(Multivariate) k-SUM as Barrier to Succinct Computation

Authors: Geri Gokaj, Marvin Künnemann, Sabine Storandt, and Carina Truschel

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
How does the time complexity of a problem change when the input is given succinctly rather than explicitly? We study this question for several geometric problems defined on a set X of N points in ℤ^d. As succinct representation, we choose a sumset (or Minkowski sum) representation: Instead of receiving X explicitly, we are given sets A,B of n points that define X as A+B = {a+b∣ a ∈ A,b ∈ B}. We investigate the fine-grained complexity of this succinct version for several Õ(N)-time computable geometric primitives. Remarkably, we can tie their complexity tightly to the complexity of corresponding k-SUM problems. Specifically, we introduce as All-ints 3-SUM(n,n,k) the following multivariate, multi-output variant of 3-SUM: given sets A,B of size n and set C of size k, determine for all c ∈ C whether there are a ∈ A and b ∈ B with a+b = c. We obtain the following results: 1) Succinct closest L_∞-pair requires time N^{1-o(1)} under the 3-SUM hypothesis, while succinct furthest L_∞-pair can be solved in time Õ(n). 2) Succinct bichromatic closest L_∞-Pair requires time N^{1-o(1)} iff the 4-SUM hypothesis holds. 3) The following problems are fine-grained equivalent to All-ints 3-SUM(n,n,k): succinct skyline computation in 2D with output size k and succinct batched orthogonal range search with k given ranges. This establishes conditionally tight Õ(min{nk, N})-time algorithms for these problems. We obtain further connections with All-ints 3-SUM(n,n,k) for succinctly computing independent sets in unit interval graphs. Thus, (Multivariate) k-SUM problems precisely capture the barrier for enabling sumset-succinct computation for various geometric primitives.

Cite as

Geri Gokaj, Marvin Künnemann, Sabine Storandt, and Carina Truschel. (Multivariate) k-SUM as Barrier to Succinct Computation. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 42:1-42:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gokaj_et_al:LIPIcs.ESA.2025.42,
  author =	{Gokaj, Geri and K\"{u}nnemann, Marvin and Storandt, Sabine and Truschel, Carina},
  title =	{{(Multivariate) k-SUM as Barrier to Succinct Computation}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{42:1--42:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.42},
  URN =		{urn:nbn:de:0030-drops-245101},
  doi =		{10.4230/LIPIcs.ESA.2025.42},
  annote =	{Keywords: Fine-grained complexity theory, sumsets, additive combinatorics, succinct inputs, computational geometry}
}
Document
Fault-Tolerant Matroid Bases

Authors: Matthias Bentert, Fedor V. Fomin, Petr A. Golovach, and Laure Morelle

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We investigate the problem of constructing fault-tolerant bases in matroids. Given a matroid ℳ and a redundancy parameter k, a k-fault-tolerant basis is a minimum-size set of elements such that, even after the removal of any k elements, the remaining subset still spans the entire ground set. Since matroids generalize linear independence across structures such as vector spaces, graphs, and set systems, this problem unifies and extends several fault-tolerant concepts appearing in prior research. Our main contribution is a fixed-parameter tractable (FPT) algorithm for the k-fault-tolerant basis problem, parameterized by both k and the rank r of the matroid. This two-variable parameterization by k + r is shown to be tight in the following sense. On the one hand, the problem is already NP-hard for k = 1. On the other hand, it is Para-NP-hard for r ≥ 3 and polynomial-time solvable for r ≤ 2.

Cite as

Matthias Bentert, Fedor V. Fomin, Petr A. Golovach, and Laure Morelle. Fault-Tolerant Matroid Bases. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 83:1-83:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bentert_et_al:LIPIcs.ESA.2025.83,
  author =	{Bentert, Matthias and Fomin, Fedor V. and Golovach, Petr A. and Morelle, Laure},
  title =	{{Fault-Tolerant Matroid Bases}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{83:1--83:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.83},
  URN =		{urn:nbn:de:0030-drops-245511},
  doi =		{10.4230/LIPIcs.ESA.2025.83},
  annote =	{Keywords: Parameterized Complexity, matroids, robust bases}
}
Document
Movement in Low Gravity (MoLo) – LUNA: Biomechanical Modelling to Mitigate Lunar Surface Operation Risks

Authors: David Andrew Green

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
The Artemis programme seeks to develop and test concepts, hardware and approaches to support long term habitation of the Lunar surface, and future missions to Mars. In preparation for the Artemis missions determination of tasks to be performed, the functional requirements of such tasks and as mission duration extends whether physiological deconditioning becomes functionally significant, compromising the crew member’s ability to perform critical tasks on the surface, and/or upon return to earth [MoLo-LUNA – leveraging the Molo programme (and several other activities) - could become a key supporting activity for LUNA incl. validation of the Puppeteer offloading system itself via creation of a complementary MoLo-LUNA-LAB. Furthermore, the MoLo-LUNA programme could become a key facilitator of simulator suit instrumentation/definition, broader astronaut training activities and mission architecture development – including Artemis mission simulations. By employing a Puppeteer system external to the LUNA chamber hall it will optimise utilisation and cost-effectiveness of LUNA, and as such represents a critical service to future LUNA stakeholders. Furthermore, MoLo-LUNA would generate a unique data set that can be leveraged to predict de-conditioning on the Lunar surface - and thereby optimise functionality, and minimise mission risk – including informing the need for, and prescription of exercise countermeasures on the Lunar Surface and in transit. Thus, MoLo-LUNA offers a unique opportunity to place LUNA, and ESA as a key ongoing provider of evidence to define, optimise and support crew Artemis surface missions.

Cite as

David Andrew Green. Movement in Low Gravity (MoLo) – LUNA: Biomechanical Modelling to Mitigate Lunar Surface Operation Risks. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 26:1-26:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{green:OASIcs.SpaceCHI.2025.26,
  author =	{Green, David Andrew},
  title =	{{Movement in Low Gravity (MoLo) – LUNA: Biomechanical Modelling to Mitigate Lunar Surface Operation Risks}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{26:1--26:11},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.26},
  URN =		{urn:nbn:de:0030-drops-240166},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.26},
  annote =	{Keywords: Locomotion, hypogravity, modelling, Lunar}
}
Document
RANDOM
Sharp Thresholds for the Overlap Gap Property: Ising p-Spin Glass and Random k-SAT

Authors: Eren C. Kızıldağ

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
The Ising p-spin glass and random k-SAT are two canonical examples of disordered systems that play a central role in understanding the link between geometric features of optimization landscapes and computational tractability. Both models exhibit hard regimes where all known polynomial-time algorithms fail and possess the multi Overlap Gap Property (m-OGP), an intricate geometrical property that rigorously rules out a broad class of algorithms exhibiting input stability. We establish that, in both models, the symmetric m-OGP undergoes a sharp phase transition, and we pinpoint its exact threshold. For the Ising p-spin glass, our results hold for all sufficiently large p; for the random k-SAT, they apply to all k growing mildly with the number of Boolean variables. Notably, our findings yield qualitative insights into the power of OGP-based arguments. A particular consequence for the Ising p-spin glass is that the strength of the m-OGP in establishing algorithmic hardness grows without bound as m increases. These are the first sharp threshold results for the m-OGP. Our analysis hinges on a judicious application of the second moment method, enhanced by concentration. While a direct second moment calculation fails, we overcome this via a refined approach that leverages an argument of Frieze [Frieze, 1990] and exploiting concentration properties of carefully constructed random variables.

Cite as

Eren C. Kızıldağ. Sharp Thresholds for the Overlap Gap Property: Ising p-Spin Glass and Random k-SAT. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 48:1-48:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kizildag:LIPIcs.APPROX/RANDOM.2025.48,
  author =	{K{\i}z{\i}lda\u{g}, Eren C.},
  title =	{{Sharp Thresholds for the Overlap Gap Property: Ising p-Spin Glass and Random k-SAT}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{48:1--48:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.48},
  URN =		{urn:nbn:de:0030-drops-244147},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.48},
  annote =	{Keywords: spin glasses, p-spin model, random constraint satisfaction problems, overlap gap property, phase transitions, computational complexity}
}
Document
Quantum Speedups for Polynomial-Time Dynamic Programming Algorithms

Authors: Susanna Caroppo, Giordano Da Lozzo, Giuseppe Di Battista, Michael T. Goodrich, and Martin Nöllenburg

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
We introduce a quantum dynamic programming framework that allows us to directly extend to the quantum realm a large body of classical dynamic programming algorithms. The corresponding quantum dynamic programming algorithms retain the same space complexity as their classical counterpart, while achieving a computational speedup. For a combinatorial (search or optimization) problem P and an instance I of P, such a speedup can be expressed in terms of the average degree δ of the {dependency digraph} G_𝒫(I) of I, determined by a recursive formulation of P. The nodes of this graph are the subproblems of P induced by I and its arcs are directed from each subproblem to those on whose solution it relies. In particular, our framework allows us to solve the considered problems in Õ(|V(G_𝒫(I))| √δ) time. As an example, we obtain a quantum version of the Bellman-Ford algorithm for computing shortest paths from a single source vertex to all the other vertices in a weighted n-vertex digraph with m edges that runs in Õ(n√{nm}) time, which improves the best known classical upper bound when m ∈ Ω(n^{1.4}).

Cite as

Susanna Caroppo, Giordano Da Lozzo, Giuseppe Di Battista, Michael T. Goodrich, and Martin Nöllenburg. Quantum Speedups for Polynomial-Time Dynamic Programming Algorithms. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 14:1-14:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{caroppo_et_al:LIPIcs.WADS.2025.14,
  author =	{Caroppo, Susanna and Da Lozzo, Giordano and Di Battista, Giuseppe and Goodrich, Michael T. and N\"{o}llenburg, Martin},
  title =	{{Quantum Speedups for Polynomial-Time Dynamic Programming Algorithms}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{14:1--14:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.14},
  URN =		{urn:nbn:de:0030-drops-242454},
  doi =		{10.4230/LIPIcs.WADS.2025.14},
  annote =	{Keywords: Dynamic Programming, Quantum Algorithms, Quantum Random Access Memory}
}
Document
Computational Geometry with Probabilistically Noisy Primitive Operations

Authors: David Eppstein, Michael T. Goodrich, and Vinesh Sridhar

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
Much prior work has been done on designing computational geometry algorithms that handle input degeneracies, data imprecision, and arithmetic round-off errors. We take a new approach, inspired by the noisy sorting literature, and study computational geometry algorithms subject to noisy Boolean primitive operations in which, e.g., the comparison "is point q above line 𝓁?" returns the wrong answer with some fixed probability. We propose a novel technique called path-guided pushdown random walks that generalizes the results of noisy sorting. We apply this technique to solve point-location, plane-sweep, convex hulls in 2D and 3D, and Delaunay triangulations for noisy primitives in optimal time with high probability.

Cite as

David Eppstein, Michael T. Goodrich, and Vinesh Sridhar. Computational Geometry with Probabilistically Noisy Primitive Operations. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 24:1-24:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{eppstein_et_al:LIPIcs.WADS.2025.24,
  author =	{Eppstein, David and Goodrich, Michael T. and Sridhar, Vinesh},
  title =	{{Computational Geometry with Probabilistically Noisy Primitive Operations}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{24:1--24:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.24},
  URN =		{urn:nbn:de:0030-drops-242552},
  doi =		{10.4230/LIPIcs.WADS.2025.24},
  annote =	{Keywords: Computational geometry, noisy comparisons, random walks}
}
Document
On the Complexity of Minimising the Moving Distance for Dispersing Objects

Authors: Nicolás Honorato-Droguett, Kazuhiro Kurita, Tesshu Hanaka, and Hirotaka Ono

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
We study Geometric Graph Edit Distance (GGED), a graph-editing model to compute the minimum edit distance of intersection graphs that uses moving objects as an edit operation. We first show an O(n log n)-time algorithm that minimises the total moving distance to disperse unit intervals. This algorithm is applied to render a given unit interval graph (i) edgeless, (ii) acyclic and (iii) k-clique-free. We next show that GGED becomes strongly NP-hard when rendering a weighted interval graph (i) edgeless, (ii) acyclic and (iii) k-clique-free. Lastly, we prove that minimising the maximum moving distance for rendering a unit disk graph edgeless is strongly NP-hard over the L₁ and L₂ distances.

Cite as

Nicolás Honorato-Droguett, Kazuhiro Kurita, Tesshu Hanaka, and Hirotaka Ono. On the Complexity of Minimising the Moving Distance for Dispersing Objects. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 36:1-36:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{honoratodroguett_et_al:LIPIcs.WADS.2025.36,
  author =	{Honorato-Droguett, Nicol\'{a}s and Kurita, Kazuhiro and Hanaka, Tesshu and Ono, Hirotaka},
  title =	{{On the Complexity of Minimising the Moving Distance for Dispersing Objects}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{36:1--36:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.36},
  URN =		{urn:nbn:de:0030-drops-242673},
  doi =		{10.4230/LIPIcs.WADS.2025.36},
  annote =	{Keywords: Intersection graphs, Optimisation, Graph modification}
}
Document
Generalized De Bruijn Words, Invertible Necklaces, and the Burrows-Wheeler Transform

Authors: Gabriele Fici and Estéban Gabory

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
We define generalized de Bruijn words as those words having a Burrows-Wheeler transform that is a concatenation of permutations of the alphabet. We show that generalized de Bruijn words are in 1-to-1 correspondence with Hamiltonian cycles in the generalized de Bruijn graphs, introduced in the early '80s in the context of network design. When the size of the alphabet is a prime p, we define invertible necklaces as those whose BWT-matrix is non-singular. We show that invertible necklaces of length n correspond to normal bases of the finite field 𝔽_{pⁿ}, and that they form an Abelian group isomorphic to the Reutenauer group RG_pⁿ. Using known results in abstract algebra, we can make a bridge between generalized de Bruijn words and invertible necklaces. In particular, we highlight a correspondence between binary de Bruijn words of order d+1, binary necklaces of length 2^{d} having an odd number of 1’s, invertible BWT matrices of size 2^{d}× 2^{d}, and normal bases of the finite field 𝔽_{2^{2^{d}}}.

Cite as

Gabriele Fici and Estéban Gabory. Generalized De Bruijn Words, Invertible Necklaces, and the Burrows-Wheeler Transform. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 48:1-48:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{fici_et_al:LIPIcs.MFCS.2025.48,
  author =	{Fici, Gabriele and Gabory, Est\'{e}ban},
  title =	{{Generalized De Bruijn Words, Invertible Necklaces, and the Burrows-Wheeler Transform}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{48:1--48:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.48},
  URN =		{urn:nbn:de:0030-drops-241555},
  doi =		{10.4230/LIPIcs.MFCS.2025.48},
  annote =	{Keywords: Burrows-Wheeler Transform, Generalized de Bruijn Word, Generalized de Bruijn Graph, Circulant Matrix, Invertible Necklace, Sandpile Group, Reutenauer Group}
}
Document
Just Verification of Mutual Exclusion Algorithms

Authors: Rob van Glabbeek, Bas Luttik, and Myrthe S. C. Spronck

Published in: LIPIcs, Volume 348, 36th International Conference on Concurrency Theory (CONCUR 2025)


Abstract
We verify the correctness of a variety of mutual exclusion algorithms through model checking. We look at algorithms where communication is via shared read/write registers, where those registers can be atomic or non-atomic. For the verification of liveness properties, it is necessary to assume a completeness criterion to eliminate spurious counterexamples. We use justness as completeness criterion. Justness depends on a concurrency relation; we consider several such relations, modelling different assumptions on the working of the shared registers. We present executions demonstrating the violation of correctness properties by several algorithms, and in some cases suggest improvements.

Cite as

Rob van Glabbeek, Bas Luttik, and Myrthe S. C. Spronck. Just Verification of Mutual Exclusion Algorithms. In 36th International Conference on Concurrency Theory (CONCUR 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 348, pp. 17:1-17:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{vanglabbeek_et_al:LIPIcs.CONCUR.2025.17,
  author =	{van Glabbeek, Rob and Luttik, Bas and Spronck, Myrthe S. C.},
  title =	{{Just Verification of Mutual Exclusion Algorithms}},
  booktitle =	{36th International Conference on Concurrency Theory (CONCUR 2025)},
  pages =	{17:1--17:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-389-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{348},
  editor =	{Bouyer, Patricia and van de Pol, Jaco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2025.17},
  URN =		{urn:nbn:de:0030-drops-239670},
  doi =		{10.4230/LIPIcs.CONCUR.2025.17},
  annote =	{Keywords: Mutual exclusion, safe registers, regular registers, overlapping reads and writes, atomicity, safety, liveness, starvation freedom, justness, model checking, mCRL2}
}
Document
Abstract Subtyping for Asynchronous Multiparty Sessions

Authors: Laura Bocchi, Andy King, Maurizio Murgia, and Simon Thompson

Published in: LIPIcs, Volume 348, 36th International Conference on Concurrency Theory (CONCUR 2025)


Abstract
Session subtyping answers the question of whether a program in a communicating system can be safely substituted for another, when their communication behaviour is described by session types. Asynchronous session subtyping is undecidable, even for two participants, hence the interest in sound, but incomplete, subtyping algorithms. Asynchronous multiparty subtyping can be formulated by decomposing session types into single input and output types which preclude, respectively, external and internal choice. This paper shows how abstract interpretation can sit atop this approach and how it leads to an algorithm that can prove subtyping for intricate communication patterns.

Cite as

Laura Bocchi, Andy King, Maurizio Murgia, and Simon Thompson. Abstract Subtyping for Asynchronous Multiparty Sessions. In 36th International Conference on Concurrency Theory (CONCUR 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 348, pp. 10:1-10:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bocchi_et_al:LIPIcs.CONCUR.2025.10,
  author =	{Bocchi, Laura and King, Andy and Murgia, Maurizio and Thompson, Simon},
  title =	{{Abstract Subtyping for Asynchronous Multiparty Sessions}},
  booktitle =	{36th International Conference on Concurrency Theory (CONCUR 2025)},
  pages =	{10:1--10:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-389-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{348},
  editor =	{Bouyer, Patricia and van de Pol, Jaco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2025.10},
  URN =		{urn:nbn:de:0030-drops-239605},
  doi =		{10.4230/LIPIcs.CONCUR.2025.10},
  annote =	{Keywords: asynchrony, session subtyping, automata, abstract interpretation}
}
Document
An Efficient Data Structure and Algorithm for Long-Match Query in Run-Length Compressed BWT

Authors: Ahsan Sanaullah, Degui Zhi, and Shaojie Zhang

Published in: LIPIcs, Volume 344, 25th International Conference on Algorithms for Bioinformatics (WABI 2025)


Abstract
String matching problems in bioinformatics are typically for finding exact substring matches between a query and a reference text. Previous formulations often focus on maximum exact matches (MEMs). However, multiple occurrences of substrings of the query in the text that are long enough but not maximal may not be captured by MEMs. Such long matches can be informative, especially when the text is a collection of similar sequences such as genomes. In this paper, we describe a new type of match between a pattern and a text that aren't necessarily maximal in the query, but still contain useful matching information: locally maximal exact matches (LEMs). There are usually a large amount of LEMs, so we only consider those above some length threshold ℒ. These are referred to as long LEMs. The purpose of long LEMs is to capture substring matches between a query and a text that are not necessarily maximal in the pattern but still long enough to be important. Therefore efficient long LEMs finding algorithms are desired for these datasets. However, these datasets are too large to query on traditional string indexes. Fortunately, these datasets are very repetitive. Recently, compressed string indexes that take advantage of the redundancy in the data but retain efficient querying capability have been proposed as a solution. We therefore give an efficient algorithm for computing all the long LEMs of a query and a text in a BWT runs compressed string index. We describe an O(m+occ) expected time algorithm that relies on an O(r) words space string index for outputting all long LEMs of a pattern with respect to a text given the matching statistics of the pattern with respect to the text. Here m is the length of the query, occ is the number of long LEMs outputted, and r is the number of runs in the BWT of the text. The O(r) space string index we describe relies on an adaptation of the move data structure by Nishimoto and Tabei. We are able to support LCP[i] queries in constant time given SA[i]. In other words, we answer PLCP[i] queries in constant time. These PLCP queries enable the efficient long LEM query. Long LEMs may provide useful similarity information between a pattern and a text that MEMs may ignore. This information is particularly useful in pangenome and biobank scale haplotype panel contexts.

Cite as

Ahsan Sanaullah, Degui Zhi, and Shaojie Zhang. An Efficient Data Structure and Algorithm for Long-Match Query in Run-Length Compressed BWT. In 25th International Conference on Algorithms for Bioinformatics (WABI 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 344, pp. 17:1-17:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{sanaullah_et_al:LIPIcs.WABI.2025.17,
  author =	{Sanaullah, Ahsan and Zhi, Degui and Zhang, Shaojie},
  title =	{{An Efficient Data Structure and Algorithm for Long-Match Query in Run-Length Compressed BWT}},
  booktitle =	{25th International Conference on Algorithms for Bioinformatics (WABI 2025)},
  pages =	{17:1--17:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-386-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{344},
  editor =	{Brejov\'{a}, Bro\v{n}a and Patro, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2025.17},
  URN =		{urn:nbn:de:0030-drops-239433},
  doi =		{10.4230/LIPIcs.WABI.2025.17},
  annote =	{Keywords: BWT, LEM, Long LEM, MEM, Run Length Compressed BWT, Move Data Structure, Pangenome}
}
Document
Research
Specific Patterns Against Reference Sequences

Authors: Marie-Pierre Béal and Maxime Crochemore

Published in: OASIcs, Volume 132, From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday (2025)


Abstract
We design alignment-free techniques for comparing a set of sequences or just a word, called a target, against another set of words, called a reference. This is done with the detection of factor patterns that distinguish the target from the reference. A target-specific factor of a target T against a reference R is then a factor w of a word in T that is not a factor of a word in R but whose proper factors of w are factors of a word in R. The strategy is based on the notion of minimal absent/forbidden words. We first address the computation of the set of target-specific factors of a target T against a reference R, where T and R are finite sets of sequences. The result is the construction of an automaton accepting the set of all considered target-specific factors. The construction algorithm runs in linear time according to the size of T ∪ R. The second result is the design of an algorithm to compute all the occurrences in a single sequence T of its target-specific factors against a reference R. The algorithm runs in real-time on the target sequence, independently of the number of occurrences of target-specific factors.

Cite as

Marie-Pierre Béal and Maxime Crochemore. Specific Patterns Against Reference Sequences. In From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday. Open Access Series in Informatics (OASIcs), Volume 132, pp. 14:1-14:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{beal_et_al:OASIcs.Grossi.14,
  author =	{B\'{e}al, Marie-Pierre and Crochemore, Maxime},
  title =	{{Specific Patterns Against Reference Sequences}},
  booktitle =	{From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday},
  pages =	{14:1--14:12},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-391-1},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{132},
  editor =	{Conte, Alessio and Marino, Andrea and Rosone, Giovanna and Vitter, Jeffrey Scott},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Grossi.14},
  URN =		{urn:nbn:de:0030-drops-238130},
  doi =		{10.4230/OASIcs.Grossi.14},
  annote =	{Keywords: Specific pattern, Minimal absent word, Minimal forbidden word, Directed Acyclic Word Graph (DAWG), Suffix automaton}
}
  • Refine by Type
  • 36 Document/PDF
  • 33 Document/HTML

  • Refine by Publication Year
  • 31 2025
  • 2 2023
  • 1 2022
  • 1 2020
  • 1 2018

  • Refine by Author
  • 3 Goodrich, Michael T.
  • 2 Cotumaccio, Nicola
  • 2 Monnin, Pierre
  • 1 Abeni, Luca
  • 1 Agrawal, Kunal
  • Show More...

  • Refine by Series/Journal
  • 29 LIPIcs
  • 5 OASIcs
  • 2 TGDK

  • Refine by Classification
  • 7 Theory of computation → Computational geometry
  • 5 Theory of computation → Pattern matching
  • 3 Theory of computation → Graph algorithms analysis
  • 2 Theory of computation → Program reasoning
  • 2 Theory of computation → Verification by model checking
  • Show More...

  • Refine by Keyword
  • 3 Burrows-Wheeler Transform
  • 2 Explainable AI
  • 2 computational geometry
  • 1 Adversarial Machine Learning
  • 1 Art Gallery Problem
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail