80 Search Results for "Song, Zhao"


Document
Conversational Agents: A Framework for Evaluation (CAFE) (Dagstuhl Perspectives Workshop 24352)

Authors: Christine Bauer, Li Chen, Nicola Ferro, Norbert Fuhr, Avishek Anand, Timo Breuer, Guglielmo Faggioli, Ophir Frieder, Hideo Joho, Jussi Karlgren, Johannes Kiesel, Bart P. Knijnenburg, Aldo Lipani, Lien Michiels, Andrea Papenmeier, Maria Soledad Pera, Mark Sanderson, Scott Sanner, Benno Stein, Johanne R. Trippas, Karin Verspoor, and Martijn C. Willemsen

Published in: Dagstuhl Manifestos, Volume 11, Issue 1 (2025)


Abstract
During the workshop, we deeply discussed what CONversational Information ACcess (CONIAC) is and its unique features, proposing a world model abstracting it, and defined the Conversational Agents Framework for Evaluation (CAFE) for the evaluation of CONIAC systems, consisting of six major components: 1) goals of the system’s stakeholders, 2) user tasks to be studied in the evaluation, 3) aspects of the users carrying out the tasks, 4) evaluation criteria to be considered, 5) evaluation methodology to be applied, and 6) measures for the quantitative criteria chosen.

Cite as

Christine Bauer, Li Chen, Nicola Ferro, Norbert Fuhr, Avishek Anand, Timo Breuer, Guglielmo Faggioli, Ophir Frieder, Hideo Joho, Jussi Karlgren, Johannes Kiesel, Bart P. Knijnenburg, Aldo Lipani, Lien Michiels, Andrea Papenmeier, Maria Soledad Pera, Mark Sanderson, Scott Sanner, Benno Stein, Johanne R. Trippas, Karin Verspoor, and Martijn C. Willemsen. Conversational Agents: A Framework for Evaluation (CAFE) (Dagstuhl Perspectives Workshop 24352). In Dagstuhl Manifestos, Volume 11, Issue 1, pp. 19-67, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{bauer_et_al:DagMan.11.1.19,
  author =	{Bauer, Christine and Chen, Li and Ferro, Nicola and Fuhr, Norbert and Anand, Avishek and Breuer, Timo and Faggioli, Guglielmo and Frieder, Ophir and Joho, Hideo and Karlgren, Jussi and Kiesel, Johannes and Knijnenburg, Bart P. and Lipani, Aldo and Michiels, Lien and Papenmeier, Andrea and Pera, Maria Soledad and Sanderson, Mark and Sanner, Scott and Stein, Benno and Trippas, Johanne R. and Verspoor, Karin and Willemsen, Martijn C.},
  title =	{{Conversational Agents: A Framework for Evaluation (CAFE) (Dagstuhl Perspectives Workshop 24352)}},
  pages =	{19--67},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2025},
  volume =	{11},
  number =	{1},
  editor =	{Bauer, Christine and Chen, Li and Ferro, Nicola and Fuhr, Norbert and Anand, Avishek and Breuer, Timo and Faggioli, Guglielmo and Frieder, Ophir and Joho, Hideo and Karlgren, Jussi and Kiesel, Johannes and Knijnenburg, Bart P. and Lipani, Aldo and Michiels, Lien and Papenmeier, Andrea and Pera, Maria Soledad and Sanderson, Mark and Sanner, Scott and Stein, Benno and Trippas, Johanne R. and Verspoor, Karin and Willemsen, Martijn C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.11.1.19},
  URN =		{urn:nbn:de:0030-drops-252722},
  doi =		{10.4230/DagMan.11.1.19},
  annote =	{Keywords: Conversational Agents, Evaluation, Information Access}
}
Document
Survey
Resilience in Knowledge Graph Embeddings

Authors: Arnab Sharma, N'Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo

Published in: TGDK, Volume 3, Issue 2 (2025). Transactions on Graph Data and Knowledge, Volume 3, Issue 2


Abstract
In recent years, knowledge graphs have gained interest and witnessed widespread applications in various domains, such as information retrieval, question-answering, recommendation systems, amongst others. Large-scale knowledge graphs to this end have demonstrated their utility in effectively representing structured knowledge. To further facilitate the application of machine learning techniques, knowledge graph embedding models have been developed. Such models can transform entities and relationships within knowledge graphs into vectors. However, these embedding models often face challenges related to noise, missing information, distribution shift, adversarial attacks, etc. This can lead to sub-optimal embeddings and incorrect inferences, thereby negatively impacting downstream applications. While the existing literature has focused so far on adversarial attacks on KGE models, the challenges related to the other critical aspects remain unexplored. In this paper, we, first of all, give a unified definition of resilience, encompassing several factors such as generalisation, in-distribution generalization, distribution adaption, and robustness. After formalizing these concepts for machine learning in general, we define them in the context of knowledge graphs. To find the gap in the existing works on resilience in the context of knowledge graphs, we perform a systematic survey, taking into account all these aspects mentioned previously. Our survey results show that most of the existing works focus on a specific aspect of resilience, namely robustness. After categorizing such works based on their respective aspects of resilience, we discuss the challenges and future research directions.

Cite as

Arnab Sharma, N'Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo. Resilience in Knowledge Graph Embeddings. In Transactions on Graph Data and Knowledge (TGDK), Volume 3, Issue 2, pp. 1:1-1:38, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{sharma_et_al:TGDK.3.2.1,
  author =	{Sharma, Arnab and Kouagou, N'Dah Jean and Ngomo, Axel-Cyrille Ngonga},
  title =	{{Resilience in Knowledge Graph Embeddings}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{1:1--1:38},
  ISSN =	{2942-7517},
  year =	{2025},
  volume =	{3},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.3.2.1},
  URN =		{urn:nbn:de:0030-drops-248117},
  doi =		{10.4230/TGDK.3.2.1},
  annote =	{Keywords: Knowledge graphs, Resilience, Robustness}
}
Document
Research
GraphRAG on Technical Documents - Impact of Knowledge Graph Schema

Authors: Henri Scaffidi, Melinda Hodkiewicz, Caitlin Woods, and Nicole Roocke

Published in: TGDK, Volume 3, Issue 2 (2025). Transactions on Graph Data and Knowledge, Volume 3, Issue 2


Abstract
Retrieval Augmented Generation (RAG) is seeing rapid adoption in industry to enable employees to query information captured in proprietary data for their organisation. In this work, we test the impact of domain-relevant knowledge graph schemas on the results of Microsoft’s GraphRAG pipeline. Our approach aims to address the poor quality of GraphRAG responses on technical reports rich in domain-specific terms. The use case involves technical reports about geology, chemistry and mineral processing published by the Minerals Research Institute of Western Australia (MRIWA). Four schemas are considered: a simple five-class minerals domain expert-developed schema, an expanded minerals domain schema, the Microsoft GraphRAG auto-generated schema, and a schema-less GraphRAG. These are compared to a conventional baseline RAG. Performance is evaluated using a scoring approach that accounts for the mix of correct, incorrect, additional, and missing content in RAG responses. The results show that the simple five-class minerals domain schema extracts approximately 10% more entities from the MRIWA reports than the other schema options. Additionally, both the five-class and the expanded eight-class minerals domain schemas produce the most factually correct answers and the fewest hallucinations. We attribute this to the minerals-specific schemas extracting more relevant, domain-specific information during the Indexing stage. As a result, the Query stage’s context window includes more high-value content. This contributes to the observed improvement in answer quality compared to the other pipelines. In contrast, pipelines with fewer domain-related entities in the KG retrieve less valuable information, leaving more room for irrelevant content in the context window. Baseline RAG responses were typically shorter, less complete, and contained more hallucinations compared to our GraphRAG pipelines. We provide a complete set of resources at https://github.com/nlp-tlp/GraphRAG-on-Minerals-Domain/tree/main. These resources include links to the MRIWA reports, a set of questions (from simple to challenging) along with domain-expert curated answers, schemas, and evaluations of the pipelines.

Cite as

Henri Scaffidi, Melinda Hodkiewicz, Caitlin Woods, and Nicole Roocke. GraphRAG on Technical Documents - Impact of Knowledge Graph Schema. In Transactions on Graph Data and Knowledge (TGDK), Volume 3, Issue 2, pp. 3:1-3:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{scaffidi_et_al:TGDK.3.2.3,
  author =	{Scaffidi, Henri and Hodkiewicz, Melinda and Woods, Caitlin and Roocke, Nicole},
  title =	{{GraphRAG on Technical Documents - Impact of Knowledge Graph Schema}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:24},
  ISSN =	{2942-7517},
  year =	{2025},
  volume =	{3},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.3.2.3},
  URN =		{urn:nbn:de:0030-drops-248131},
  doi =		{10.4230/TGDK.3.2.3},
  annote =	{Keywords: RAG, minerals, local search, global search, entity extraction, competency questions}
}
Document
Safe Sequences via Dominators in DAGs for Path-Covering Problems

Authors: Francisco Sena, Romeo Rizzi, and Alexandru I. Tomescu

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A path-covering problem on a directed acyclic graph (DAG) requires finding a set of source-to-sink paths that cover all the nodes, all the arcs, or subsets thereof, and additionally they are optimal with respect to some function. In this paper we study safe sequences of nodes or arcs, namely sequences that appear in some path of every path cover of a DAG. We show that safe sequences admit a simple characterization via cutnodes. Moreover, we establish a connection between maximal safe sequences and leaf-to-root paths in the source- and sink-dominator trees of the DAG, which may be of independent interest in the extensive literature on dominators. With dominator trees, safe sequences admit an O(n)-size representation and a linear-time output-sensitive enumeration algorithm running in time O(m + o), where n and m are the number of nodes and arcs, respectively, and o is the total length of the maximal safe sequences. We then apply maximal safe sequences to simplify Integer Linear Programs (ILPs) for two path-covering problems, LeastSquares and MinPathError, which are at the core of RNA transcript assembly problems from bioinformatics. On various datasets, maximal safe sequences can be computed in under 0.1 seconds per graph, on average, and ILP solvers whose search space is reduced in this manner exhibit significant speed-ups. For example on graphs with a large width, average speed-ups are in the range 50-250× for MinPathError and in the range 80-350× for LeastSquares. Optimizing ILPs using safe sequences can thus become a fast building block of practical RNA transcript assembly tools, and more generally, of path-covering problems.

Cite as

Francisco Sena, Romeo Rizzi, and Alexandru I. Tomescu. Safe Sequences via Dominators in DAGs for Path-Covering Problems. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 55:1-55:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{sena_et_al:LIPIcs.ESA.2025.55,
  author =	{Sena, Francisco and Rizzi, Romeo and Tomescu, Alexandru I.},
  title =	{{Safe Sequences via Dominators in DAGs for Path-Covering Problems}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{55:1--55:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.55},
  URN =		{urn:nbn:de:0030-drops-245230},
  doi =		{10.4230/LIPIcs.ESA.2025.55},
  annote =	{Keywords: directed acyclic graph, path cover, dominator tree, integer linear programming, least squares, minimum path error}
}
Document
Classical Algorithms for Constant Approximation of the Ground State Energy of Local Hamiltonians

Authors: François Le Gall

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We construct classical algorithms computing an approximation of the ground state energy of an arbitrary k-local Hamiltonian acting on n qubits. We first consider the setting where a good "guiding state" is available, which is the main setting where quantum algorithms are expected to achieve an exponential speedup over classical methods. We show that a constant approximation (i.e., an approximation with constant relative accuracy) of the ground state energy can be computed classically in poly (1/χ,n) time and poly(n) space, where χ denotes the overlap between the guiding state and the ground state (as in prior works in dequantization, we assume sample-and-query access to the guiding state). This gives a significant improvement over the recent classical algorithm by Gharibian and Le Gall (SICOMP 2023), and matches (up to a polynomial overhead) both the time and space complexities of quantum algorithms for constant approximation of the ground state energy. We also obtain classical algorithms for higher-precision approximation. For the setting where no guided state is given (i.e., the standard version of the local Hamiltonian problem), we obtain a classical algorithm computing a constant approximation of the ground state energy in 2^O(n) time and poly(n) space. To our knowledge, before this work it was unknown how to classically achieve these bounds simultaneously, even for constant approximation. We also discuss complexity-theoretic aspects of our results.

Cite as

François Le Gall. Classical Algorithms for Constant Approximation of the Ground State Energy of Local Hamiltonians. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 73:1-73:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{legall:LIPIcs.ESA.2025.73,
  author =	{Le Gall, Fran\c{c}ois},
  title =	{{Classical Algorithms for Constant Approximation of the Ground State Energy of Local Hamiltonians}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{73:1--73:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.73},
  URN =		{urn:nbn:de:0030-drops-245419},
  doi =		{10.4230/LIPIcs.ESA.2025.73},
  annote =	{Keywords: approximation algorithms, quantum computing, dequantization}
}
Document
Canonical for Automated Theorem Proving in Lean

Authors: Chase Norman and Jeremy Avigad

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
Canonical is a solver for type inhabitation in dependent type theory, that is, the problem of producing a term of a given type. We present a Lean tactic which invokes Canonical to generate proof terms and synthesize programs. The tactic supports higher-order and dependently-typed goals, structural recursion over indexed inductive types, and definitional equality. Canonical finds proofs for 84% of Natural Number Game problems in 51 seconds total.

Cite as

Chase Norman and Jeremy Avigad. Canonical for Automated Theorem Proving in Lean. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 14:1-14:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{norman_et_al:LIPIcs.ITP.2025.14,
  author =	{Norman, Chase and Avigad, Jeremy},
  title =	{{Canonical for Automated Theorem Proving in Lean}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{14:1--14:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.14},
  URN =		{urn:nbn:de:0030-drops-246128},
  doi =		{10.4230/LIPIcs.ITP.2025.14},
  annote =	{Keywords: Automated Reasoning, Interactive Theorem Proving, Dependent Type Theory, Inhabitation, Unification, Program Synthesis, Formal Methods}
}
Document
Toward an Earth-Independent System for EVA Mission Planning: Integrating Physical Models, Domain Knowledge, and Agentic RAG to Provide Explainable LLM-Based Decision Support

Authors: Kaisheng Li and Richard S. Whittle

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
We propose a unified framework for an Earth‑independent AI system that provides explainable, context‑aware decision support for EVA mission planning by integrating six core components: a fine‑tuned EVA domain LLM, a retrieval‑augmented knowledge base, a short-term memory store, physical simulation models, an agentic orchestration layer, and a multimodal user interface. To ground our design, we analyze the current roles and substitution potential of the Mission Control Center - identifying which procedural and analytical functions can be automated onboard while preserving human oversight for experiential and strategic tasks. Building on this framework, we introduce RASAGE (Retrieval & Simulation Augmented Guidance Agent for Exploration), a proof‑of‑concept toolset that combines Microsoft Phi‑4‑mini‑instruct with a FAISS (Facebook AI Similarity Search)‑powered EVA knowledge base and custom A* path planning and hypogravity metabolic models to generate grounded, traceable EVA plans. We outline a staged validation strategy to evaluate improvements in route efficiency, metabolic prediction accuracy, anomaly response effectiveness, and crew trust under realistic communication delays. Our findings demonstrate the feasibility of replicating key Mission Control functions onboard, enhancing crew autonomy, reducing cognitive load, and improving safety for deep‑space exploration missions.

Cite as

Kaisheng Li and Richard S. Whittle. Toward an Earth-Independent System for EVA Mission Planning: Integrating Physical Models, Domain Knowledge, and Agentic RAG to Provide Explainable LLM-Based Decision Support. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 6:1-6:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{li_et_al:OASIcs.SpaceCHI.2025.6,
  author =	{Li, Kaisheng and Whittle, Richard S.},
  title =	{{Toward an Earth-Independent System for EVA Mission Planning: Integrating Physical Models, Domain Knowledge, and Agentic RAG to Provide Explainable LLM-Based Decision Support}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{6:1--6:17},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.6},
  URN =		{urn:nbn:de:0030-drops-239967},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.6},
  annote =	{Keywords: Human-AI Interaction for Space Exploration, Extravehicular Activities, Cognitive load and Human Performance Issues, Human Systems Exploration, Lunar Exploration, LLM}
}
Document
Fuzzing as Editor Feedback

Authors: Marcel Garus, Jens Lincke, and Robert Hirschfeld

Published in: OASIcs, Volume 134, Companion Proceedings of the 9th International Conference on the Art, Science, and Engineering of Programming (Programming 2025)


Abstract
Live programming requires concrete examples, but coming up with examples takes effort. However, there are ways to execute code without specifying examples, such as fuzzing. Fuzzing is a technique that synthesizes program inputs to find bugs in security-critical software. While fuzzing focuses on finding crashes, it also produces valid inputs as a byproduct. Our approach is to make use of this to show examples, including edge cases, directly in the editor. To provide examples for individual pieces of code, we implement fuzzing at the granularity of functions. We integrate it into the compiler pipeline and language tooling of Martinaise, a custom programming language with a limited feature set. Initially, our examples are random and then mutate based on coverage feedback to reach interesting code locations and become smaller. We evaluate our tool in small case studies, showing generated examples for numbers, strings, and composite objects. Our fuzzed examples still feel synthetic, but since they are grounded in the dynamic behavior of code, they can cover the entire execution and show edge cases.

Cite as

Marcel Garus, Jens Lincke, and Robert Hirschfeld. Fuzzing as Editor Feedback. In Companion Proceedings of the 9th International Conference on the Art, Science, and Engineering of Programming (Programming 2025). Open Access Series in Informatics (OASIcs), Volume 134, pp. 8:1-8:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{garus_et_al:OASIcs.Programming.2025.8,
  author =	{Garus, Marcel and Lincke, Jens and Hirschfeld, Robert},
  title =	{{Fuzzing as Editor Feedback}},
  booktitle =	{Companion Proceedings of the 9th International Conference on the Art, Science, and Engineering of Programming (Programming 2025)},
  pages =	{8:1--8:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-382-9},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{134},
  editor =	{Edwards, Jonathan and Perera, Roly and Petricek, Tomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Programming.2025.8},
  URN =		{urn:nbn:de:0030-drops-242926},
  doi =		{10.4230/OASIcs.Programming.2025.8},
  annote =	{Keywords: Fuzzing, Example-based Programming, Babylonian Programming, Dynamic Analysis, Code Coverage, Randomized Testing, Function-Level Fuzzing}
}
Document
RANDOM
Consumable Data via Quantum Communication

Authors: Dar Gilboa, Siddhartha Jain, and Jarrod R. McClean

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
Classical data can be copied and re-used for computation, with adverse consequences economically and in terms of data privacy. Motivated by this, we formulate problems in one-way communication complexity where Alice holds some data x and Bob holds m inputs y_1, …, y_m. They want to compute m instances of a bipartite relation R(⋅,⋅) on every pair (x, y_1), …, (x, y_m). We call this the asymmetric direct sum question for one-way communication. We give examples where the quantum communication complexity of such problems scales polynomially with m, while the classical communication complexity depends at most logarithmically on m. Thus, for such problems, data behaves like a consumable resource that is effectively destroyed upon use when the owner stores and transmits it as quantum states, but not when transmitted classically. We show an application to a strategic data-selling game, and discuss other potential economic implications.

Cite as

Dar Gilboa, Siddhartha Jain, and Jarrod R. McClean. Consumable Data via Quantum Communication. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 39:1-39:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gilboa_et_al:LIPIcs.APPROX/RANDOM.2025.39,
  author =	{Gilboa, Dar and Jain, Siddhartha and McClean, Jarrod R.},
  title =	{{Consumable Data via Quantum Communication}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{39:1--39:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.39},
  URN =		{urn:nbn:de:0030-drops-244059},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.39},
  annote =	{Keywords: quantum communication, one-time programs, data markets}
}
Document
Are We There Yet? On Security Vulnerabilities Produced by Open Source Generative AI Models and Its Implications for Security Education

Authors: Maria Camila Santos Galeano, Tiago Espinha Gasiba, Sathwik Amburi, and Maria Pinto-Albuquerque

Published in: OASIcs, Volume 133, 6th International Computer Programming Education Conference (ICPEC 2025)


Abstract
With the increasing integration of large language models (LLMs) into software development and programming education, concerns have emerged about the security of AI-generated code. This study investigates the security of three open source code generation models. Codestral, DeepSeek R1, and LLaMA 3.3 70B using structured prompts in Python, C, and Java. Some prompts were designed to explicitly trigger known vulnerability patterns, such as unsanitized input handling or unsafe memory operations, in order to assess how each model responds to security-sensitive tasks. The findings reveal recurring issues, including command execution vulnerabilities, insecure memory handling, and insufficient input validation. In response, we propose a set of recommendations for integrating secure prompt design and code auditing practices into developer training. These guidelines aim to help future developers generate safer code and better identify flaws in GenAI-generated output. This work offers an initial analysis of the limitations of GenAI-assisted code generation and provides actionable strategies to support the more secure and responsible use of these tools in professional and educational contexts.

Cite as

Maria Camila Santos Galeano, Tiago Espinha Gasiba, Sathwik Amburi, and Maria Pinto-Albuquerque. Are We There Yet? On Security Vulnerabilities Produced by Open Source Generative AI Models and Its Implications for Security Education. In 6th International Computer Programming Education Conference (ICPEC 2025). Open Access Series in Informatics (OASIcs), Volume 133, pp. 9:1-9:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{santosgaleano_et_al:OASIcs.ICPEC.2025.9,
  author =	{Santos Galeano, Maria Camila and Espinha Gasiba, Tiago and Amburi, Sathwik and Pinto-Albuquerque, Maria},
  title =	{{Are We There Yet? On Security Vulnerabilities Produced by Open Source Generative AI Models and Its Implications for Security Education}},
  booktitle =	{6th International Computer Programming Education Conference (ICPEC 2025)},
  pages =	{9:1--9:12},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-393-5},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{133},
  editor =	{Queir\'{o}s, Ricardo and Pinto, M\'{a}rio and Portela, Filipe and Sim\~{o}es, Alberto},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ICPEC.2025.9},
  URN =		{urn:nbn:de:0030-drops-240395},
  doi =		{10.4230/OASIcs.ICPEC.2025.9},
  annote =	{Keywords: Generative AI, Code Security, Programming Education, Prompt Engineering, Secure Coding, Static Analysis}
}
Document
RANDOM
Pseudorandomness of Expander Walks via Fourier Analysis on Groups

Authors: Fernando Granha Jeronimo, Tushant Mittal, and Sourya Roy

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
A long line of work has studied the pseudorandomness properties of walks on expander graphs. A central goal is to measure how closely the distribution over n-length walks on an expander approximates the uniform distribution of n-independent elements. One approach to do so is to label the vertices of an expander with elements from an alphabet Σ, and study closeness of the mean of functions over Σⁿ, under these two distributions. We say expander walks ε-fool a function if the expander walk mean is ε-close to the true mean. There has been a sequence of works studying this question for various functions, such as the XOR function, the AND function, etc. We show that: - The class of symmetric functions is O(|Σ|λ)-fooled by expander walks over any generic λ-expander, and any alphabet Σ . This generalizes the result of Cohen, Peri, Ta-Shma [STOC'21] which analyzes it for |Σ| = 2, and exponentially improves the previous bound of O(|Σ|^O(|Σ|) λ), by Golowich and Vadhan [CCC'22]. Moreover, if the expander is a Cayley graph over ℤ_|Σ|, we get a further improved bound of O(√{|Σ|} λ). Morever, when Σ is a finite group G, we show the following for functions over Gⁿ: - The class of symmetric class functions is O({√|G|}/D λ}-fooled by expander walks over "structured" λ-expanders, if G is D-quasirandom. - We show a lower bound of Ω(λ) for symmetric functions for any finite group G (even for "structured" λ-expanders). - We study the Fourier spectrum of a class of non-symmetric functions arising from word maps, and show that they are exponentially fooled by expander walks. Our proof employs Fourier analysis over general groups, which contrasts with earlier works that have studied either the case of ℤ₂ or ℤ. This enables us to get quantitatively better bounds even for unstructured sets.

Cite as

Fernando Granha Jeronimo, Tushant Mittal, and Sourya Roy. Pseudorandomness of Expander Walks via Fourier Analysis on Groups. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 49:1-49:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{jeronimo_et_al:LIPIcs.APPROX/RANDOM.2025.49,
  author =	{Jeronimo, Fernando Granha and Mittal, Tushant and Roy, Sourya},
  title =	{{Pseudorandomness of Expander Walks via Fourier Analysis on Groups}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{49:1--49:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.49},
  URN =		{urn:nbn:de:0030-drops-244157},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.49},
  annote =	{Keywords: Expander graphs, pseudorandomness}
}
Document
APPROX
Multipass Linear Sketches for Geometric LP-Type Problems

Authors: N. Efe Çekirge, William Gay, and David P. Woodruff

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
LP-type problems such as the Minimum Enclosing Ball (MEB), Linear Support Vector Machine (SVM), Linear Programming (LP), and Semidefinite Programming (SDP) are fundamental combinatorial optimization problems, with many important applications in machine learning applications such as classification, bioinformatics, and noisy learning. We study LP-type problems in several streaming and distributed big data models, giving ε-approximation linear sketching algorithms with a focus on the high accuracy regime with low dimensionality d, that is, when d < (1/ε)^0.999. Our main result is an O(ds) pass algorithm with O(s(√d/ε)^{3d/s}) ⋅ poly(d, log (1/ε)) space complexity in words, for any parameter s ∈ [1, d log (1/ε)], to solve ε-approximate LP-type problems of O(d) combinatorial and VC dimension. Notably, by taking s = d log (1/ε), we achieve space complexity polynomial in d and polylogarithmic in 1/ε, presenting exponential improvements in 1/ε over current algorithms. We complement our results by showing lower bounds of (1/ε)^Ω(d) for any 1-pass algorithm solving the (1 + ε)-approximation MEB and linear SVM problems, further motivating our multi-pass approach.

Cite as

N. Efe Çekirge, William Gay, and David P. Woodruff. Multipass Linear Sketches for Geometric LP-Type Problems. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 8:1-8:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cekirge_et_al:LIPIcs.APPROX/RANDOM.2025.8,
  author =	{\c{C}ekirge, N. Efe and Gay, William and Woodruff, David P.},
  title =	{{Multipass Linear Sketches for Geometric LP-Type Problems}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{8:1--8:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.8},
  URN =		{urn:nbn:de:0030-drops-243741},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.8},
  annote =	{Keywords: Streaming, sketching, LP-type problems}
}
Document
Efficient Quantum Pseudorandomness from Hamiltonian Phase States

Authors: John Bostanci, Jonas Haferkamp, Dominik Hangleiter, and Alexander Poremba

Published in: LIPIcs, Volume 350, 20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025)


Abstract
Quantum pseudorandomness has found applications in many areas of quantum information, ranging from entanglement theory, to models of scrambling phenomena in chaotic quantum systems, and, more recently, in the foundations of quantum cryptography. Kretschmer (TQC '21) showed that both pseudorandom states and pseudorandom unitaries exist even in a world without classical one-way functions. To this day, however, all known constructions require classical cryptographic building blocks which are themselves synonymous with the existence of one-way functions, and which are also challenging to implement on realistic quantum hardware. In this work, we seek to make progress on both of these fronts simultaneously - by decoupling quantum pseudorandomness from classical cryptography altogether. We introduce a quantum hardness assumption called the Hamiltonian Phase State (HPS) problem, which is the task of decoding output states of a random instantaneous quantum polynomial-time (IQP) circuit. Hamiltonian phase states can be generated very efficiently using only Hadamard gates, single-qubit Z rotations and CNOT circuits. We show that the hardness of our problem reduces to a worst-case version of the problem, and we provide evidence that our assumption is plausibly fully quantum; meaning, it cannot be used to construct one-way functions. We also show information-theoretic hardness when only few copies of HPS are available by proving an approximate t-design property of our ensemble. Finally, we show that our HPS assumption and its variants allow us to efficiently construct many pseudorandom quantum primitives, ranging from pseudorandom states, to quantum pseudoentanglement, to pseudorandom unitaries, and even primitives such as public-key encryption with quantum keys.

Cite as

John Bostanci, Jonas Haferkamp, Dominik Hangleiter, and Alexander Poremba. Efficient Quantum Pseudorandomness from Hamiltonian Phase States. In 20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 350, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bostanci_et_al:LIPIcs.TQC.2025.9,
  author =	{Bostanci, John and Haferkamp, Jonas and Hangleiter, Dominik and Poremba, Alexander},
  title =	{{Efficient Quantum Pseudorandomness from Hamiltonian Phase States}},
  booktitle =	{20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025)},
  pages =	{9:1--9:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-392-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{350},
  editor =	{Fefferman, Bill},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2025.9},
  URN =		{urn:nbn:de:0030-drops-240586},
  doi =		{10.4230/LIPIcs.TQC.2025.9},
  annote =	{Keywords: Quantum pseudorandomness, quantum phase states, quantum cryptography}
}
Document
Dynamic Streaming Algorithms for Geometric Independent Set

Authors: Timothy M. Chan and Yuancheng Yu

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
We present the first space-efficient, fully dynamic streaming algorithm for computing a constant-factor approximation of the maximum independent set size of n axis-aligned rectangles in two dimensions. For an arbitrarily small constant δ > 0, our algorithm obtains an O((1/δ)²) approximation and requires O(U^δ polylog n) space and update time with high probability, assuming that coordinates are integers bounded by U. We also obtain a similar result for fat objects in any constant dimension. This extends recent non-streaming algorithms by Bhore and Chan from SODA'25, and also greatly extends previous streaming results, which were limited to special types of geometric objects such as one-dimensional intervals and unit disks.

Cite as

Timothy M. Chan and Yuancheng Yu. Dynamic Streaming Algorithms for Geometric Independent Set. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 17:1-17:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chan_et_al:LIPIcs.WADS.2025.17,
  author =	{Chan, Timothy M. and Yu, Yuancheng},
  title =	{{Dynamic Streaming Algorithms for Geometric Independent Set}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{17:1--17:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.17},
  URN =		{urn:nbn:de:0030-drops-242481},
  doi =		{10.4230/LIPIcs.WADS.2025.17},
  annote =	{Keywords: Geometric Independent Set, Dynamic Streaming Algorithms}
}
Document
Leveraging Open-Source Satellite-Derived Building Footprints for Height Inference

Authors: Clinton Stipek, Taylor Hauser, Justin Epting, Jessica Moehl, and Daniel Adams

Published in: LIPIcs, Volume 346, 13th International Conference on Geographic Information Science (GIScience 2025)


Abstract
At a global scale, cities are growing and characterizing the built environment is essential for deeper understanding of human population patterns, urban development, energy usage, climate change impacts, among others. Buildings are a key component of the built environment and significant progress has been made in recent years to scale building footprint extractions from satellite datum and other remotely sensed products. Billions of building footprints have recently been released by companies such as Microsoft and Google at a global scale. However, research has shown that depending on the methods leveraged to produce a footprint dataset, discrepancies can arise in both the number and shape of footprints produced. Therefore, each footprint dataset should be examined and used on a case-by-case study. In this work, we find through two experiments on Oak Ridge National Laboratory and Microsoft footprints within the same geographic extent that our approach of inferring height from footprint morphology features is source agnostic. Regardless of the differences associated with the methods used to produce a building footprint dataset, our approach of inferring height was able to overcome these discrepancies between the products and generalize, as evidenced by 98% of our results being within 3m of the ground-truthed height. This signifies that our approach can be applied to the billions of open-source footprints which are freely available to infer height, a key building metric. This work impacts the broader domain of urban science in which building height is a key, and limiting factor.

Cite as

Clinton Stipek, Taylor Hauser, Justin Epting, Jessica Moehl, and Daniel Adams. Leveraging Open-Source Satellite-Derived Building Footprints for Height Inference. In 13th International Conference on Geographic Information Science (GIScience 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 346, pp. 1:1-1:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{stipek_et_al:LIPIcs.GIScience.2025.1,
  author =	{Stipek, Clinton and Hauser, Taylor and Epting, Justin and Moehl, Jessica and Adams, Daniel},
  title =	{{Leveraging Open-Source Satellite-Derived Building Footprints for Height Inference}},
  booktitle =	{13th International Conference on Geographic Information Science (GIScience 2025)},
  pages =	{1:1--1:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-378-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{346},
  editor =	{Sila-Nowicka, Katarzyna and Moore, Antoni and O'Sullivan, David and Adams, Benjamin and Gahegan, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2025.1},
  URN =		{urn:nbn:de:0030-drops-238306},
  doi =		{10.4230/LIPIcs.GIScience.2025.1},
  annote =	{Keywords: Building Height, Big Data, Machine Learning}
}
  • Refine by Type
  • 80 Document/PDF
  • 59 Document/HTML

  • Refine by Publication Year
  • 52 2025
  • 3 2024
  • 11 2023
  • 5 2022
  • 3 2021
  • Show More...

  • Refine by Author
  • 8 Song, Zhao
  • 3 Biswas, Russa
  • 3 Woodruff, David P.
  • 3 Zhang, Ruizhe
  • 3 de Melo, Gerard
  • Show More...

  • Refine by Series/Journal
  • 58 LIPIcs
  • 4 OASIcs
  • 4 LITES
  • 13 TGDK
  • 1 DagMan

  • Refine by Classification
  • 6 Computing methodologies → Artificial intelligence
  • 6 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 5 Computing methodologies → Knowledge representation and reasoning
  • 4 Computing methodologies → Machine learning
  • 4 Computing methodologies → Natural language processing
  • Show More...

  • Refine by Keyword
  • 5 GeoAI
  • 4 Large Language Models
  • 3 Knowledge Graphs
  • 3 Knowledge graphs
  • 3 streaming algorithms
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail