131 Search Results for "Liu, Yu David"


Document
Survey
Resilience in Knowledge Graph Embeddings

Authors: Arnab Sharma, N'Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo

Published in: TGDK, Volume 3, Issue 2 (2025). Transactions on Graph Data and Knowledge, Volume 3, Issue 2


Abstract
In recent years, knowledge graphs have gained interest and witnessed widespread applications in various domains, such as information retrieval, question-answering, recommendation systems, amongst others. Large-scale knowledge graphs to this end have demonstrated their utility in effectively representing structured knowledge. To further facilitate the application of machine learning techniques, knowledge graph embedding models have been developed. Such models can transform entities and relationships within knowledge graphs into vectors. However, these embedding models often face challenges related to noise, missing information, distribution shift, adversarial attacks, etc. This can lead to sub-optimal embeddings and incorrect inferences, thereby negatively impacting downstream applications. While the existing literature has focused so far on adversarial attacks on KGE models, the challenges related to the other critical aspects remain unexplored. In this paper, we, first of all, give a unified definition of resilience, encompassing several factors such as generalisation, in-distribution generalization, distribution adaption, and robustness. After formalizing these concepts for machine learning in general, we define them in the context of knowledge graphs. To find the gap in the existing works on resilience in the context of knowledge graphs, we perform a systematic survey, taking into account all these aspects mentioned previously. Our survey results show that most of the existing works focus on a specific aspect of resilience, namely robustness. After categorizing such works based on their respective aspects of resilience, we discuss the challenges and future research directions.

Cite as

Arnab Sharma, N'Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo. Resilience in Knowledge Graph Embeddings. In Transactions on Graph Data and Knowledge (TGDK), Volume 3, Issue 2, pp. 1:1-1:38, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{sharma_et_al:TGDK.3.2.1,
  author =	{Sharma, Arnab and Kouagou, N'Dah Jean and Ngomo, Axel-Cyrille Ngonga},
  title =	{{Resilience in Knowledge Graph Embeddings}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{1:1--1:38},
  ISSN =	{2942-7517},
  year =	{2025},
  volume =	{3},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.3.2.1},
  URN =		{urn:nbn:de:0030-drops-248117},
  doi =		{10.4230/TGDK.3.2.1},
  annote =	{Keywords: Knowledge graphs, Resilience, Robustness}
}
Document
Research
GraphRAG on Technical Documents - Impact of Knowledge Graph Schema

Authors: Henri Scaffidi, Melinda Hodkiewicz, Caitlin Woods, and Nicole Roocke

Published in: TGDK, Volume 3, Issue 2 (2025). Transactions on Graph Data and Knowledge, Volume 3, Issue 2


Abstract
Retrieval Augmented Generation (RAG) is seeing rapid adoption in industry to enable employees to query information captured in proprietary data for their organisation. In this work, we test the impact of domain-relevant knowledge graph schemas on the results of Microsoft’s GraphRAG pipeline. Our approach aims to address the poor quality of GraphRAG responses on technical reports rich in domain-specific terms. The use case involves technical reports about geology, chemistry and mineral processing published by the Minerals Research Institute of Western Australia (MRIWA). Four schemas are considered: a simple five-class minerals domain expert-developed schema, an expanded minerals domain schema, the Microsoft GraphRAG auto-generated schema, and a schema-less GraphRAG. These are compared to a conventional baseline RAG. Performance is evaluated using a scoring approach that accounts for the mix of correct, incorrect, additional, and missing content in RAG responses. The results show that the simple five-class minerals domain schema extracts approximately 10% more entities from the MRIWA reports than the other schema options. Additionally, both the five-class and the expanded eight-class minerals domain schemas produce the most factually correct answers and the fewest hallucinations. We attribute this to the minerals-specific schemas extracting more relevant, domain-specific information during the Indexing stage. As a result, the Query stage’s context window includes more high-value content. This contributes to the observed improvement in answer quality compared to the other pipelines. In contrast, pipelines with fewer domain-related entities in the KG retrieve less valuable information, leaving more room for irrelevant content in the context window. Baseline RAG responses were typically shorter, less complete, and contained more hallucinations compared to our GraphRAG pipelines. We provide a complete set of resources at https://github.com/nlp-tlp/GraphRAG-on-Minerals-Domain/tree/main. These resources include links to the MRIWA reports, a set of questions (from simple to challenging) along with domain-expert curated answers, schemas, and evaluations of the pipelines.

Cite as

Henri Scaffidi, Melinda Hodkiewicz, Caitlin Woods, and Nicole Roocke. GraphRAG on Technical Documents - Impact of Knowledge Graph Schema. In Transactions on Graph Data and Knowledge (TGDK), Volume 3, Issue 2, pp. 3:1-3:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{scaffidi_et_al:TGDK.3.2.3,
  author =	{Scaffidi, Henri and Hodkiewicz, Melinda and Woods, Caitlin and Roocke, Nicole},
  title =	{{GraphRAG on Technical Documents - Impact of Knowledge Graph Schema}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:24},
  ISSN =	{2942-7517},
  year =	{2025},
  volume =	{3},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.3.2.3},
  URN =		{urn:nbn:de:0030-drops-248131},
  doi =		{10.4230/TGDK.3.2.3},
  annote =	{Keywords: RAG, minerals, local search, global search, entity extraction, competency questions}
}
Document
Safe Sequences via Dominators in DAGs for Path-Covering Problems

Authors: Francisco Sena, Romeo Rizzi, and Alexandru I. Tomescu

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A path-covering problem on a directed acyclic graph (DAG) requires finding a set of source-to-sink paths that cover all the nodes, all the arcs, or subsets thereof, and additionally they are optimal with respect to some function. In this paper we study safe sequences of nodes or arcs, namely sequences that appear in some path of every path cover of a DAG. We show that safe sequences admit a simple characterization via cutnodes. Moreover, we establish a connection between maximal safe sequences and leaf-to-root paths in the source- and sink-dominator trees of the DAG, which may be of independent interest in the extensive literature on dominators. With dominator trees, safe sequences admit an O(n)-size representation and a linear-time output-sensitive enumeration algorithm running in time O(m + o), where n and m are the number of nodes and arcs, respectively, and o is the total length of the maximal safe sequences. We then apply maximal safe sequences to simplify Integer Linear Programs (ILPs) for two path-covering problems, LeastSquares and MinPathError, which are at the core of RNA transcript assembly problems from bioinformatics. On various datasets, maximal safe sequences can be computed in under 0.1 seconds per graph, on average, and ILP solvers whose search space is reduced in this manner exhibit significant speed-ups. For example on graphs with a large width, average speed-ups are in the range 50-250× for MinPathError and in the range 80-350× for LeastSquares. Optimizing ILPs using safe sequences can thus become a fast building block of practical RNA transcript assembly tools, and more generally, of path-covering problems.

Cite as

Francisco Sena, Romeo Rizzi, and Alexandru I. Tomescu. Safe Sequences via Dominators in DAGs for Path-Covering Problems. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 55:1-55:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{sena_et_al:LIPIcs.ESA.2025.55,
  author =	{Sena, Francisco and Rizzi, Romeo and Tomescu, Alexandru I.},
  title =	{{Safe Sequences via Dominators in DAGs for Path-Covering Problems}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{55:1--55:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.55},
  URN =		{urn:nbn:de:0030-drops-245230},
  doi =		{10.4230/LIPIcs.ESA.2025.55},
  annote =	{Keywords: directed acyclic graph, path cover, dominator tree, integer linear programming, least squares, minimum path error}
}
Document
Fréchet Distance in Unweighted Planar Graphs

Authors: Ivor van der Hoog, Thijs van der Horst, Eva Rotenberg, and Lasse Wulf

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The Fréchet distance is a distance measure between trajectories in ℝ^d or walks in a graph G. Given constant-time shortest path queries, the Discrete Fréchet distance D_G(P, Q) between two walks P and Q can be computed in O(|P|⋅|Q|) time using a dynamic program. Driemel, van der Hoog, and Rotenberg [SoCG'22] show that for weighted planar graphs this approach is likely tight, as there can be no strongly-subquadratic algorithm to compute a 1.01-approximation of D_G(P, Q) unless the Orthogonal Vector Hypothesis (OVH) fails. Such quadratic-time conditional lower bounds are common to many Fréchet distance variants. However, they can be circumvented by assuming that the input comes from some well-behaved class: There exist (1+ε)-approximations, both in weighted graphs and in ℝ^d, that take near-linear time for c-packed or κ-straight walks in the graph. In ℝ^d there also exists a near-linear time algorithm to compute the Fréchet distance whenever all input edges are long compared to the distance. We consider computing the Fréchet distance in unweighted planar graphs. We show that there exist no strongly-subquadratic 1.25-approximations of the discrete Fréchet distance between two disjoint simple paths in an unweighted planar graph in strongly subquadratic time, unless OVH fails. This improves the previous lower bound, both in terms of generality and approximation factor. We subsequently show that adding graph structure circumvents this lower bound: If the graph is a regular tiling with unit-weighted edges, then there exists an Õ((|P|+|Q|)^{1.5})-time algorithm to compute D_G(P, Q). Our result has natural implications in the plane, as it allows us to define a new class of well-behaved curves that facilitate (1+ε)-approximations of their discrete Fréchet distance in subquadratic time.

Cite as

Ivor van der Hoog, Thijs van der Horst, Eva Rotenberg, and Lasse Wulf. Fréchet Distance in Unweighted Planar Graphs. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 24:1-24:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{vanderhoog_et_al:LIPIcs.ESA.2025.24,
  author =	{van der Hoog, Ivor and van der Horst, Thijs and Rotenberg, Eva and Wulf, Lasse},
  title =	{{Fr\'{e}chet Distance in Unweighted Planar Graphs}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{24:1--24:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.24},
  URN =		{urn:nbn:de:0030-drops-244924},
  doi =		{10.4230/LIPIcs.ESA.2025.24},
  annote =	{Keywords: Fr\'{e}chet distance, planar graphs, lower bounds, approximation algorithms}
}
Document
Classical Algorithms for Constant Approximation of the Ground State Energy of Local Hamiltonians

Authors: François Le Gall

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We construct classical algorithms computing an approximation of the ground state energy of an arbitrary k-local Hamiltonian acting on n qubits. We first consider the setting where a good "guiding state" is available, which is the main setting where quantum algorithms are expected to achieve an exponential speedup over classical methods. We show that a constant approximation (i.e., an approximation with constant relative accuracy) of the ground state energy can be computed classically in poly (1/χ,n) time and poly(n) space, where χ denotes the overlap between the guiding state and the ground state (as in prior works in dequantization, we assume sample-and-query access to the guiding state). This gives a significant improvement over the recent classical algorithm by Gharibian and Le Gall (SICOMP 2023), and matches (up to a polynomial overhead) both the time and space complexities of quantum algorithms for constant approximation of the ground state energy. We also obtain classical algorithms for higher-precision approximation. For the setting where no guided state is given (i.e., the standard version of the local Hamiltonian problem), we obtain a classical algorithm computing a constant approximation of the ground state energy in 2^O(n) time and poly(n) space. To our knowledge, before this work it was unknown how to classically achieve these bounds simultaneously, even for constant approximation. We also discuss complexity-theoretic aspects of our results.

Cite as

François Le Gall. Classical Algorithms for Constant Approximation of the Ground State Energy of Local Hamiltonians. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 73:1-73:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{legall:LIPIcs.ESA.2025.73,
  author =	{Le Gall, Fran\c{c}ois},
  title =	{{Classical Algorithms for Constant Approximation of the Ground State Energy of Local Hamiltonians}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{73:1--73:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.73},
  URN =		{urn:nbn:de:0030-drops-245419},
  doi =		{10.4230/LIPIcs.ESA.2025.73},
  annote =	{Keywords: approximation algorithms, quantum computing, dequantization}
}
Document
Faster Algorithm for Second (s,t)-Mincut and Breaking Quadratic Barrier for Dual Edge Sensitivity for (s,t)-Mincut

Authors: Surender Baswana, Koustav Bhanja, and Anupam Roy

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Let G be a directed graph on n vertices and m edges. In this article, we study (s,t)-cuts of second minimum capacity and present the following algorithmic and graph-theoretic results. 1) Second (s,t)-mincut: Vazirani and Yannakakis [ICALP 1992] designed the first algorithm for computing an (s,t)-cut of second minimum capacity using {O}(n²) maximum (s,t)-flow computations. We present the following algorithm that improves the running time significantly. For directed integer-weighted graphs, there is an algorithm that can compute an (s,t)-cut of second minimum capacity using Õ(√n) maximum (s,t)-flow computations with high probability. To achieve this result, a close relationship of independent interest is established between (s,t)-cuts of second minimum capacity and global mincuts in directed weighted graphs. 2) Minimum+1 (s,t)-cuts: Minimum+1 (s,t)-cuts have been studied quite well recently [Baswana, Bhanja, and Pandey, ICALP 2022 & TALG 2023], which is a special case of second (s,t)-mincut. We present the following structural result and the first nontrivial algorithm for minimum+1 (s,t)-cuts. 3) Algorithm: For directed multi-graphs, we design an algorithm that, given any maximum (s,t)-flow, computes a minimum+1 (s,t)-cut, if it exists, in O(m) time. 4) Structure: The existing structures for storing and characterizing all minimum+1 (s,t)-cuts occupy {O}(mn) space [Baswana, Bhanja, and Pandey, TALG 2023]. For undirected multi-graphs, we design a directed acyclic graph (DAG) occupying only {O}(m) space that stores and characterizes all minimum+1 (s,t)-cuts. This matches the space bound of the widely-known DAG structure for all (s,t)-mincuts [Picard and Queyranne, Math. Prog. Studies 1980]. 5) Dual Edge Sensitivity Oracle: The study of minimum+1 (s,t)-cuts often turns out to be useful in designing dual edge sensitivity oracles - a compact data structure for efficiently reporting an (s,t)-mincut after insertion/failure of any given pair of query edges. It has been shown recently [Bhanja, ICALP 2025] that any dual edge sensitivity oracle for (s,t)-mincut in undirected multi-graphs must occupy Ω(n²) space in the worst-case irrespective of the query time. Interestingly, for undirected unweighted simple graphs, we break this quadratic barrier while achieving a non-trivial query time as follows. There is an O(n√n) space data structure that can report an (s,t)-mincut in O(min{m,n√n}) time after the insertion/failure of any given pair of query edges. To arrive at our results, as one of our key techniques, we establish interesting relationships between (s,t)-cuts of capacity (minimum+Δ), Δ ≥ 0, and maximum (s,t)-flow. We believe that these techniques and the graph-theoretic result in 2.(b) are of independent interest.

Cite as

Surender Baswana, Koustav Bhanja, and Anupam Roy. Faster Algorithm for Second (s,t)-Mincut and Breaking Quadratic Barrier for Dual Edge Sensitivity for (s,t)-Mincut. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 68:1-68:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{baswana_et_al:LIPIcs.ESA.2025.68,
  author =	{Baswana, Surender and Bhanja, Koustav and Roy, Anupam},
  title =	{{Faster Algorithm for Second (s,t)-Mincut and Breaking Quadratic Barrier for Dual Edge Sensitivity for (s,t)-Mincut}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{68:1--68:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.68},
  URN =		{urn:nbn:de:0030-drops-245369},
  doi =		{10.4230/LIPIcs.ESA.2025.68},
  annote =	{Keywords: mincut, second mincut, compact structure, fault tolerant, sensitivity oracle, dual edges, st mincut, global mincut, characterization}
}
Document
A Dynamic Piecewise-Linear Geometric Index with Worst-Case Guarantees

Authors: Emil Toftegaard Gæde, Ivor van der Hoog, Eva Rotenberg, and Tord Stordalen

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Indexing data is a fundamental problem in computer science. The input is a set S of n distinct integers from a universe 𝒰. Indexing queries take a value q ∈ 𝒰 and return the membership, predecessor or rank of q in S. A range query takes two values q, r ∈ 𝒰 and returns the set S ∩ [q,r]. Recently, various papers study a special case where the the input data behaves in an approximately piece-wise linear way. Given the sorted (rank,value) pairs, and given some constant ε, one wants to maintain a small number of axis-disjoint line-segments such that, for each rank, the value is within ± ε of the corresponding line-segment. Ferragina and Vinciguerra (VLDB 2020) observe that this geometric problem is useful for solving indexing problems, particularly when the number of line-segments is small compared to the size of the dataset. We study the dynamic version of this geometric problem. In the dynamic setting, inserting or deleting just one data point may cause up to three line-segments to be merged, or one line-segment to be split at most three-way. To determine and compute this, we use techniques from dynamic maintenance of convex hulls, and provide new algorithms with worst-case guarantees, including an O(log n) algorithm to compute a separating line between two non-intersecting convex hulls - an operation previously missing from the literature. We then use our fully-dynamic geometry-based subroutine in an indexing data structure, combining it with a natural hashing technique. The resulting indexing data structure has theoretically efficient worst-case guarantees in expectation. We compare its practical performance to the solution of Ferragina and Vinciguerra, which was shown to perform better in certain structured settings [Sun, Zhou, Li VLDB 2023]. Our empirical analysis shows that our solution supports more efficient range queries in the special case where the update sequence contains many deletions.

Cite as

Emil Toftegaard Gæde, Ivor van der Hoog, Eva Rotenberg, and Tord Stordalen. A Dynamic Piecewise-Linear Geometric Index with Worst-Case Guarantees. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 64:1-64:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gaede_et_al:LIPIcs.ESA.2025.64,
  author =	{G{\ae}de, Emil Toftegaard and van der Hoog, Ivor and Rotenberg, Eva and Stordalen, Tord},
  title =	{{A Dynamic Piecewise-Linear Geometric Index with Worst-Case Guarantees}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{64:1--64:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.64},
  URN =		{urn:nbn:de:0030-drops-245323},
  doi =		{10.4230/LIPIcs.ESA.2025.64},
  annote =	{Keywords: Algorithms Engineering, Data Structures, Indexing, Convex Hulls}
}
Document
Length-Constrained Directed Expander Decomposition and Length-Constrained Vertex-Capacitated Flow Shortcuts

Authors: Bernhard Haeupler, Yaowei Long, Thatchaphol Saranurak, and Shengzhe Wang

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We show the existence of length-constrained expander decomposition in directed graphs and undirected vertex-capacitated graphs. Previously, its existence was shown only in undirected edge-capacitated graphs [Bernhard Haeupler et al., 2022; Haeupler et al., 2024]. Along the way, we prove the multi-commodity maxflow-mincut theorems for length-constrained expansion in both directed and undirected vertex-capacitated graphs. Based on our decomposition, we build a length-constrained flow shortcut for undirected vertex-capacitated graphs, which roughly speaking is a set of edges and vertices added to the graph so that every multi-commodity flow demand can be routed with approximately the same vertex-congestion and length, but all flow paths only contain few edges. This generalizes the shortcut for undirected edge-capacitated graphs from [Bernhard Haeupler et al., 2024]. Length-constrained expander decomposition and flow shortcuts have been crucial in the recent algorithms in undirected edge-capacitated graphs [Bernhard Haeupler et al., 2024; Haeupler et al., 2024]. Our work thus serves as a foundation to generalize these concepts to directed and vertex-capacitated graphs.

Cite as

Bernhard Haeupler, Yaowei Long, Thatchaphol Saranurak, and Shengzhe Wang. Length-Constrained Directed Expander Decomposition and Length-Constrained Vertex-Capacitated Flow Shortcuts. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 107:1-107:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{haeupler_et_al:LIPIcs.ESA.2025.107,
  author =	{Haeupler, Bernhard and Long, Yaowei and Saranurak, Thatchaphol and Wang, Shengzhe},
  title =	{{Length-Constrained Directed Expander Decomposition and Length-Constrained Vertex-Capacitated Flow Shortcuts}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{107:1--107:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.107},
  URN =		{urn:nbn:de:0030-drops-245765},
  doi =		{10.4230/LIPIcs.ESA.2025.107},
  annote =	{Keywords: Length-Constrained Expander, Expander Decomposition, Shortcut}
}
Document
Subtrajectory Clustering and Coverage Maximization in Cubic Time, or Better

Authors: Jacobus Conradi and Anne Driemel

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Many application areas collect unstructured trajectory data. In subtrajectory clustering, one is interested to find patterns in this data using a hybrid combination of segmentation and clustering. We analyze two variants of this problem based on the well-known SetCover and CoverageMaximization problems. In both variants the set system is induced by metric balls under the Fréchet distance centered at polygonal curves. Our algorithms focus on improving the running time of the update step of the generic greedy algorithm by means of a careful combination of sweeps through a candidate space. In the first variant, we are given a polygonal curve P of complexity n, distance threshold Δ and complexity bound 𝓁 and the goal is to identify a minimum-size set of center curves 𝒞, where each center curve is of complexity at most 𝓁 and every point p on P is covered. A point p on P is covered if it is part of a subtrajectory π_p of P such that there is a center c ∈ 𝒞 whose Fréchet distance to π_p is at most Δ. We present an approximation algorithm for this problem with a running time of 𝒪((n²𝓁 + √{k_Δ}n^{5/2})log²n), where k_Δ is the size of an optimal solution. The algorithm gives a bicriterial approximation guarantee that relaxes the Fréchet distance threshold by a constant factor and the size of the solution by a factor of 𝒪(log n). The second problem variant asks for the maximum fraction of the input curve P that can be covered using k center curves, where k ≤ n is a parameter to the algorithm. For the second problem variant, our techniques lead to an algorithm with a running time of 𝒪((k+𝓁)n²log²n) and similar approximation guarantees. Note that in both algorithms k,k_Δ ∈ O(n) and hence the running time is cubic, or better if k ≪ n.

Cite as

Jacobus Conradi and Anne Driemel. Subtrajectory Clustering and Coverage Maximization in Cubic Time, or Better. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 12:1-12:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{conradi_et_al:LIPIcs.ESA.2025.12,
  author =	{Conradi, Jacobus and Driemel, Anne},
  title =	{{Subtrajectory Clustering and Coverage Maximization in Cubic Time, or Better}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{12:1--12:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.12},
  URN =		{urn:nbn:de:0030-drops-244806},
  doi =		{10.4230/LIPIcs.ESA.2025.12},
  annote =	{Keywords: Clustering, Set cover, Fr\'{e}chet distance, Approximation algorithms}
}
Document
Efficient Contractions of Dynamic Graphs - With Applications

Authors: Monika Henzinger, Evangelos Kosinas, Robin Münk, and Harald Räcke

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A non-trivial minimum cut (NMC) sparsifier is a multigraph Ĝ that preserves all non-trivial minimum cuts of a given undirected graph G. We introduce a flexible data structure for fully dynamic graphs that can efficiently provide an NMC sparsifier upon request at any point during the sequence of updates. We employ simple dynamic forest data structures to achieve a fast from-scratch construction of the sparsifier at query time. Based on the strength of the adversary and desired type of time bounds, the data structure comes with different guarantees. Specifically, let G be a fully dynamic simple graph with n vertices and minimum degree δ. Then our data structure supports an insertion/deletion of an edge to/from G in n^o(1) worst-case time. Furthermore, upon request, it can return w.h.p. an NMC sparsifier of G that has O(n/δ) vertices and O(n) edges, in Ô(n) time. The probabilistic guarantees hold against an adaptive adversary. Alternatively, the update and query times can be improved to Õ(1) and Õ(n) respectively, if amortized-time guarantees are sufficient, or if the adversary is oblivious. Throughout the paper, we use Õ to hide polylogarithmic factors and Ô to hide subpolynomial (i.e., n^o(1)) factors. We discuss two applications of our new data structure. First, it can be used to efficiently report a cactus representation of all minimum cuts of a fully dynamic simple graph. Building this cactus for the NMC sparsifier instead of the original graph allows for a construction time that is sublinear in the number of edges. Against an adaptive adversary, we can with high probability output the cactus representation in worst-case Ô(n) time. Second, our data structure allows us to efficiently compute the maximal k-edge-connected subgraphs of undirected simple graphs, by repeatedly applying a minimum cut algorithm on the NMC sparsifier. Specifically, we can compute with high probability the maximal k-edge-connected subgraphs of a simple graph with n vertices and m edges in Õ(m+n²/k) time. This improves the best known time bounds for k = Ω(n^{1/8}) and naturally extends to the case of fully dynamic graphs.

Cite as

Monika Henzinger, Evangelos Kosinas, Robin Münk, and Harald Räcke. Efficient Contractions of Dynamic Graphs - With Applications. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 36:1-36:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{henzinger_et_al:LIPIcs.ESA.2025.36,
  author =	{Henzinger, Monika and Kosinas, Evangelos and M\"{u}nk, Robin and R\"{a}cke, Harald},
  title =	{{Efficient Contractions of Dynamic Graphs - With Applications}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{36:1--36:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.36},
  URN =		{urn:nbn:de:0030-drops-245047},
  doi =		{10.4230/LIPIcs.ESA.2025.36},
  annote =	{Keywords: Graph Algorithms, Cut Sparsifiers, Dynamic Algorithms}
}
Document
Near-Optimal Differentially Private Graph Algorithms via the Multidimensional AboveThreshold Mechanism

Authors: Laxman Dhulipala, Monika Henzinger, George Z. Li, Quanquan C. Liu, A. R. Sricharan, and Leqi Zhu

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Many differentially private and classical non-private graph algorithms rely crucially on determining whether some property of each vertex meets a threshold. For example, for the k-core decomposition problem, the classic peeling algorithm iteratively removes a vertex if its induced degree falls below a threshold. The sparse vector technique (SVT) is generally used to transform non-private threshold queries into private ones with only a small additive loss in accuracy. However, a naive application of SVT in the graph setting leads to an amplification of the error by a factor of n due to composition, as SVT is applied to every vertex. In this paper, we resolve this problem by formulating a novel generalized sparse vector technique which we call the Multidimensional AboveThreshold (MAT) Mechanism which generalizes SVT (applied to vectors with one dimension) to vectors with multiple dimensions. When applied to vectors with n dimensions, we solve a number of important graph problems with better bounds than previous work. Specifically, we apply our MAT mechanism to obtain a set of improved bounds for a variety of problems including k-core decomposition, densest subgraph, low out-degree ordering, and vertex coloring. We give a tight local edge differentially private (LEDP) algorithm for k-core decomposition that results in an approximation with O(ε^{-1} log n) additive error and no multiplicative error in O(n) rounds. We also give a new (2+η)-factor multiplicative, O(ε^{-1} log n) additive error algorithm in O(log² n) rounds for any constant η > 0. Both of these results are asymptotically tight against our new lower bound of Ω(log n) for any constant-factor approximation algorithm for k-core decomposition. Our new algorithms for k-core decomposition also directly lead to new algorithms for the related problems of densest subgraph and low out-degree ordering. Finally, we give novel LEDP differentially private defective coloring algorithms that use number of colors given in terms of the arboricity of the graph.

Cite as

Laxman Dhulipala, Monika Henzinger, George Z. Li, Quanquan C. Liu, A. R. Sricharan, and Leqi Zhu. Near-Optimal Differentially Private Graph Algorithms via the Multidimensional AboveThreshold Mechanism. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 91:1-91:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dhulipala_et_al:LIPIcs.ESA.2025.91,
  author =	{Dhulipala, Laxman and Henzinger, Monika and Li, George Z. and Liu, Quanquan C. and Sricharan, A. R. and Zhu, Leqi},
  title =	{{Near-Optimal Differentially Private Graph Algorithms via the Multidimensional AboveThreshold Mechanism}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{91:1--91:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.91},
  URN =		{urn:nbn:de:0030-drops-245601},
  doi =		{10.4230/LIPIcs.ESA.2025.91},
  annote =	{Keywords: differential privacy, abovethreshold, densest subgraph}
}
Document
A Certified Proof Checker for Deep Neural Network Verification in Imandra

Authors: Remi Desmartin, Omri Isac, Grant Passmore, Ekaterina Komendantskaya, Kathrin Stark, and Guy Katz

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
Recent advances in the verification of deep neural networks (DNNs) have opened the way for a broader usage of DNN verification technology in many application areas, including safety-critical ones. However, DNN verifiers are themselves complex programs that have been shown to be susceptible to errors and numerical imprecision; this, in turn, has raised the question of trust in DNN verifiers. One prominent attempt to address this issue is enhancing DNN verifiers with the capability of producing certificates of their results that are subject to independent algorithmic checking. While formulations of Marabou certificate checking already exist on top of the state-of-the-art DNN verifier Marabou, they are implemented in C++, and that code itself raises the question of trust (e.g., in the precision of floating point calculations or guarantees for implementation soundness). Here, we present an alternative implementation of the Marabou certificate checking in Imandra - an industrial functional programming language and an interactive theorem prover (ITP) - that allows us to obtain full proof of certificate correctness. The significance of the result is two-fold. Firstly, it gives stronger independent guarantees for Marabou proofs. Secondly, it opens the way for the wider adoption of DNN verifiers in interactive theorem proving in the same way as many ITPs already incorporate SMT solvers.

Cite as

Remi Desmartin, Omri Isac, Grant Passmore, Ekaterina Komendantskaya, Kathrin Stark, and Guy Katz. A Certified Proof Checker for Deep Neural Network Verification in Imandra. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 1:1-1:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{desmartin_et_al:LIPIcs.ITP.2025.1,
  author =	{Desmartin, Remi and Isac, Omri and Passmore, Grant and Komendantskaya, Ekaterina and Stark, Kathrin and Katz, Guy},
  title =	{{A Certified Proof Checker for Deep Neural Network Verification in Imandra}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{1:1--1:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.1},
  URN =		{urn:nbn:de:0030-drops-246000},
  doi =		{10.4230/LIPIcs.ITP.2025.1},
  annote =	{Keywords: Neural Network Verification, Farkas Lemma, Proof Certification}
}
Document
Human-AI Interaction in Space: Insights from a Mars Analog Mission with the Harmony Large Language Model

Authors: Hippolyte Hilgers, Jean Vanderdonckt, and Radu-Daniel Vatavu

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
The operational complexities of space missions require reliable, context-aware technical assistance for astronauts, especially when technical expertise is not available onboard and communication with Earth is delayed or limited. In this context, Large Language Models present a promising opportunity to augment human capabilities. To this end, we present Harmony, a model designed to provide astronauts with real-time technical assistance, fostering human-AI collaboration during analog missions. We report empirical results from an experiment involving seven analog astronauts that evaluated their user experience with Harmony in both a conventional environment and an isolated, confined, and extreme physical setting at the Mars Desert Research Station over four sessions, and discuss how the Mars analog environment impacted their experience. Our findings reveal the extent to which human-AI interactions evolve across various user experience dimensions and suggest how Harmony can be further adapted to suit extreme environments, with a focus on SpaceCHI.

Cite as

Hippolyte Hilgers, Jean Vanderdonckt, and Radu-Daniel Vatavu. Human-AI Interaction in Space: Insights from a Mars Analog Mission with the Harmony Large Language Model. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 1:1-1:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{hilgers_et_al:OASIcs.SpaceCHI.2025.1,
  author =	{Hilgers, Hippolyte and Vanderdonckt, Jean and Vatavu, Radu-Daniel},
  title =	{{Human-AI Interaction in Space: Insights from a Mars Analog Mission with the Harmony Large Language Model}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{1:1--1:20},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.1},
  URN =		{urn:nbn:de:0030-drops-239912},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.1},
  annote =	{Keywords: Extreme user experience, Human-AI interaction, Isolated-confined-extreme environment, Interaction design, Large Language Models, Mars Desert Research Station, Space mission, Technical assistance, Technical documentation, User experience}
}
Document
Integrating Human-In-The-Loop AI to Tackle Space Communication Delay Challenges

Authors: Nikos Mavrakis, Effie Lai-Chong Law, and Hubert P. H. Shum

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
Deep space missions face significant communication delays that disrupt both operational workflows and psychological support for crew members. Unlike low Earth orbit operations, delays ranging from several minutes to nearly an hour make real-time communication with mission control infeasible, forcing crews to act with greater independence under uncertain conditions. This position paper examines how human-in-the-loop AI, digital twins, and edge AI can be integrated to mitigate these delays while maintaining astronaut autonomy and engagement. We argue that human-in-the-loop AI enables decision-making processes that are responsive to local context while remaining adaptable to changing mission demands. Digital twins offer real-time simulation and predictive modelling capabilities, allowing astronauts to explore options and troubleshoot without waiting for ground input. Edge AI brings computation closer to data sources, enabling low-latency inference onboard spacecraft for time-critical decisions. These ideas are explored through two use cases: using deepfakes to support emotionally resonant communication with loved ones, and applying visual-language models for onboard fault diagnosis and adaptive task replanning. We conclude with reflections on system design challenges under constrained and high-stakes conditions.

Cite as

Nikos Mavrakis, Effie Lai-Chong Law, and Hubert P. H. Shum. Integrating Human-In-The-Loop AI to Tackle Space Communication Delay Challenges. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 15:1-15:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{mavrakis_et_al:OASIcs.SpaceCHI.2025.15,
  author =	{Mavrakis, Nikos and Law, Effie Lai-Chong and Shum, Hubert P. H.},
  title =	{{Integrating Human-In-The-Loop AI to Tackle Space Communication Delay Challenges}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{15:1--15:16},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.15},
  URN =		{urn:nbn:de:0030-drops-240051},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.15},
  annote =	{Keywords: Human-in-the-loop AI, communication delays, human spaceflight}
}
Document
Toward an Earth-Independent System for EVA Mission Planning: Integrating Physical Models, Domain Knowledge, and Agentic RAG to Provide Explainable LLM-Based Decision Support

Authors: Kaisheng Li and Richard S. Whittle

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
We propose a unified framework for an Earth‑independent AI system that provides explainable, context‑aware decision support for EVA mission planning by integrating six core components: a fine‑tuned EVA domain LLM, a retrieval‑augmented knowledge base, a short-term memory store, physical simulation models, an agentic orchestration layer, and a multimodal user interface. To ground our design, we analyze the current roles and substitution potential of the Mission Control Center - identifying which procedural and analytical functions can be automated onboard while preserving human oversight for experiential and strategic tasks. Building on this framework, we introduce RASAGE (Retrieval & Simulation Augmented Guidance Agent for Exploration), a proof‑of‑concept toolset that combines Microsoft Phi‑4‑mini‑instruct with a FAISS (Facebook AI Similarity Search)‑powered EVA knowledge base and custom A* path planning and hypogravity metabolic models to generate grounded, traceable EVA plans. We outline a staged validation strategy to evaluate improvements in route efficiency, metabolic prediction accuracy, anomaly response effectiveness, and crew trust under realistic communication delays. Our findings demonstrate the feasibility of replicating key Mission Control functions onboard, enhancing crew autonomy, reducing cognitive load, and improving safety for deep‑space exploration missions.

Cite as

Kaisheng Li and Richard S. Whittle. Toward an Earth-Independent System for EVA Mission Planning: Integrating Physical Models, Domain Knowledge, and Agentic RAG to Provide Explainable LLM-Based Decision Support. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 6:1-6:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{li_et_al:OASIcs.SpaceCHI.2025.6,
  author =	{Li, Kaisheng and Whittle, Richard S.},
  title =	{{Toward an Earth-Independent System for EVA Mission Planning: Integrating Physical Models, Domain Knowledge, and Agentic RAG to Provide Explainable LLM-Based Decision Support}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{6:1--6:17},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.6},
  URN =		{urn:nbn:de:0030-drops-239967},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.6},
  annote =	{Keywords: Human-AI Interaction for Space Exploration, Extravehicular Activities, Cognitive load and Human Performance Issues, Human Systems Exploration, Lunar Exploration, LLM}
}
  • Refine by Type
  • 131 Document/PDF
  • 121 Document/HTML

  • Refine by Publication Year
  • 112 2025
  • 3 2024
  • 9 2023
  • 4 2022
  • 2 2016
  • Show More...

  • Refine by Author
  • 3 Henzinger, Monika
  • 3 Lissandrini, Matteo
  • 3 Scherp, Ansgar
  • 2 Baptista, Jorge
  • 2 Biswas, Russa
  • Show More...

  • Refine by Series/Journal
  • 98 LIPIcs
  • 13 OASIcs
  • 5 LITES
  • 15 TGDK

  • Refine by Classification
  • 9 Theory of computation → Design and analysis of algorithms
  • 9 Theory of computation → Graph algorithms analysis
  • 7 Theory of computation → Computational geometry
  • 6 Computing methodologies → Knowledge representation and reasoning
  • 5 Information systems → Geographic information systems
  • Show More...

  • Refine by Keyword
  • 6 Large Language Models
  • 4 Knowledge Graphs
  • 3 GeoAI
  • 3 Knowledge graphs
  • 3 approximation algorithms
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail