137 Search Results for "Grandoni, Fabrizio"


Volume

LIPIcs, Volume 173

28th Annual European Symposium on Algorithms (ESA 2020)

ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference)

Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders

Volume

LIPIcs, Volume 49

8th International Conference on Fun with Algorithms (FUN 2016)

FUN 2016, June 8-10, 2016, La Maddalena, Italy

Editors: Erik D. Demaine and Fabrizio Grandoni

Document
Track A: Algorithms, Complexity and Games
A 4/3 Approximation for 2-Vertex-Connectivity

Authors: Miguel Bosch-Calvo, Fabrizio Grandoni, and Afrouz Jabal Ameli

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
The 2-Vertex-Connected Spanning Subgraph problem (2VCSS) is among the most basic NP-hard (Survivable) Network Design problems: we are given an (unweighted) undirected graph G. Our goal is to find a subgraph S of G with the minimum number of edges which is 2-vertex-connected, namely S remains connected after the deletion of an arbitrary node. 2VCSS is well-studied in terms of approximation algorithms, and the current best (polynomial-time) approximation factor is 10/7 by Heeger and Vygen [SIDMA'17] (improving on earlier results by Khuller and Vishkin [STOC'92] and Garg, Vempala and Singla [SODA'93]). Here we present an improved 4/3 approximation. Our main technical ingredient is an approximation preserving reduction to a conveniently structured subset of instances which are "almost" 3-vertex-connected. The latter reduction might be helpful in future work.

Cite as

Miguel Bosch-Calvo, Fabrizio Grandoni, and Afrouz Jabal Ameli. A 4/3 Approximation for 2-Vertex-Connectivity. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 29:1-29:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{boschcalvo_et_al:LIPIcs.ICALP.2023.29,
  author =	{Bosch-Calvo, Miguel and Grandoni, Fabrizio and Jabal Ameli, Afrouz},
  title =	{{A 4/3 Approximation for 2-Vertex-Connectivity}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{29:1--29:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.29},
  URN =		{urn:nbn:de:0030-drops-180813},
  doi =		{10.4230/LIPIcs.ICALP.2023.29},
  annote =	{Keywords: Algorithm, Network Design, Vertex-Connectivity, Approximation}
}
Document
Unsplittable Euclidean Capacitated Vehicle Routing: A (2+ε)-Approximation Algorithm

Authors: Fabrizio Grandoni, Claire Mathieu, and Hang Zhou

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
In the unsplittable capacitated vehicle routing problem, we are given a metric space with a vertex called depot and a set of vertices called terminals. Each terminal is associated with a positive demand between 0 and 1. The goal is to find a minimum length collection of tours starting and ending at the depot such that the demand of each terminal is covered by a single tour (i.e., the demand cannot be split), and the total demand of the terminals in each tour does not exceed the capacity of 1. Our main result is a polynomial-time (2+ε)-approximation algorithm for this problem in the two-dimensional Euclidean plane, i.e., for the special case where the terminals and the depot are associated with points in the Euclidean plane and their distances are defined accordingly. This improves on recent work by Blauth, Traub, and Vygen [IPCO'21] and Friggstad, Mousavi, Rahgoshay, and Salavatipour [IPCO'22].

Cite as

Fabrizio Grandoni, Claire Mathieu, and Hang Zhou. Unsplittable Euclidean Capacitated Vehicle Routing: A (2+ε)-Approximation Algorithm. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 63:1-63:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{grandoni_et_al:LIPIcs.ITCS.2023.63,
  author =	{Grandoni, Fabrizio and Mathieu, Claire and Zhou, Hang},
  title =	{{Unsplittable Euclidean Capacitated Vehicle Routing: A (2+\epsilon)-Approximation Algorithm}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{63:1--63:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.63},
  URN =		{urn:nbn:de:0030-drops-175660},
  doi =		{10.4230/LIPIcs.ITCS.2023.63},
  annote =	{Keywords: capacitated vehicle routing, approximation algorithms, Euclidean plane}
}
Document
Track A: Algorithms, Complexity and Games
Decremental Matching in General Graphs

Authors: Sepehr Assadi, Aaron Bernstein, and Aditi Dudeja

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We consider the problem of maintaining an approximate maximum integral matching in a dynamic graph G, while the adversary makes changes to the edges of the graph. The goal is to maintain a (1+ε)-approximate maximum matching for constant ε > 0, while minimizing the update time. In the fully dynamic setting, where both edge insertion and deletions are allowed, Gupta and Peng (see [Manoj Gupta and Richard Peng, 2013]) gave an algorithm for this problem with an update time of O(√m/ε²). Motivated by the fact that the O_ε(√m) barrier is hard to overcome (see Henzinger, Krinninger, Nanongkai, and Saranurak [Henzinger et al., 2015]; Kopelowitz, Pettie, and Porat [Kopelowitz et al., 2016]), we study this problem in the decremental model, where the adversary is only allowed to delete edges. Recently, Bernstein, Probst-Gutenberg, and Saranurak (see [Bernstein et al., 2020]) gave an O(poly({log n}/ε)) update time decremental algorithm for this problem in bipartite graphs. However, beating O(√m) update time remained an open problem for general graphs. In this paper, we bridge the gap between bipartite and general graphs, by giving an O_ε(poly(log n)) update time algorithm that maintains a (1+ε)-approximate maximum integral matching under adversarial deletions. Our algorithm is randomized, but works against an adaptive adversary. Together with the work of Grandoni, Leonardi, Sankowski, Schwiegelshohn, and Solomon [Fabrizio Grandoni et al., 2019] who give an O_ε(1) update time algorithm for general graphs in the incremental (insertion-only) model, our result essentially completes the picture for partially dynamic matching.

Cite as

Sepehr Assadi, Aaron Bernstein, and Aditi Dudeja. Decremental Matching in General Graphs. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 11:1-11:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{assadi_et_al:LIPIcs.ICALP.2022.11,
  author =	{Assadi, Sepehr and Bernstein, Aaron and Dudeja, Aditi},
  title =	{{Decremental Matching in General Graphs}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{11:1--11:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.11},
  URN =		{urn:nbn:de:0030-drops-163528},
  doi =		{10.4230/LIPIcs.ICALP.2022.11},
  annote =	{Keywords: Dynamic algorithms, matching, primal-dual algorithms}
}
Document
APPROX
Approximation Algorithms for Demand Strip Packing

Authors: Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, and Kamyar Khodamoradi

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
In the Demand Strip Packing problem (DSP), we are given a time interval and a collection of tasks, each characterized by a processing time and a demand for a given resource (such as electricity, computational power, etc.). A feasible solution consists of a schedule of the tasks within the mentioned time interval. Our goal is to minimize the peak resource consumption, i.e. the maximum total demand of tasks executed at any point in time. It is known that DSP is NP-hard to approximate below a factor 3/2, and standard techniques for related problems imply a (polynomial-time) 2-approximation. Our main result is a (5/3+ε)-approximation algorithm for any constant ε > 0. We also achieve best-possible approximation factors for some relevant special cases.

Cite as

Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, and Kamyar Khodamoradi. Approximation Algorithms for Demand Strip Packing. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 20:1-20:24, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{galvez_et_al:LIPIcs.APPROX/RANDOM.2021.20,
  author =	{G\'{a}lvez, Waldo and Grandoni, Fabrizio and Ameli, Afrouz Jabal and Khodamoradi, Kamyar},
  title =	{{Approximation Algorithms for Demand Strip Packing}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{20:1--20:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.20},
  URN =		{urn:nbn:de:0030-drops-147130},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.20},
  annote =	{Keywords: Strip Packing, Two-Dimensional Packing, Approximation Algorithms}
}
Document
Faster (1+ε)-Approximation for Unsplittable Flow on a Path via Resource Augmentation and Back

Authors: Fabrizio Grandoni, Tobias Mömke, and Andreas Wiese

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
Unsplittable flow on a path (UFP) is an important and well-studied problem. We are given a path with capacities on its edges, and a set of tasks where for each task we are given a demand, a subpath, and a weight. The goal is to select the set of tasks of maximum total weight whose total demands do not exceed the capacity on any edge. UFP admits an (1+ε)-approximation with a running time of n^{O_{ε}(poly(log n))}, i.e., a QPTAS {[}Bansal et al., STOC 2006; Batra et al., SODA 2015{]} and it is considered an important open problem to construct a PTAS. To this end, in a series of papers polynomial time approximation algorithms have been developed, which culminated in a (5/3+ε)-approximation {[}Grandoni et al., STOC 2018{]} and very recently an approximation ratio of (1+1/(e+1)+ε) < 1.269 {[}Grandoni et al., 2020{]}. In this paper, we address the search for a PTAS from a different angle: we present a faster (1+ε)-approximation with a running time of only n^{O_{ε}(log log n)}. We first give such a result in the relaxed setting of resource augmentation and then transform it to an algorithm without resource augmentation. For this, we present a framework which transforms algorithms for (a slight generalization of) UFP under resource augmentation in a black-box manner into algorithms for UFP without resource augmentation, with only negligible loss.

Cite as

Fabrizio Grandoni, Tobias Mömke, and Andreas Wiese. Faster (1+ε)-Approximation for Unsplittable Flow on a Path via Resource Augmentation and Back. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 49:1-49:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{grandoni_et_al:LIPIcs.ESA.2021.49,
  author =	{Grandoni, Fabrizio and M\"{o}mke, Tobias and Wiese, Andreas},
  title =	{{Faster (1+\epsilon)-Approximation for Unsplittable Flow on a Path via Resource Augmentation and Back}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{49:1--49:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.49},
  URN =		{urn:nbn:de:0030-drops-146301},
  doi =		{10.4230/LIPIcs.ESA.2021.49},
  annote =	{Keywords: Approximation Algorithms, Unsplittable Flow, Dynamic Programming}
}
Document
Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More

Authors: Waldo Gálvez, Fabrizio Grandoni, Arindam Khan, Diego Ramírez-Romero, and Andreas Wiese

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
In the 2-Dimensional Knapsack problem (2DK) we are given a square knapsack and a collection of n rectangular items with integer sizes and profits. Our goal is to find the most profitable subset of items that can be packed non-overlappingly into the knapsack. The currently best known polynomial-time approximation factor for 2DK is 17/9+ε < 1.89 and there is a (3/2+ε)-approximation algorithm if we are allowed to rotate items by 90 degrees [Gálvez et al., FOCS 2017]. In this paper, we give (4/3+ε)-approximation algorithms in polynomial time for both cases, assuming that all input data are integers polynomially bounded in n. Gálvez et al.’s algorithm for 2DK partitions the knapsack into a constant number of rectangular regions plus one L-shaped region and packs items into those in a structured way. We generalize this approach by allowing up to a constant number of more general regions that can have the shape of an L, a U, a Z, a spiral, and more, and therefore obtain an improved approximation ratio. In particular, we present an algorithm that computes the essentially optimal structured packing into these regions.

Cite as

Waldo Gálvez, Fabrizio Grandoni, Arindam Khan, Diego Ramírez-Romero, and Andreas Wiese. Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 39:1-39:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{galvez_et_al:LIPIcs.SoCG.2021.39,
  author =	{G\'{a}lvez, Waldo and Grandoni, Fabrizio and Khan, Arindam and Ram{\'\i}rez-Romero, Diego and Wiese, Andreas},
  title =	{{Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{39:1--39:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.39},
  URN =		{urn:nbn:de:0030-drops-138386},
  doi =		{10.4230/LIPIcs.SoCG.2021.39},
  annote =	{Keywords: Approximation algorithms, two-dimensional knapsack, geometric packing}
}
Document
Complete Volume
LIPIcs, Volume 173, ESA 2020, Complete Volume

Authors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)


Abstract
LIPIcs, Volume 173, ESA 2020, Complete Volume

Cite as

Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders. LIPIcs, Volume 173, ESA 2020, Complete Volume. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 1-1598, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@Proceedings{grandoni_et_al:LIPIcs.ESA.2020,
  title =	{{LIPIcs, Volume 173, ESA 2020, Complete Volume}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{1--1598},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020},
  URN =		{urn:nbn:de:0030-drops-128651},
  doi =		{10.4230/LIPIcs.ESA.2020},
  annote =	{Keywords: LIPIcs, Volume 173, ESA 2020, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders. Front Matter, Table of Contents, Preface, Conference Organization. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 0:i-0:xx, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{grandoni_et_al:LIPIcs.ESA.2020.0,
  author =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{0:i--0:xx},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.0},
  URN =		{urn:nbn:de:0030-drops-128669},
  doi =		{10.4230/LIPIcs.ESA.2020.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Planar Bichromatic Bottleneck Spanning Trees

Authors: A. Karim Abu-Affash, Sujoy Bhore, Paz Carmi, and Joseph S. B. Mitchell

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)


Abstract
Given a set P of n red and blue points in the plane, a planar bichromatic spanning tree of P is a geometric spanning tree of P, such that each edge connects between a red and a blue point, and no two edges intersect. In the bottleneck planar bichromatic spanning tree problem, the goal is to find a planar bichromatic spanning tree T, such that the length of the longest edge in T is minimized. In this paper, we show that this problem is NP-hard for points in general position. Our main contribution is a polynomial-time (8√2)-approximation algorithm, by showing that any bichromatic spanning tree of bottleneck λ can be converted to a planar bichromatic spanning tree of bottleneck at most 8√2 λ.

Cite as

A. Karim Abu-Affash, Sujoy Bhore, Paz Carmi, and Joseph S. B. Mitchell. Planar Bichromatic Bottleneck Spanning Trees. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 1:1-1:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{abuaffash_et_al:LIPIcs.ESA.2020.1,
  author =	{Abu-Affash, A. Karim and Bhore, Sujoy and Carmi, Paz and Mitchell, Joseph S. B.},
  title =	{{Planar Bichromatic Bottleneck Spanning Trees}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{1:1--1:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.1},
  URN =		{urn:nbn:de:0030-drops-128670},
  doi =		{10.4230/LIPIcs.ESA.2020.1},
  annote =	{Keywords: Approximation Algorithms, Bottleneck Spanning Tree, NP-Hardness}
}
Document
Parallel Batch-Dynamic Trees via Change Propagation

Authors: Umut A. Acar, Daniel Anderson, Guy E. Blelloch, Laxman Dhulipala, and Sam Westrick

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)


Abstract
The dynamic trees problem is to maintain a forest subject to edge insertions and deletions while facilitating queries such as connectivity, path weights, and subtree weights. Dynamic trees are a fundamental building block of a large number of graph algorithms. Although traditionally studied in the single-update setting, dynamic algorithms capable of supporting batches of updates are increasingly relevant today due to the emergence of rapidly evolving dynamic datasets. Since processing updates on a single processor is often unrealistic for large batches of updates, designing parallel batch-dynamic algorithms that achieve provably low span is important for many applications. In this work, we design the first work-efficient parallel batch-dynamic algorithm for dynamic trees that is capable of supporting both path queries and subtree queries, as well as a variety of nonlocal queries. Previous work-efficient dynamic trees of Tseng et al. were only capable of handling subtree queries [ALENEX'19, (2019), pp. 92 - 106]. To achieve this, we propose a framework for algorithmically dynamizing static round-synchronous algorithms to obtain parallel batch-dynamic algorithms. In our framework, the algorithm designer can apply the technique to any suitably defined static algorithm. We then obtain theoretical guarantees for algorithms in our framework by defining the notion of a computation distance between two executions of the underlying algorithm. Our dynamic trees algorithm is obtained by applying our dynamization framework to the parallel tree contraction algorithm of Miller and Reif [FOCS'85, (1985), pp. 478 - 489], and then performing a novel analysis of the computation distance of this algorithm under batch updates. We show that k updates can be performed in O(klog(1+n/k)) work in expectation, which matches the algorithm of Tseng et al. while providing support for a substantially larger number of queries and applications.

Cite as

Umut A. Acar, Daniel Anderson, Guy E. Blelloch, Laxman Dhulipala, and Sam Westrick. Parallel Batch-Dynamic Trees via Change Propagation. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 2:1-2:23, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{acar_et_al:LIPIcs.ESA.2020.2,
  author =	{Acar, Umut A. and Anderson, Daniel and Blelloch, Guy E. and Dhulipala, Laxman and Westrick, Sam},
  title =	{{Parallel Batch-Dynamic Trees via Change Propagation}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{2:1--2:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.2},
  URN =		{urn:nbn:de:0030-drops-128686},
  doi =		{10.4230/LIPIcs.ESA.2020.2},
  annote =	{Keywords: Dynamic trees, Graph algorithms, Parallel algorithms, Dynamic algorithms}
}
Document
Reconstructing Biological and Digital Phylogenetic Trees in Parallel

Authors: Ramtin Afshar, Michael T. Goodrich, Pedro Matias, and Martha C. Osegueda

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)


Abstract
In this paper, we study the parallel query complexity of reconstructing biological and digital phylogenetic trees from simple queries involving their nodes. This is motivated from computational biology, data protection, and computer security settings, which can be abstracted in terms of two parties, a responder, Alice, who must correctly answer queries of a given type regarding a degree-d tree, T, and a querier, Bob, who issues batches of queries, with each query in a batch being independent of the others, so as to eventually infer the structure of T. We show that a querier can efficiently reconstruct an n-node degree-d tree, T, with a logarithmic number of rounds and quasilinear number of queries, with high probability, for various types of queries, including relative-distance queries and path queries. Our results are all asymptotically optimal and improve the asymptotic (sequential) query complexity for one of the problems we study. Moreover, through an experimental analysis using both real-world and synthetic data, we provide empirical evidence that our algorithms provide significant parallel speedups while also improving the total query complexities for the problems we study.

Cite as

Ramtin Afshar, Michael T. Goodrich, Pedro Matias, and Martha C. Osegueda. Reconstructing Biological and Digital Phylogenetic Trees in Parallel. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 3:1-3:24, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{afshar_et_al:LIPIcs.ESA.2020.3,
  author =	{Afshar, Ramtin and Goodrich, Michael T. and Matias, Pedro and Osegueda, Martha C.},
  title =	{{Reconstructing Biological and Digital Phylogenetic Trees in Parallel}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{3:1--3:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.3},
  URN =		{urn:nbn:de:0030-drops-128696},
  doi =		{10.4230/LIPIcs.ESA.2020.3},
  annote =	{Keywords: Tree Reconstruction, Parallel Algorithms, Privacy, Phylogenetic Trees, Data Structures, Hierarchical Clustering}
}
Document
Kruskal-Based Approximation Algorithm for the Multi-Level Steiner Tree Problem

Authors: Reyan Ahmed, Faryad Darabi Sahneh, Keaton Hamm, Stephen Kobourov, and Richard Spence

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)


Abstract
We study the multi-level Steiner tree problem: a generalization of the Steiner tree problem in graphs where terminals T require varying priority, level, or quality of service. In this problem, we seek to find a minimum cost tree containing edges of varying rates such that any two terminals u, v with priorities P(u), P(v) are connected using edges of rate min{P(u),P(v)} or better. The case where edge costs are proportional to their rate is approximable to within a constant factor of the optimal solution. For the more general case of non-proportional costs, this problem is hard to approximate with ratio c log log n, where n is the number of vertices in the graph. A simple greedy algorithm by Charikar et al., however, provides a min{2(ln |T|+1), 𝓁 ρ}-approximation in this setting, where ρ is an approximation ratio for a heuristic solver for the Steiner tree problem and 𝓁 is the number of priorities or levels (Byrka et al. give a Steiner tree algorithm with ρ≈1.39, for example). In this paper, we describe a natural generalization to the multi-level case of the classical (single-level) Steiner tree approximation algorithm based on Kruskal’s minimum spanning tree algorithm. We prove that this algorithm achieves an approximation ratio at least as good as Charikar et al., and experimentally performs better with respect to the optimum solution. We develop an integer linear programming formulation to compute an exact solution for the multi-level Steiner tree problem with non-proportional edge costs and use it to evaluate the performance of our algorithm on both random graphs and multi-level instances derived from SteinLib.

Cite as

Reyan Ahmed, Faryad Darabi Sahneh, Keaton Hamm, Stephen Kobourov, and Richard Spence. Kruskal-Based Approximation Algorithm for the Multi-Level Steiner Tree Problem. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 4:1-4:21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{ahmed_et_al:LIPIcs.ESA.2020.4,
  author =	{Ahmed, Reyan and Sahneh, Faryad Darabi and Hamm, Keaton and Kobourov, Stephen and Spence, Richard},
  title =	{{Kruskal-Based Approximation Algorithm for the Multi-Level Steiner Tree Problem}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{4:1--4:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.4},
  URN =		{urn:nbn:de:0030-drops-128709},
  doi =		{10.4230/LIPIcs.ESA.2020.4},
  annote =	{Keywords: multi-level, Steiner tree, approximation algorithms}
}
Document
Analysis of the Period Recovery Error Bound

Authors: Amihood Amir, Itai Boneh, Michael Itzhaki, and Eitan Kondratovsky

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)


Abstract
The recovery problem is the problem whose input is a corrupted text T that was originally periodic, and where one wishes to recover its original period. The algorithm’s input is T without any information about either the period’s length or the period itself. An algorithm that solves this problem is called a recovery algorithm. In order to make recovery possible, there must be some assumption that not "too many" errors corrupted the initial periodic string. This is called the error bound. In previous recovery algorithms, it was shown that a given error bound of n/((2+ε)p) can lead to O(log_{1+ε} n) period candidates, that are guaranteed to include the original period, where p is the length of the original period (unknown by the algorithm) and ε > 0 is an arbitrary constant. This paper provides the first analysis of the relationship between the error bound and the number of candidates, as well as identification of the error parameters that still guarantee recovery. We improve the previously known upper error bound on the number of corruptions, n/((2+ε)p), that outputs O(log_{1+ε} n) period candidates. We show how to (1) remove ε from the bound, (2) relax the error bound to allow more errors while keeping the candidates set of size O(log n). It turns out that this relaxation on the previously known upper bound is quite challenging. To achieve this result we provide what, to our knowledge, is the first known non-trivial lower bound on the Hamming distance between two periodic strings. This proof leads to an error bound, that produces a family of period candidates of size 2log₃ n. We show that this result is tight and further provide a compact representation of the period candidates. We call this representation the canonic period seed. In addition to providing less restrictive error bounds that guarantee a smaller candidate set, we also provide a hierarchy of more restrictive upper error bounds that asymptotically reduces the size of the potential period candidate set.

Cite as

Amihood Amir, Itai Boneh, Michael Itzhaki, and Eitan Kondratovsky. Analysis of the Period Recovery Error Bound. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 5:1-5:21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{amir_et_al:LIPIcs.ESA.2020.5,
  author =	{Amir, Amihood and Boneh, Itai and Itzhaki, Michael and Kondratovsky, Eitan},
  title =	{{Analysis of the Period Recovery Error Bound}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{5:1--5:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.5},
  URN =		{urn:nbn:de:0030-drops-128717},
  doi =		{10.4230/LIPIcs.ESA.2020.5},
  annote =	{Keywords: Period Recovery, Period Recovery Hierarchy, Hamming Distance}
}
  • Refine by Author
  • 17 Grandoni, Fabrizio
  • 5 Wiese, Andreas
  • 4 Demaine, Erik D.
  • 4 Fomin, Fedor V.
  • 4 Gálvez, Waldo
  • Show More...

  • Refine by Classification
  • 17 Mathematics of computing → Graph algorithms
  • 16 Theory of computation → Computational geometry
  • 15 Theory of computation → Graph algorithms analysis
  • 14 Theory of computation → Parameterized complexity and exact algorithms
  • 13 Theory of computation → Approximation algorithms analysis
  • Show More...

  • Refine by Keyword
  • 9 approximation algorithms
  • 6 Approximation Algorithms
  • 5 approximation algorithm
  • 4 kernelization
  • 4 shortest paths
  • Show More...

  • Refine by Type
  • 135 document
  • 2 volume

  • Refine by Publication Year
  • 87 2020
  • 29 2016
  • 7 2015
  • 3 2019
  • 3 2021
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail