98 Search Results for "Golovach, Petr"


Volume

LIPIcs, Volume 214

16th International Symposium on Parameterized and Exact Computation (IPEC 2021)

IPEC 2021, September 8-10, 2021, Lisbon, Portugal

Editors: Petr A. Golovach and Meirav Zehavi

Document
Cuts in Graphs with Matroid Constraints

Authors: Aritra Banik, Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Satyabrata Jana, and Saket Saurabh

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Vertex (s, t)-Cut and Vertex Multiway Cut are two fundamental graph separation problems in algorithmic graph theory. We study matroidal generalizations of these problems, where in addition to the usual input, we are given a representation R ∈ 𝔽^{r × n} of a linear matroid ℳ = (V(G), ℐ) of rank r in the input, and the goal is to determine whether there exists a vertex subset S ⊆ V(G) that has the required cut properties, as well as is independent in the matroid ℳ. We refer to these problems as Independent Vertex (s, t){-cut}, and Independent Multiway Cut, respectively. We show that these problems are fixed-parameter tractable (FPT) when parameterized by the solution size (which can be assumed to be equal to the rank of the matroid ℳ). These results are obtained by exploiting the recent technique of flow augmentation [Kim et al. STOC '22], combined with a dynamic programming algorithm on flow-paths á la [Feige and Mahdian, STOC '06] that maintains a representative family of solutions w.r.t. the given matroid [Marx, TCS '06; Fomin et al., JACM]. As a corollary, we also obtain FPT algorithms for the independent version of Odd Cycle Transversal. Further, our results can be generalized to other variants of the problems, e.g., weighted versions, or edge-deletion versions.

Cite as

Aritra Banik, Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Satyabrata Jana, and Saket Saurabh. Cuts in Graphs with Matroid Constraints. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 17:1-17:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{banik_et_al:LIPIcs.ESA.2024.17,
  author =	{Banik, Aritra and Fomin, Fedor V. and Golovach, Petr A. and Inamdar, Tanmay and Jana, Satyabrata and Saurabh, Saket},
  title =	{{Cuts in Graphs with Matroid Constraints}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{17:1--17:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.17},
  URN =		{urn:nbn:de:0030-drops-210887},
  doi =		{10.4230/LIPIcs.ESA.2024.17},
  annote =	{Keywords: s-t-cut, multiway Cut, matroid, odd cycle transversal, feedback vertex set, fixed-parameter tractability}
}
Document
APPROX
Hybrid k-Clustering: Blending k-Median and k-Center

Authors: Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Saket Saurabh, and Meirav Zehavi

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We propose a novel clustering model encompassing two well-known clustering models: k-center clustering and k-median clustering. In the Hybrid k-Clustering problem, given a set P of points in ℝ^d, an integer k, and a non-negative real r, our objective is to position k closed balls of radius r to minimize the sum of distances from points not covered by the balls to their closest balls. Equivalently, we seek an optimal L₁-fitting of a union of k balls of radius r to a set of points in the Euclidean space. When r = 0, this corresponds to k-median; when the minimum sum is zero, indicating complete coverage of all points, it is k-center. Our primary result is a bicriteria approximation algorithm that, for a given ε > 0, produces a hybrid k-clustering with balls of radius (1+ε)r. This algorithm achieves a cost at most 1+ε of the optimum, and it operates in time 2^{(kd/ε)^𝒪(1)} ⋅ n^𝒪(1). Notably, considering the established lower bounds on k-center and k-median, our bicriteria approximation stands as the best possible result for Hybrid k-Clustering.

Cite as

Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Saket Saurabh, and Meirav Zehavi. Hybrid k-Clustering: Blending k-Median and k-Center. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.APPROX/RANDOM.2024.4,
  author =	{Fomin, Fedor V. and Golovach, Petr A. and Inamdar, Tanmay and Saurabh, Saket and Zehavi, Meirav},
  title =	{{Hybrid k-Clustering: Blending k-Median and k-Center}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{4:1--4:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.4},
  URN =		{urn:nbn:de:0030-drops-209975},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.4},
  annote =	{Keywords: clustering, k-center, k-median, Euclidean space, fpt approximation}
}
Document
Breaking a Graph into Connected Components with Small Dominating Sets

Authors: Matthias Bentert, Michael R. Fellows, Petr A. Golovach, Frances A. Rosamond, and Saket Saurabh

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
We study DOMINATED CLUSTER DELETION. Therein, we are given an undirected graph G = (V,E) and integers k and d and the task is to find a set of at most k vertices such that removing these vertices results in a graph in which each connected component has a dominating set of size at most d. We also consider the special case where d is a constant. We show an almost complete tetrachotomy in terms of para-NP-hardness, containment in XP, containment in FPT, and admitting a polynomial kernel with respect to parameterizations that are a combination of k,d,c, and Δ, where c and Δ are the degeneracy and the maximum degree of the input graph, respectively. As a main contribution, we show that the problem can be solved in f(k,d) ⋅ n^O(d) time, that is, the problem is FPT when parameterized by k when d is a constant. This answers an open problem asked in a recent Dagstuhl seminar (23331). For the special case d = 1, we provide an algorithm with running time 2^𝒪(klog k) nm. Furthermore, we show that even for d = 1, the problem does not admit a polynomial kernel with respect to k + c.

Cite as

Matthias Bentert, Michael R. Fellows, Petr A. Golovach, Frances A. Rosamond, and Saket Saurabh. Breaking a Graph into Connected Components with Small Dominating Sets. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 24:1-24:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bentert_et_al:LIPIcs.MFCS.2024.24,
  author =	{Bentert, Matthias and Fellows, Michael R. and Golovach, Petr A. and Rosamond, Frances A. and Saurabh, Saket},
  title =	{{Breaking a Graph into Connected Components with Small Dominating Sets}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{24:1--24:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.24},
  URN =		{urn:nbn:de:0030-drops-205801},
  doi =		{10.4230/LIPIcs.MFCS.2024.24},
  annote =	{Keywords: Parameterized Algorithms, Recursive Understanding, Polynomial Kernels, Degeneracy}
}
Document
Track A: Algorithms, Complexity and Games
Two-Sets Cut-Uncut on Planar Graphs

Authors: Matthias Bentert, Pål Grønås Drange, Fedor V. Fomin, Petr A. Golovach, and Tuukka Korhonen

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study Two-Sets Cut-Uncut on planar graphs. Therein, one is given an undirected planar graph G and two disjoint sets S and T of vertices as input. The question is, what is the minimum number of edges to remove from G, such that all vertices in S are separated from all vertices in T, while maintaining that every vertex in S, and respectively in T, stays in the same connected component. We show that this problem can be solved in 2^{|S|+|T|} n^𝒪(1) time with a one-sided-error randomized algorithm. Our algorithm implies a polynomial-time algorithm for the network diversion problem on planar graphs, which resolves an open question from the literature. More generally, we show that Two-Sets Cut-Uncut is fixed-parameter tractable when parameterized by the number r of faces in a planar embedding covering the terminals S ∪ T, by providing a 2^𝒪(r) n^𝒪(1)-time algorithm.

Cite as

Matthias Bentert, Pål Grønås Drange, Fedor V. Fomin, Petr A. Golovach, and Tuukka Korhonen. Two-Sets Cut-Uncut on Planar Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 22:1-22:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bentert_et_al:LIPIcs.ICALP.2024.22,
  author =	{Bentert, Matthias and Drange, P\r{a}l Gr{\o}n\r{a}s and Fomin, Fedor V. and Golovach, Petr A. and Korhonen, Tuukka},
  title =	{{Two-Sets Cut-Uncut on Planar Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{22:1--22:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.22},
  URN =		{urn:nbn:de:0030-drops-201654},
  doi =		{10.4230/LIPIcs.ICALP.2024.22},
  annote =	{Keywords: planar graphs, cut-uncut, group-constrained paths}
}
Document
Track A: Algorithms, Complexity and Games
Computing Tree Decompositions with Small Independence Number

Authors: Clément Dallard, Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Martin Milanič

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
The independence number of a tree decomposition is the maximum of the independence numbers of the subgraphs induced by its bags. The tree-independence number of a graph is the minimum independence number of a tree decomposition of it. Several NP-hard graph problems, like maximum weight independent set, can be solved in time n^𝒪(k) if the input n-vertex graph is given together with a tree decomposition of independence number k. Yolov in [SODA 2018] gave an algorithm that given an n-vertex graph G and an integer k, in time n^𝒪(k³) either constructs a tree decomposition of G whose independence number is 𝒪(k³) or correctly reports that the tree-independence number of G is larger than k. In this paper, we first give an algorithm for computing the tree-independence number with a better approximation ratio and running time and then prove that our algorithm is, in some sense, the best one can hope for. More precisely, our algorithm runs in time 2^𝒪(k²) n^𝒪(k) and either outputs a tree decomposition of G with independence number at most 8k, or determines that the tree-independence number of G is larger than k. This implies 2^𝒪(k²) n^𝒪(k)-time algorithms for various problems, like maximum weight independent set, parameterized by the tree-independence number k without needing the decomposition as an input. Assuming Gap-ETH, an n^Ω(k) factor in the running time is unavoidable for any approximation algorithm for the tree-independence number. Our second result is that the exact computation of the tree-independence number is para-NP-hard: We show that for every constant k ≥ 4 it is NP-hard to decide if a given graph has the tree-independence number at most k.

Cite as

Clément Dallard, Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Martin Milanič. Computing Tree Decompositions with Small Independence Number. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 51:1-51:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dallard_et_al:LIPIcs.ICALP.2024.51,
  author =	{Dallard, Cl\'{e}ment and Fomin, Fedor V. and Golovach, Petr A. and Korhonen, Tuukka and Milani\v{c}, Martin},
  title =	{{Computing Tree Decompositions with Small Independence Number}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{51:1--51:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.51},
  URN =		{urn:nbn:de:0030-drops-201945},
  doi =		{10.4230/LIPIcs.ICALP.2024.51},
  annote =	{Keywords: tree-independence number, approximation, parameterized algorithms}
}
Document
Stability in Graphs with Matroid Constraints

Authors: Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Saket Saurabh

Published in: LIPIcs, Volume 294, 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024)


Abstract
We study the following INDEPENDENT STABLE SET problem. Let G be an undirected graph and ℳ = (V(G), ℐ) be a matroid whose elements are the vertices of G. For an integer k ≥ 1, the task is to decide whether G contains a set S ⊆ V(G) of size at least k which is independent (stable) in G and independent in ℳ. This problem generalizes several well-studied algorithmic problems, including RAINBOW INDEPENDENT SET, RAIBOW MATCHING, and BIPARTITE MATCHING WITH SEPARATION. We show that - When the matroid ℳ is represented by the independence oracle, then for any computable function f, no algorithm can solve INDEPENDENT STABLE SET using f(k)⋅n^o(k) calls to the oracle. - On the other hand, when the graph G is of degeneracy d, then the problem is solvable in time 𝒪((d+1)^k ⋅ n), and hence is FPT parameterized by d+k. Moreover, when the degeneracy d is a constant (which is not a part of the input), the problem admits a kernel polynomial in k. More precisely, we prove that for every integer d ≥ 0, the problem admits a kernelization algorithm that in time n^𝒪(d) outputs an equivalent framework with a graph on dk^{𝒪(d)} vertices. A lower bound complements this when d is part of the input: INDEPENDENT STABLE SET does not admit a polynomial kernel when parameterized by k+d unless NP ⊆ coNP/poly. This lower bound holds even when ℳ is a partition matroid. - Another set of results concerns the scenario when the graph G is chordal. In this case, our computational lower bound excludes an FPT algorithm when the input matroid is given by its independence oracle. However, we demonstrate that INDEPENDENT STABLE SET can be solved in 2^𝒪(k)⋅‖ℳ‖^𝒪(1) time when ℳ is a linear matroid given by its representation. In the same setting, INDEPENDENT STABLE SET does not have a polynomial kernel when parameterized by k unless NP ⊆ coNP/poly.

Cite as

Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Saket Saurabh. Stability in Graphs with Matroid Constraints. In 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 294, pp. 22:1-22:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.SWAT.2024.22,
  author =	{Fomin, Fedor V. and Golovach, Petr A. and Korhonen, Tuukka and Saurabh, Saket},
  title =	{{Stability in Graphs with Matroid Constraints}},
  booktitle =	{19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024)},
  pages =	{22:1--22:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-318-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{294},
  editor =	{Bodlaender, Hans L.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2024.22},
  URN =		{urn:nbn:de:0030-drops-200629},
  doi =		{10.4230/LIPIcs.SWAT.2024.22},
  annote =	{Keywords: frameworks, independent stable sets, parameterized complexity, kernelization}
}
Document
Kernelizing Temporal Exploration Problems

Authors: Emmanuel Arrighi, Fedor V. Fomin, Petr A. Golovach, and Petra Wolf

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
We study the kernelization of exploration problems on temporal graphs. A temporal graph consists of a finite sequence of snapshot graphs 𝒢 = (G₁, G₂, … , G_L) that share a common vertex set but might have different edge sets. The non-strict temporal exploration problem (NS-TEXP for short) introduced by Erlebach and Spooner, asks if a single agent can visit all vertices of a given temporal graph where the edges traversed by the agent are present in non-strict monotonous time steps, i.e., the agent can move along the edges of a snapshot graph with infinite speed. The exploration must at the latest be completed in the last snapshot graph. The optimization variant of this problem is the k-arb NS-TEXP problem, where the agent’s task is to visit at least k vertices of the temporal graph. We show that under standard computational complexity assumptions, neither of the problems NS-TEXP nor k-arb NS-TEXP allow for polynomial kernels in the standard parameters: number of vertices n, lifetime L, number of vertices to visit k, and maximal number of connected components per time step γ; as well as in the combined parameters L+k, L + γ, and k+γ. On the way to establishing these lower bounds, we answer a couple of questions left open by Erlebach and Spooner. We also initiate the study of structural kernelization by identifying a new parameter of a temporal graph p(𝒢) = ∑_{i=1}^L (|E(G_i)|) - |V(G)| + 1. Informally, this parameter measures how dynamic the temporal graph is. Our main algorithmic result is the construction of a polynomial (in p(𝒢)) kernel for the more general Weighted k-arb NS-TEXP problem, where weights are assigned to the vertices and the task is to find a temporal walk of weight at least k.

Cite as

Emmanuel Arrighi, Fedor V. Fomin, Petr A. Golovach, and Petra Wolf. Kernelizing Temporal Exploration Problems. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 1:1-1:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{arrighi_et_al:LIPIcs.IPEC.2023.1,
  author =	{Arrighi, Emmanuel and Fomin, Fedor V. and Golovach, Petr A. and Wolf, Petra},
  title =	{{Kernelizing Temporal Exploration Problems}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{1:1--1:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.1},
  URN =		{urn:nbn:de:0030-drops-194201},
  doi =		{10.4230/LIPIcs.IPEC.2023.1},
  annote =	{Keywords: Temporal graph, temporal exploration, computational complexity, kernel}
}
Document
Computing Paths of Large Rank in Planar Frameworks Deterministically

Authors: Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Giannos Stamoulis

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
A framework consists of an undirected graph G and a matroid M whose elements correspond to the vertices of G. Recently, Fomin et al. [SODA 2023] and Eiben et al. [ArXiV 2023] developed parameterized algorithms for computing paths of rank k in frameworks. More precisely, for vertices s and t of G, and an integer k, they gave FPT algorithms parameterized by k deciding whether there is an (s,t)-path in G whose vertex set contains a subset of elements of M of rank k. These algorithms are based on Schwartz-Zippel lemma for polynomial identity testing and thus are randomized, and therefore the existence of a deterministic FPT algorithm for this problem remains open. We present the first deterministic FPT algorithm that solves the problem in frameworks whose underlying graph G is planar. While the running time of our algorithm is worse than the running times of the recent randomized algorithms, our algorithm works on more general classes of matroids. In particular, this is the first FPT algorithm for the case when matroid M is represented over rationals. Our main technical contribution is the nontrivial adaptation of the classic irrelevant vertex technique to frameworks to reduce the given instance to one of bounded treewidth. This allows us to employ the toolbox of representative sets to design a dynamic programming procedure solving the problem efficiently on instances of bounded treewidth.

Cite as

Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Giannos Stamoulis. Computing Paths of Large Rank in Planar Frameworks Deterministically. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 32:1-32:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.ISAAC.2023.32,
  author =	{Fomin, Fedor V. and Golovach, Petr A. and Korhonen, Tuukka and Stamoulis, Giannos},
  title =	{{Computing Paths of Large Rank in Planar Frameworks Deterministically}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{32:1--32:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.32},
  URN =		{urn:nbn:de:0030-drops-193341},
  doi =		{10.4230/LIPIcs.ISAAC.2023.32},
  annote =	{Keywords: Planar graph, longest path, linear matroid, irrelevant vertex}
}
Document
Kernelization for Spreading Points

Authors: Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Saket Saurabh, and Meirav Zehavi

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
We consider the following problem about dispersing points. Given a set of points in the plane, the task is to identify whether by moving a small number of points by small distance, we can obtain an arrangement of points such that no pair of points is "close" to each other. More precisely, for a family of n points, an integer k, and a real number d > 0, we ask whether at most k points could be relocated, each point at distance at most d from its original location, such that the distance between each pair of points is at least a fixed constant, say 1. A number of approximation algorithms for variants of this problem, under different names like distant representatives, disk dispersing, or point spreading, are known in the literature. However, to the best of our knowledge, the parameterized complexity of this problem remains widely unexplored. We make the first step in this direction by providing a kernelization algorithm that, in polynomial time, produces an equivalent instance with 𝒪(d²k³) points. As a byproduct of this result, we also design a non-trivial fixed-parameter tractable (FPT) algorithm for the problem, parameterized by k and d. Finally, we complement the result about polynomial kernelization by showing a lower bound that rules out the existence of a kernel whose size is polynomial in k alone, unless NP ⊆ coNP/poly.

Cite as

Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Saket Saurabh, and Meirav Zehavi. Kernelization for Spreading Points. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 48:1-48:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.ESA.2023.48,
  author =	{Fomin, Fedor V. and Golovach, Petr A. and Inamdar, Tanmay and Saurabh, Saket and Zehavi, Meirav},
  title =	{{Kernelization for Spreading Points}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{48:1--48:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.48},
  URN =		{urn:nbn:de:0030-drops-187017},
  doi =		{10.4230/LIPIcs.ESA.2023.48},
  annote =	{Keywords: parameterized algorithms, kernelization, spreading points, distant representatives, unit disk packing}
}
Document
FPT Approximation and Subexponential Algorithms for Covering Few or Many Edges

Authors: Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, and Tomohiro Koana

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
We study the α-Fixed Cardinality Graph Partitioning (α-FCGP) problem, the generic local graph partitioning problem introduced by Bonnet et al. [Algorithmica 2015]. In this problem, we are given a graph G, two numbers k,p and 0 ≤ α ≤ 1, the question is whether there is a set S ⊆ V of size k with a specified coverage function cov_α(S) at least p (or at most p for the minimization version). The coverage function cov_α(⋅) counts edges with exactly one endpoint in S with weight α and edges with both endpoints in S with weight 1 - α. α-FCGP generalizes a number of fundamental graph problems such as Densest k-Subgraph, Max k-Vertex Cover, and Max (k,n-k)-Cut. A natural question in the study of α-FCGP is whether the algorithmic results known for its special cases, like Max k-Vertex Cover, could be extended to more general settings. One of the simple but powerful methods for obtaining parameterized approximation [Manurangsi, SOSA 2019] and subexponential algorithms [Fomin et al. IPL 2011] for Max k-Vertex Cover is based on the greedy vertex degree orderings. The main insight of our work is that the idea of greed vertex degree ordering could be used to design fixed-parameter approximation schemes (FPT-AS) for α > 0 and the subexponential-time algorithms for the problem on apex-minor free graphs for maximization with α > 1/3 and minimization with α < 1/3.

Cite as

Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, and Tomohiro Koana. FPT Approximation and Subexponential Algorithms for Covering Few or Many Edges. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 46:1-46:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.MFCS.2023.46,
  author =	{Fomin, Fedor V. and Golovach, Petr A. and Inamdar, Tanmay and Koana, Tomohiro},
  title =	{{FPT Approximation and Subexponential Algorithms for Covering Few or Many Edges}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{46:1--46:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.46},
  URN =		{urn:nbn:de:0030-drops-185806},
  doi =		{10.4230/LIPIcs.MFCS.2023.46},
  annote =	{Keywords: Partial Vertex Cover, Approximation Algorithms, Max Cut}
}
Document
Track A: Algorithms, Complexity and Games
Approximating Long Cycle Above Dirac’s Guarantee

Authors: Fedor V. Fomin, Petr A. Golovach, Danil Sagunov, and Kirill Simonov

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
Parameterization above (or below) a guarantee is a successful concept in parameterized algorithms. The idea is that many computational problems admit "natural" guarantees bringing to algorithmic questions whether a better solution (above the guarantee) could be obtained efficiently. For example, for every boolean CNF formula on m clauses, there is an assignment that satisfies at least m/2 clauses. How difficult is it to decide whether there is an assignment satisfying more than m/2 + k clauses? Or, if an n-vertex graph has a perfect matching, then its vertex cover is at least n/2. Is there a vertex cover of size at least n/2 + k for some k ≥ 1 and how difficult is it to find such a vertex cover? The above guarantee paradigm has led to several exciting discoveries in the areas of parameterized algorithms and kernelization. We argue that this paradigm could bring forth fresh perspectives on well-studied problems in approximation algorithms. Our example is the longest cycle problem. One of the oldest results in extremal combinatorics is the celebrated Dirac’s theorem from 1952. Dirac’s theorem provides the following guarantee on the length of the longest cycle: for every 2-connected n-vertex graph G with minimum degree δ(G) ≤ n/2, the length of the longest cycle L is at least 2δ(G). Thus the "essential" part of finding the longest cycle is in approximating the "offset" k = L - 2δ(G). The main result of this paper is the above-guarantee approximation theorem for k. Informally, the theorem says that approximating the offset k is not harder than approximating the total length L of a cycle. In other words, for any (reasonably well-behaved) function f, a polynomial time algorithm constructing a cycle of length f(L) in an undirected graph with a cycle of length L, yields a polynomial time algorithm constructing a cycle of length 2δ(G)+Ω(f(k)).

Cite as

Fedor V. Fomin, Petr A. Golovach, Danil Sagunov, and Kirill Simonov. Approximating Long Cycle Above Dirac’s Guarantee. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 60:1-60:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.ICALP.2023.60,
  author =	{Fomin, Fedor V. and Golovach, Petr A. and Sagunov, Danil and Simonov, Kirill},
  title =	{{Approximating Long Cycle Above Dirac’s Guarantee}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{60:1--60:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.60},
  URN =		{urn:nbn:de:0030-drops-181128},
  doi =		{10.4230/LIPIcs.ICALP.2023.60},
  annote =	{Keywords: Longest path, longest cycle, approximation algorithms, above guarantee parameterization, minimum degree, Dirac theorem}
}
Document
Track A: Algorithms, Complexity and Games
Compound Logics for Modification Problems

Authors: Fedor V. Fomin, Petr A. Golovach, Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We introduce a novel model-theoretic framework inspired from graph modification and based on the interplay between model theory and algorithmic graph minors. The core of our framework is a new compound logic operating with two types of sentences, expressing graph modification: the modulator sentence, defining some property of the modified part of the graph, and the target sentence, defining some property of the resulting graph. In our framework, modulator sentences are in counting monadic second-order logic (CMSOL) and have models of bounded treewidth, while target sentences express first-order logic (FOL) properties along with minor-exclusion. Our logic captures problems that are not definable in first-order logic and, moreover, may have instances of unbounded treewidth. Also, it permits the modeling of wide families of problems involving vertex/edge removals, alternative modulator measures (such as elimination distance or G-treewidth), multistage modifications, and various cut problems. Our main result is that, for this compound logic, model-checking can be done in quadratic time. All derived algorithms are constructive and this, as a byproduct, extends the constructibility horizon of the algorithmic applications of the Graph Minors theorem of Robertson and Seymour. The proposed logic can be seen as a general framework to capitalize on the potential of the irrelevant vertex technique. It gives a way to deal with problem instances of unbounded treewidth, for which Courcelle’s theorem does not apply.

Cite as

Fedor V. Fomin, Petr A. Golovach, Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. Compound Logics for Modification Problems. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 61:1-61:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.ICALP.2023.61,
  author =	{Fomin, Fedor V. and Golovach, Petr A. and Sau, Ignasi and Stamoulis, Giannos and Thilikos, Dimitrios M.},
  title =	{{Compound Logics for Modification Problems}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{61:1--61:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.61},
  URN =		{urn:nbn:de:0030-drops-181137},
  doi =		{10.4230/LIPIcs.ICALP.2023.61},
  annote =	{Keywords: Algorithmic meta-theorems, Graph modification problems, Model-checking, Graph minors, First-order logic, Monadic second-order logic, Flat Wall theorem, Irrelevant vertex technique}
}
Document
FPT Approximation for Fair Minimum-Load Clustering

Authors: Sayan Bandyapadhyay, Fedor V. Fomin, Petr A. Golovach, Nidhi Purohit, and Kirill Simonov

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)


Abstract
In this paper, we consider the Minimum-Load k-Clustering/Facility Location (MLkC) problem where we are given a set P of n points in a metric space that we have to cluster and an integer k > 0 that denotes the number of clusters. Additionally, we are given a set F of cluster centers in the same metric space. The goal is to select a set C ⊆ F of k centers and assign each point in P to a center in C, such that the maximum load over all centers is minimized. Here the load of a center is the sum of the distances between it and the points assigned to it. Although clustering/facility location problems have rich literature, the minimum-load objective has not been studied substantially, and hence MLkC has remained a poorly understood problem. More interestingly, the problem is notoriously hard even in some special cases including the one in line metrics as shown by Ahmadian et al. [APPROX 2014, ACM Trans. Algorithms 2018]. They also show APX-hardness of the problem in the plane. On the other hand, the best-known approximation factor for MLkC is O(k), even in the plane. In this work, we study a fair version of MLkC inspired by the work of Chierichetti et al. [NeurIPS, 2017]. Here the input points are partitioned into 𝓁 protected groups, and only clusters that proportionally represent each group are allowed. MLkC is the special case with 𝓁 = 1. For the fair version, we are able to obtain a randomized 3-approximation algorithm in f(k,𝓁)⋅ n^O(1) time. Also, our scheme leads to an improved (1 + ε)-approximation in the case of Euclidean norm with the same running time (depending also linearly on the dimension d). Our results imply the same approximations for MLkC with running time f(k)⋅ n^O(1), achieving the first constant-factor FPT approximations for this problem in general and Euclidean metric spaces.

Cite as

Sayan Bandyapadhyay, Fedor V. Fomin, Petr A. Golovach, Nidhi Purohit, and Kirill Simonov. FPT Approximation for Fair Minimum-Load Clustering. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 4:1-4:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bandyapadhyay_et_al:LIPIcs.IPEC.2022.4,
  author =	{Bandyapadhyay, Sayan and Fomin, Fedor V. and Golovach, Petr A. and Purohit, Nidhi and Simonov, Kirill},
  title =	{{FPT Approximation for Fair Minimum-Load Clustering}},
  booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
  pages =	{4:1--4:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-260-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{249},
  editor =	{Dell, Holger and Nederlof, Jesper},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.4},
  URN =		{urn:nbn:de:0030-drops-173600},
  doi =		{10.4230/LIPIcs.IPEC.2022.4},
  annote =	{Keywords: fair clustering, load balancing, parameterized approximation}
}
Document
Exact Exponential Algorithms for Clustering Problems

Authors: Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Nidhi Purohit, and Saket Saurabh

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)


Abstract
In this paper we initiate a systematic study of exact algorithms for some of the well known clustering problems, namely k-MEDIAN and k-MEANS. In k-MEDIAN, the input consists of a set X of n points belonging to a metric space, and the task is to select a subset C ⊆ X of k points as centers, such that the sum of the distances of every point to its nearest center is minimized. In k-MEANS, the objective is to minimize the sum of squares of the distances instead. It is easy to design an algorithm running in time max_{k ≤ n} {n choose k} n^𝒪(1) = 𝒪^*(2ⁿ) (here, 𝒪^*(⋅) notation hides polynomial factors in n). In this paper we design first non-trivial exact algorithms for these problems. In particular, we obtain an 𝒪^*((1.89)ⁿ) time exact algorithm for k-MEDIAN that works for any value of k. Our algorithm is quite general in that it does not use any properties of the underlying (metric) space - it does not even require the distances to satisfy the triangle inequality. In particular, the same algorithm also works for k-Means. We complement this result by showing that the running time of our algorithm is asymptotically optimal, up to the base of the exponent. That is, unless the Exponential Time Hypothesis fails, there is no algorithm for these problems running in time 2^o(n)⋅n^𝒪(1). Finally, we consider the "facility location" or "supplier" versions of these clustering problems, where, in addition to the set X we are additionally given a set of m candidate centers (or facilities) F, and objective is to find a subset of k centers from F. The goal is still to minimize the k-Median/k-Means/k-Center objective. For these versions we give a 𝒪(2ⁿ (mn)^𝒪(1)) time algorithms using subset convolution. We complement this result by showing that, under the Set Cover Conjecture, the "supplier" versions of these problems do not admit an exact algorithm running in time 2^{(1-ε) n} (mn)^𝒪(1).

Cite as

Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Nidhi Purohit, and Saket Saurabh. Exact Exponential Algorithms for Clustering Problems. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 13:1-13:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.IPEC.2022.13,
  author =	{Fomin, Fedor V. and Golovach, Petr A. and Inamdar, Tanmay and Purohit, Nidhi and Saurabh, Saket},
  title =	{{Exact Exponential Algorithms for Clustering Problems}},
  booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
  pages =	{13:1--13:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-260-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{249},
  editor =	{Dell, Holger and Nederlof, Jesper},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.13},
  URN =		{urn:nbn:de:0030-drops-173691},
  doi =		{10.4230/LIPIcs.IPEC.2022.13},
  annote =	{Keywords: clustering, k-median, k-means, exact algorithms}
}
  • Refine by Author
  • 55 Golovach, Petr A.
  • 45 Fomin, Fedor V.
  • 18 Saurabh, Saket
  • 9 Simonov, Kirill
  • 9 Thilikos, Dimitrios M.
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 15 parameterized complexity
  • 12 kernelization
  • 9 fixed-parameter tractability
  • 7 Parameterized complexity
  • 5 clustering
  • Show More...

  • Refine by Type
  • 97 document
  • 1 volume

  • Refine by Publication Year
  • 43 2021
  • 10 2020
  • 9 2019
  • 6 2022
  • 6 2023
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail