24 Search Results for "Liu, Tian"


Document
Open the Chests: An Environment for Activity Recognition and Sequential Decision Problems Using Temporal Logic

Authors: Ivelina Stoyanova, Nicolas Museux, Sao Mai Nguyen, and David Filliat

Published in: LIPIcs, Volume 318, 31st International Symposium on Temporal Representation and Reasoning (TIME 2024)


Abstract
This article presents Open the Chests, a novel benchmark environment designed for simulating and testing activity recognition and reactive decision-making algorithms. By leveraging temporal logic, Open the Chests offers a dynamic, event-driven simulation platform that illustrates the complexities of real-world systems. The environment contains multiple chests, each representing an activity pattern that an interacting agent must identify and respond to by pressing a corresponding button. The agent must analyze sequences of asynchronous events generated by the environment to recognize these patterns and make informed decisions. With the aim of theoretically grounding the environment, the Activity-Based Markov Decision Process (AB-MDP) is defined, allowing to model the context-dependent interaction with activities. Our goal is to propose a robust tool for the development, testing, and bench-marking of algorithms that is illustrative of realistic scenarios and allows for the isolation of specific complexities in event-driven environments.

Cite as

Ivelina Stoyanova, Nicolas Museux, Sao Mai Nguyen, and David Filliat. Open the Chests: An Environment for Activity Recognition and Sequential Decision Problems Using Temporal Logic. In 31st International Symposium on Temporal Representation and Reasoning (TIME 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 318, pp. 5:1-5:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{stoyanova_et_al:LIPIcs.TIME.2024.5,
  author =	{Stoyanova, Ivelina and Museux, Nicolas and Nguyen, Sao Mai and Filliat, David},
  title =	{{Open the Chests: An Environment for Activity Recognition and Sequential Decision Problems Using Temporal Logic}},
  booktitle =	{31st International Symposium on Temporal Representation and Reasoning (TIME 2024)},
  pages =	{5:1--5:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-349-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{318},
  editor =	{Sala, Pietro and Sioutis, Michael and Wang, Fusheng},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2024.5},
  URN =		{urn:nbn:de:0030-drops-212128},
  doi =		{10.4230/LIPIcs.TIME.2024.5},
  annote =	{Keywords: Event-Based Decision Making, Activity Recognition, Temporal Logic, Reinforcement Learning, Dynamic Systems, Complex Event Processing, Benchmark Environment, Real-Time Simulation}
}
Document
Time Series Anomaly Detection Leveraging MSE Feedback with AutoEncoder and RNN

Authors: Ibrahim Delibasoglu and Fredrik Heintz

Published in: LIPIcs, Volume 318, 31st International Symposium on Temporal Representation and Reasoning (TIME 2024)


Abstract
Anomaly detection in time series data is a critical task in various domains, including finance, healthcare, cybersecurity and industry. Traditional methods, such as time series decomposition, clustering, and density estimation, have provided robust solutions for identifying anomalies that exhibit distinct patterns or significant deviations from normal data distributions. Recent advancements in machine learning and deep learning have further enhanced these capabilities. This paper introduces a novel method for anomaly detection that combines the strengths of autoencoders and recurrent neural networks (RNNs) with an reconstruction error feedback mechanism based on Mean Squared Error. We compare our method against classical techniques and recent approaches like OmniAnomaly, which leverages stochastic recurrent neural networks, and the Anomaly Transformer, which introduces association discrepancy to capture long-range dependencies and DCDetector using contrastive representation learning with multi-scale dual attention. Experimental results demonstrate that our method achieves superior overall performance in terms of precision, recall, and F1 score. The source code is available at http://github.com/mribrahim/AE-FAR

Cite as

Ibrahim Delibasoglu and Fredrik Heintz. Time Series Anomaly Detection Leveraging MSE Feedback with AutoEncoder and RNN. In 31st International Symposium on Temporal Representation and Reasoning (TIME 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 318, pp. 17:1-17:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{delibasoglu_et_al:LIPIcs.TIME.2024.17,
  author =	{Delibasoglu, Ibrahim and Heintz, Fredrik},
  title =	{{Time Series Anomaly Detection Leveraging MSE Feedback with AutoEncoder and RNN}},
  booktitle =	{31st International Symposium on Temporal Representation and Reasoning (TIME 2024)},
  pages =	{17:1--17:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-349-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{318},
  editor =	{Sala, Pietro and Sioutis, Michael and Wang, Fusheng},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2024.17},
  URN =		{urn:nbn:de:0030-drops-212244},
  doi =		{10.4230/LIPIcs.TIME.2024.17},
  annote =	{Keywords: Time series, Anomaly, Neural networks}
}
Document
Client-Side Gamification Engine for Enhanced Programming Learning

Authors: Ricardo Queirós, Robertas Damaševičius, Rytis Maskeliūnas, and Jakub Swacha

Published in: OASIcs, Volume 122, 5th International Computer Programming Education Conference (ICPEC 2024)


Abstract
This study introduces the development of a client-based software layer within the FGPE project, aimed at enhancing the usability of the FGPE programming learning environment through client-side processing. The primary goal is to enable the evaluation of programming exercises and the application of gamification rules directly on the client-side, thereby facilitating offline functionality. This approach is particularly beneficial in regions with unreliable internet connectivity, as it allows continuous student interaction and feedback without the need for a constant server connection. The implementation promises to reduce server load significantly by shifting the evaluation workload to the client-side. This not only improves response times but also alleviates the burden on server resources, enhancing overall system efficiency. Two main strategies are explored: 1) caching the gamification service interface on the client-side, and 2) implementing a complete client-side gamification service that synchronizes with the server when online. Each approach is evaluated in terms of its impact on user experience, system performance, and potential security concerns. The findings suggest that while client-side processing offers considerable benefits in terms of scalability and user engagement, it also introduces challenges such as increased system complexity and potential data synchronization issues. The study concludes with recommendations for balancing these factors to optimize the design and implementation of client-based systems for educational environments.

Cite as

Ricardo Queirós, Robertas Damaševičius, Rytis Maskeliūnas, and Jakub Swacha. Client-Side Gamification Engine for Enhanced Programming Learning. In 5th International Computer Programming Education Conference (ICPEC 2024). Open Access Series in Informatics (OASIcs), Volume 122, pp. 11:1-11:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{queiros_et_al:OASIcs.ICPEC.2024.11,
  author =	{Queir\'{o}s, Ricardo and Dama\v{s}evi\v{c}ius, Robertas and Maskeli\={u}nas, Rytis and Swacha, Jakub},
  title =	{{Client-Side Gamification Engine for Enhanced Programming Learning}},
  booktitle =	{5th International Computer Programming Education Conference (ICPEC 2024)},
  pages =	{11:1--11:12},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-347-8},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{122},
  editor =	{Santos, Andr\'{e} L. and Pinto-Albuquerque, Maria},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ICPEC.2024.11},
  URN =		{urn:nbn:de:0030-drops-209809},
  doi =		{10.4230/OASIcs.ICPEC.2024.11},
  annote =	{Keywords: Code generation, Computer Programming, Gamification}
}
Document
Online Flexible Busy Time Scheduling on Heterogeneous Machines

Authors: Gruia Călinescu, Sami Davies, Samir Khuller, and Shirley Zhang

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We study the online busy time scheduling model on heterogeneous machines. In our setting, jobs with uniform length arrive online with a deadline that becomes known to the algorithm at the job’s arrival time. An algorithm has access to machines, each with different associated capacities and costs. The goal is to schedule jobs on machines by their deadline, so that the total cost incurred by the scheduling algorithm is minimized. While busy time scheduling has been well-studied, relatively little is known when machines are heterogeneous (i.e., have different costs and capacities), despite this natural theoretical generalization being the most practical model for clients using cloud computing services. We make significant progress in understanding this model by designing an 8-competitive algorithm for the problem on unit-length jobs and provide a lower bound of 2 on the competitive ratio. The lower bound is tight in the setting when jobs form non-nested intervals. Our 8-competitive algorithm generalizes to one with competitive ratio 8(2p-1)/p < 16 when all jobs have uniform length p.

Cite as

Gruia Călinescu, Sami Davies, Samir Khuller, and Shirley Zhang. Online Flexible Busy Time Scheduling on Heterogeneous Machines. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 37:1-37:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{calinescu_et_al:LIPIcs.ESA.2024.37,
  author =	{C\u{a}linescu, Gruia and Davies, Sami and Khuller, Samir and Zhang, Shirley},
  title =	{{Online Flexible Busy Time Scheduling on Heterogeneous Machines}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{37:1--37:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.37},
  URN =		{urn:nbn:de:0030-drops-211083},
  doi =		{10.4230/LIPIcs.ESA.2024.37},
  annote =	{Keywords: Online algorithms, Scheduling, Competitive analysis}
}
Document
New Algorithms and Lower Bounds for Streaming Tournaments

Authors: Prantar Ghosh and Sahil Kuchlous

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We study fundamental directed graph (digraph) problems in the streaming model. An initial investigation by Chakrabarti, Ghosh, McGregor, and Vorotnikova [SODA'20] on streaming digraphs showed that while most of these problems are provably hard in general, some of them become tractable when restricted to the well-studied class of tournament graphs where every pair of nodes shares exactly one directed edge. Thus, we focus on tournaments and improve the state of the art for multiple problems in terms of both upper and lower bounds. Our primary upper bound is a deterministic single-pass semi-streaming algorithm (using Õ(n) space for n-node graphs, where Õ(.) hides polylog(n) factors) for decomposing a tournament into strongly connected components (SCC). It improves upon the previously best-known algorithm by Baweja, Jia, and Woodruff [ITCS'22] in terms of both space and passes: for p ⩾ 1, they used (p+1) passes and Õ(n^{1+1/p}) space. We further extend our algorithm to digraphs that are close to tournaments and establish tight bounds demonstrating that the problem’s complexity grows smoothly with the "distance" from tournaments. Applying our SCC-decomposition framework, we obtain improved - and in some cases, optimal - tournament algorithms for s,t-reachability, strong connectivity, Hamiltonian paths and cycles, and feedback arc set. On the other hand, we prove lower bounds exhibiting that some well-studied problems - such as (exact) feedback arc set and s,t-distance - remain hard (require Ω(n²) space) on tournaments. Moreover, we generalize the former problem’s lower bound to establish space-approximation tradeoffs: any single-pass (1± ε)-approximation algorithm requires Ω(n/√{ε}) space. Finally, we settle the streaming complexities of two basic digraph problems studied by prior work: acyclicity testing of tournaments and sink finding in DAGs. As a whole, our collection of results contributes significantly to the growing literature on streaming digraphs.

Cite as

Prantar Ghosh and Sahil Kuchlous. New Algorithms and Lower Bounds for Streaming Tournaments. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 60:1-60:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ghosh_et_al:LIPIcs.ESA.2024.60,
  author =	{Ghosh, Prantar and Kuchlous, Sahil},
  title =	{{New Algorithms and Lower Bounds for Streaming Tournaments}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{60:1--60:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.60},
  URN =		{urn:nbn:de:0030-drops-211318},
  doi =		{10.4230/LIPIcs.ESA.2024.60},
  annote =	{Keywords: tournaments, streaming algorithms, graph algorithms, communication complexity, strongly connected components, reachability, feedback arc set}
}
Document
Connectivity Oracles for Predictable Vertex Failures

Authors: Bingbing Hu, Evangelos Kosinas, and Adam Polak

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
The problem of designing connectivity oracles supporting vertex failures is one of the basic data structures problems for undirected graphs. It is already well understood: previous works [Duan-Pettie STOC'10; Long-Saranurak FOCS'22] achieve query time linear in the number of failed vertices, and it is conditionally optimal as long as we require preprocessing time polynomial in the size of the graph and update time polynomial in the number of failed vertices. We revisit this problem in the paradigm of algorithms with predictions: we ask if the query time can be improved if the set of failed vertices can be predicted beforehand up to a small number of errors. More specifically, we design a data structure that, given a graph G = (V,E) and a set of vertices predicted to fail D̂ ⊆ V of size d = |D̂|, preprocesses it in time Õ(d|E|) and then can receive an update given as the symmetric difference between the predicted and the actual set of failed vertices D̂△D = (D̂ ⧵ D) ∪ (D ⧵ D̂) of size η = |D̂△D|, process it in time Õ(η⁴), and after that answer connectivity queries in G ⧵ D in time O(η). Viewed from another perspective, our data structure provides an improvement over the state of the art for the fully dynamic subgraph connectivity problem in the sensitivity setting [Henzinger-Neumann ESA'16]. We argue that the preprocessing time and query time of our data structure are conditionally optimal under standard fine-grained complexity assumptions.

Cite as

Bingbing Hu, Evangelos Kosinas, and Adam Polak. Connectivity Oracles for Predictable Vertex Failures. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 72:1-72:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hu_et_al:LIPIcs.ESA.2024.72,
  author =	{Hu, Bingbing and Kosinas, Evangelos and Polak, Adam},
  title =	{{Connectivity Oracles for Predictable Vertex Failures}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{72:1--72:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.72},
  URN =		{urn:nbn:de:0030-drops-211437},
  doi =		{10.4230/LIPIcs.ESA.2024.72},
  annote =	{Keywords: Data structures, graph connectivity, algorithms with predictions}
}
Document
APPROX
Weighted Matching in the Random-Order Streaming and Robust Communication Models

Authors: Diba Hashemi and Weronika Wrzos-Kaminska

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We study the maximum weight matching problem in the random-order semi-streaming model and in the robust communication model. Unlike many other sublinear models, in these two frameworks, there is a large gap between the guarantees of the best known algorithms for the unweighted and weighted versions of the problem. In the random-order semi-streaming setting, the edges of an n-vertex graph arrive in a stream in a random order. The goal is to compute an approximate maximum weight matching with a single pass over the stream using O(npolylog n) space. Our main result is a (2/3-ε)-approximation algorithm for maximum weight matching in random-order streams, using space O(n log n log R), where R is the ratio between the heaviest and the lightest edge in the graph. Our result nearly matches the best known unweighted (2/3+ε₀)-approximation (where ε₀ ∼ 10^{-14} is a small constant) achieved by Assadi and Behnezhad [Assadi and Behnezhad, 2021], and significantly improves upon previous weighted results. Our techniques also extend to the related robust communication model, in which the edges of a graph are partitioned randomly between Alice and Bob. Alice sends a single message of size O(npolylog n) to Bob, who must compute an approximate maximum weight matching. We achieve a (5/6-ε)-approximation using O(n log n log R) words of communication, matching the results of Azarmehr and Behnezhad [Azarmehr and Behnezhad, 2023] for unweighted graphs.

Cite as

Diba Hashemi and Weronika Wrzos-Kaminska. Weighted Matching in the Random-Order Streaming and Robust Communication Models. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 16:1-16:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hashemi_et_al:LIPIcs.APPROX/RANDOM.2024.16,
  author =	{Hashemi, Diba and Wrzos-Kaminska, Weronika},
  title =	{{Weighted Matching in the Random-Order Streaming and Robust Communication Models}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{16:1--16:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.16},
  URN =		{urn:nbn:de:0030-drops-210097},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.16},
  annote =	{Keywords: Maximum Weight Matching, Streaming, Random-Order Streaming, Robust Communication Complexity}
}
Document
RANDOM
Parallelising Glauber Dynamics

Authors: Holden Lee

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
For distributions over discrete product spaces ∏_{i=1}^n Ω_i', Glauber dynamics is a Markov chain that at each step, resamples a random coordinate conditioned on the other coordinates. We show that k-Glauber dynamics, which resamples a random subset of k coordinates, mixes k times faster in χ²-divergence, and assuming approximate tensorization of entropy, mixes k times faster in KL-divergence. We apply this to obtain parallel algorithms in two settings: (1) For the Ising model μ_{J,h}(x) ∝ exp(1/2 ⟨x,Jx⟩ + ⟨h,x⟩) with ‖J‖ < 1-c (the regime where fast mixing is known), we show that we can implement each step of Θ(n/‖J‖_F)-Glauber dynamics efficiently with a parallel algorithm, resulting in a parallel algorithm with running time Õ(‖J‖_F) = Õ(√n). (2) For the mixed p-spin model at high enough temperature, we show that with high probability we can implement each step of Θ(√n)-Glauber dynamics efficiently and obtain running time Õ(√n).

Cite as

Holden Lee. Parallelising Glauber Dynamics. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 49:1-49:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lee:LIPIcs.APPROX/RANDOM.2024.49,
  author =	{Lee, Holden},
  title =	{{Parallelising Glauber Dynamics}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{49:1--49:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.49},
  URN =		{urn:nbn:de:0030-drops-210424},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.49},
  annote =	{Keywords: sampling, Ising model, parallel algorithm, Markov chain, Glauber dynamics}
}
Document
DeFiAligner: Leveraging Symbolic Analysis and Large Language Models for Inconsistency Detection in Decentralized Finance

Authors: Rundong Gan, Liyi Zhou, Le Wang, Kaihua Qin, and Xiaodong Lin

Published in: LIPIcs, Volume 316, 6th Conference on Advances in Financial Technologies (AFT 2024)


Abstract
Decentralized Finance (DeFi) has witnessed a monumental surge, reaching 53.039 billion USD in total value locked. As this sector continues to expand, ensuring the reliability of DeFi smart contracts becomes increasingly crucial. While some users are adept at reading code or the compiled bytecode to understand smart contracts, many rely on documentation. Therefore, discrepancies between the documentation and the deployed code can pose significant risks, whether these discrepancies are due to errors or intentional fraud. To tackle these challenges, we developed DeFiAligner, an end-to-end system to identify inconsistencies between documentation and smart contracts. DeFiAligner incorporates a symbolic execution tool, SEVM, which explores execution paths of on-chain binary code, recording memory and stack states. It automatically generates symbolic expressions for token balance changes and branch conditions, which, along with related project documents, are processed by LLMs. Using structured prompts, the LLMs evaluate the alignment between the symbolic expressions and the documentation. Our tests across three distinct scenarios demonstrate DeFiAligner’s capability to automate inconsistency detection in DeFi, achieving recall rates of 92% and 90% on two public datasets respectively.

Cite as

Rundong Gan, Liyi Zhou, Le Wang, Kaihua Qin, and Xiaodong Lin. DeFiAligner: Leveraging Symbolic Analysis and Large Language Models for Inconsistency Detection in Decentralized Finance. In 6th Conference on Advances in Financial Technologies (AFT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 316, pp. 7:1-7:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gan_et_al:LIPIcs.AFT.2024.7,
  author =	{Gan, Rundong and Zhou, Liyi and Wang, Le and Qin, Kaihua and Lin, Xiaodong},
  title =	{{DeFiAligner: Leveraging Symbolic Analysis and Large Language Models for Inconsistency Detection in Decentralized Finance}},
  booktitle =	{6th Conference on Advances in Financial Technologies (AFT 2024)},
  pages =	{7:1--7:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-345-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{316},
  editor =	{B\"{o}hme, Rainer and Kiffer, Lucianna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.7},
  URN =		{urn:nbn:de:0030-drops-209431},
  doi =		{10.4230/LIPIcs.AFT.2024.7},
  annote =	{Keywords: Decentralized Finance Security, Large Language Models, Project Review, Symbolic Analysis, Smart Contracts}
}
Document
A CFL-Reachability Formulation of Callsite-Sensitive Pointer Analysis with Built-In On-The-Fly Call Graph Construction

Authors: Dongjie He, Jingbo Lu, and Jingling Xue

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
In object-oriented languages, the traditional CFL-reachability formulation for k-callsite-sensitive pointer analysis (kCFA) focuses on modeling field accesses and calling contexts, but it relies on a separate algorithm for call graph construction. This division can result in a loss of precision in kCFA, a problem that persists even when using the most precise call graphs, whether pre-constructed or generated on the fly. Moreover, pre-analyses based on this framework aiming to improve the efficiency of kCFA may inadvertently reduce its precision, due to the framework’s lack of native call graph construction, essential for precise analysis. Addressing this gap, this paper introduces a novel CFL-reachability formulation of kCFA for Java, uniquely integrating on-the-fly call graph construction. This advancement not only addresses the precision loss inherent in the traditional CFL-reachability-based approach but also enhances its overall applicability. In a significant secondary contribution, we present the first precision-preserving pre-analysis to accelerate kCFA. This pre-analysis leverages selective context sensitivity to improve the efficiency of kCFA without sacrificing its precision. Collectively, these contributions represent a substantial step forward in pointer analysis, offering both theoretical and practical advancements that could benefit future developments in the field.

Cite as

Dongjie He, Jingbo Lu, and Jingling Xue. A CFL-Reachability Formulation of Callsite-Sensitive Pointer Analysis with Built-In On-The-Fly Call Graph Construction. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 18:1-18:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{he_et_al:LIPIcs.ECOOP.2024.18,
  author =	{He, Dongjie and Lu, Jingbo and Xue, Jingling},
  title =	{{A CFL-Reachability Formulation of Callsite-Sensitive Pointer Analysis with Built-In On-The-Fly Call Graph Construction}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{18:1--18:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.18},
  URN =		{urn:nbn:de:0030-drops-208674},
  doi =		{10.4230/LIPIcs.ECOOP.2024.18},
  annote =	{Keywords: Pointer Analysis, CFL Reachability, Call Graph Construction}
}
Document
Geometric Enumeration of Localized DNA Strand Displacement Reaction Networks

Authors: Matthew R. Lakin and Sarika Kumar

Published in: LIPIcs, Volume 314, 30th International Conference on DNA Computing and Molecular Programming (DNA 30) (2024)


Abstract
Localized molecular devices are a powerful tool for engineering complex information-processing circuits and molecular robots. Their practical advantages include speed and scalability of interactions between components tethered near to each other on an underlying nanostructure, and the ability to restrict interactions between more distant components. The latter is a critical feature that must be factored into computational tools for the design and simulation of localized molecular devices: unlike in solution-phase systems, the geometries of molecular interactions must be accounted for when attempting to determine the network of possible reactions in a tethered molecular system. This work aims to address that challenge by integrating, for the first time, automated approaches to analysis of molecular geometry with reaction enumeration algorithms for DNA strand displacement reaction networks that can be applied to tethered molecular systems. By adapting a simple approach to solving the biophysical constraints inherent in molecular interactions to be applicable to tethered systems, we produce a localized reaction enumeration system that enhances previous approaches to reaction enumeration in tethered system by not requiring users to explicitly specify the subsets of components that are capable of interacting. This greatly simplifies the user’s task and could also be used as the basis of future systems for automated placement or routing of signal-transmission and logical processing in molecular devices. We apply this system to several published example systems from the literature, including both tethered molecular logic systems and molecular robots.

Cite as

Matthew R. Lakin and Sarika Kumar. Geometric Enumeration of Localized DNA Strand Displacement Reaction Networks. In 30th International Conference on DNA Computing and Molecular Programming (DNA 30). Leibniz International Proceedings in Informatics (LIPIcs), Volume 314, pp. 1:1-1:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lakin_et_al:LIPIcs.DNA.30.1,
  author =	{Lakin, Matthew R. and Kumar, Sarika},
  title =	{{Geometric Enumeration of Localized DNA Strand Displacement Reaction Networks}},
  booktitle =	{30th International Conference on DNA Computing and Molecular Programming (DNA 30)},
  pages =	{1:1--1:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-344-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{314},
  editor =	{Seki, Shinnosuke and Stewart, Jaimie Marie},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DNA.30.1},
  URN =		{urn:nbn:de:0030-drops-209294},
  doi =		{10.4230/LIPIcs.DNA.30.1},
  annote =	{Keywords: Localized circuits, reaction enumeration, DNA strand displacement, geometry, molecular computing}
}
Document
Learning Lagrangian Multipliers for the Travelling Salesman Problem

Authors: Augustin Parjadis, Quentin Cappart, Bistra Dilkina, Aaron Ferber, and Louis-Martin Rousseau

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Lagrangian relaxation is a versatile mathematical technique employed to relax constraints in an optimization problem, enabling the generation of dual bounds to prove the optimality of feasible solutions and the design of efficient propagators in constraint programming (such as the weighted circuit constraint). However, the conventional process of deriving Lagrangian multipliers (e.g., using subgradient methods) is often computationally intensive, limiting its practicality for large-scale or time-sensitive problems. To address this challenge, we propose an innovative unsupervised learning approach that harnesses the capabilities of graph neural networks to exploit the problem structure, aiming to generate accurate Lagrangian multipliers efficiently. We apply this technique to the well-known Held-Karp Lagrangian relaxation for the traveling salesman problem. The core idea is to predict accurate Lagrangian multipliers and to employ them as a warm start for generating Held-Karp relaxation bounds. These bounds are subsequently utilized to enhance the filtering process carried out by branch-and-bound algorithms. In contrast to much of the existing literature, which primarily focuses on finding feasible solutions, our approach operates on the dual side, demonstrating that learning can also accelerate the proof of optimality. We conduct experiments across various distributions of the metric traveling salesman problem, considering instances with up to 200 cities. The results illustrate that our approach can improve the filtering level of the weighted circuit global constraint, reduce the optimality gap by a factor two for unsolved instances up to a timeout, and reduce the execution time for solved instances by 10%.

Cite as

Augustin Parjadis, Quentin Cappart, Bistra Dilkina, Aaron Ferber, and Louis-Martin Rousseau. Learning Lagrangian Multipliers for the Travelling Salesman Problem. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 22:1-22:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{parjadis_et_al:LIPIcs.CP.2024.22,
  author =	{Parjadis, Augustin and Cappart, Quentin and Dilkina, Bistra and Ferber, Aaron and Rousseau, Louis-Martin},
  title =	{{Learning Lagrangian Multipliers for the Travelling Salesman Problem}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{22:1--22:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.22},
  URN =		{urn:nbn:de:0030-drops-207076},
  doi =		{10.4230/LIPIcs.CP.2024.22},
  annote =	{Keywords: Lagrangian relaxation, unsupervised learning, graph neural network}
}
Document
Combining Constraint Programming Reasoning with Large Language Model Predictions

Authors: Florian Régin, Elisabetta De Maria, and Alexandre Bonlarron

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Constraint Programming (CP) and Machine Learning (ML) face challenges in text generation due to CP’s struggle with implementing "meaning" and ML’s difficulty with structural constraints. This paper proposes a solution by combining both approaches and embedding a Large Language Model (LLM) in CP. The LLM handles word generation and meaning, while CP manages structural constraints. This approach builds on GenCP, an improved version of On-the-fly Constraint Programming Search (OTFS) using LLM-generated domains. Compared to Beam Search (BS), a standard NLP method, this combined approach (GenCP with LLM) is faster and produces better results, ensuring all constraints are satisfied. This fusion of CP and ML presents new possibilities for enhancing text generation under constraints.

Cite as

Florian Régin, Elisabetta De Maria, and Alexandre Bonlarron. Combining Constraint Programming Reasoning with Large Language Model Predictions. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 25:1-25:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{regin_et_al:LIPIcs.CP.2024.25,
  author =	{R\'{e}gin, Florian and De Maria, Elisabetta and Bonlarron, Alexandre},
  title =	{{Combining Constraint Programming Reasoning with Large Language Model Predictions}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{25:1--25:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.25},
  URN =		{urn:nbn:de:0030-drops-207109},
  doi =		{10.4230/LIPIcs.CP.2024.25},
  annote =	{Keywords: Solver and Tools, ML-augmented CP, Constrained Text Generation, ML alongside CO}
}
Document
Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy

Authors: Sepehr Assadi, Prantar Ghosh, Bruno Loff, Parth Mittal, and Sagnik Mukhopadhyay

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
The following question arises naturally in the study of graph streaming algorithms: Is there any graph problem which is "not too hard", in that it can be solved efficiently with total communication (nearly) linear in the number n of vertices, and for which, nonetheless, any streaming algorithm with Õ(n) space (i.e., a semi-streaming algorithm) needs a polynomial n^Ω(1) number of passes? Assadi, Chen, and Khanna [STOC 2019] were the first to prove that this is indeed the case. However, the lower bounds that they obtained are for rather non-standard graph problems. Our first main contribution is to present the first polynomial-pass lower bounds for natural "not too hard" graph problems studied previously in the streaming model: k-cores and degeneracy. We devise a novel communication protocol for both problems with near-linear communication, thus showing that k-cores and degeneracy are natural examples of "not too hard" problems. Indeed, previous work have developed single-pass semi-streaming algorithms for approximating these problems. In contrast, we prove that any semi-streaming algorithm for exactly solving these problems requires (almost) Ω(n^{1/3}) passes. The lower bound follows by a reduction from a generalization of the hidden pointer chasing (HPC) problem of Assadi, Chen, and Khanna, which is also the basis of their earlier semi-streaming lower bounds. Our second main contribution is improved round-communication lower bounds for the underlying communication problems at the basis of these reductions: - We improve the previous lower bound of Assadi, Chen, and Khanna for HPC to achieve optimal bounds for this problem. - We further observe that all current reductions from HPC can also work with a generalized version of this problem that we call MultiHPC, and prove an even stronger and optimal lower bound for this generalization. These two results collectively allow us to improve the resulting pass lower bounds for semi-streaming algorithms by a polynomial factor, namely, from n^{1/5} to n^{1/3} passes.

Cite as

Sepehr Assadi, Prantar Ghosh, Bruno Loff, Parth Mittal, and Sagnik Mukhopadhyay. Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 7:1-7:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{assadi_et_al:LIPIcs.CCC.2024.7,
  author =	{Assadi, Sepehr and Ghosh, Prantar and Loff, Bruno and Mittal, Parth and Mukhopadhyay, Sagnik},
  title =	{{Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{7:1--7:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.7},
  URN =		{urn:nbn:de:0030-drops-204035},
  doi =		{10.4230/LIPIcs.CCC.2024.7},
  annote =	{Keywords: Graph streaming, Lower bounds, Communication complexity, k-Cores and degeneracy}
}
Document
Improved Cut Strategy for Tensor Network Contraction Orders

Authors: Christoph Staudt, Mark Blacher, Julien Klaus, Farin Lippmann, and Joachim Giesen

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
In the field of quantum computing, simulating quantum systems on classical computers is crucial. Tensor networks are fundamental in simulating quantum systems. A tensor network is a collection of tensors, that need to be contracted into a result tensor. Tensor contraction is a generalization of matrix multiplication to higher order tensors. The contractions can be performed in different orders, and the order has a significant impact on the number of floating point operations (flops) needed to get the result tensor. It is known that finding an optimal contraction order is NP-hard. The current state-of-the-art approach for finding efficient contraction orders is to combinine graph partitioning with a greedy strategy. Although heavily used in practice, the current approach ignores so-called free indices, chooses node weights without regarding previous computations, and requires numerous hyperparameters that need to be tuned at runtime. In this paper, we address these shortcomings by developing a novel graph cut strategy. The proposed modifications yield contraction orders that significantly reduce the number of flops in the tensor contractions compared to the current state of the art. Moreover, by removing the need for hyperparameter tuning at runtime, our approach converges to an efficient solution faster, which reduces the required optimization time by at least an order of magnitude.

Cite as

Christoph Staudt, Mark Blacher, Julien Klaus, Farin Lippmann, and Joachim Giesen. Improved Cut Strategy for Tensor Network Contraction Orders. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 27:1-27:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{staudt_et_al:LIPIcs.SEA.2024.27,
  author =	{Staudt, Christoph and Blacher, Mark and Klaus, Julien and Lippmann, Farin and Giesen, Joachim},
  title =	{{Improved Cut Strategy for Tensor Network Contraction Orders}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{27:1--27:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.27},
  URN =		{urn:nbn:de:0030-drops-203924},
  doi =		{10.4230/LIPIcs.SEA.2024.27},
  annote =	{Keywords: tensor network, contraction order, graph partitioniong, quantum simulation}
}
  • Refine by Author
  • 2 Ghosh, Prantar
  • 1 Assadi, Sepehr
  • 1 Babar, Mohammad Fakhruddin
  • 1 Blacher, Mark
  • 1 Bonlarron, Alexandre
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Graph algorithms analysis
  • 3 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 2 Computer systems organization → Real-time system architecture
  • 2 Theory of computation → Constraint and logic programming
  • 2 Theory of computation → Lower bounds and information complexity
  • Show More...

  • Refine by Keyword
  • 2 Real-Time Systems
  • 1 Activity Recognition
  • 1 Anomaly
  • 1 Approximation algorithm
  • 1 Benchmark Environment
  • Show More...

  • Refine by Type
  • 24 document

  • Refine by Publication Year
  • 21 2024
  • 1 2017
  • 1 2019
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail