63 Search Results for "Nederlof, Jesper"


Volume

LIPIcs, Volume 249

17th International Symposium on Parameterized and Exact Computation (IPEC 2022)

IPEC 2022, September 7-9, 2022, Potsdam, Germany

Editors: Holger Dell and Jesper Nederlof

Document
Track A: Algorithms, Complexity and Games
Two-Sets Cut-Uncut on Planar Graphs

Authors: Matthias Bentert, Pål Grønås Drange, Fedor V. Fomin, Petr A. Golovach, and Tuukka Korhonen

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study Two-Sets Cut-Uncut on planar graphs. Therein, one is given an undirected planar graph G and two disjoint sets S and T of vertices as input. The question is, what is the minimum number of edges to remove from G, such that all vertices in S are separated from all vertices in T, while maintaining that every vertex in S, and respectively in T, stays in the same connected component. We show that this problem can be solved in 2^{|S|+|T|} n^𝒪(1) time with a one-sided-error randomized algorithm. Our algorithm implies a polynomial-time algorithm for the network diversion problem on planar graphs, which resolves an open question from the literature. More generally, we show that Two-Sets Cut-Uncut is fixed-parameter tractable when parameterized by the number r of faces in a planar embedding covering the terminals S ∪ T, by providing a 2^𝒪(r) n^𝒪(1)-time algorithm.

Cite as

Matthias Bentert, Pål Grønås Drange, Fedor V. Fomin, Petr A. Golovach, and Tuukka Korhonen. Two-Sets Cut-Uncut on Planar Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 22:1-22:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bentert_et_al:LIPIcs.ICALP.2024.22,
  author =	{Bentert, Matthias and Drange, P\r{a}l Gr{\o}n\r{a}s and Fomin, Fedor V. and Golovach, Petr A. and Korhonen, Tuukka},
  title =	{{Two-Sets Cut-Uncut on Planar Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{22:1--22:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.22},
  URN =		{urn:nbn:de:0030-drops-201654},
  doi =		{10.4230/LIPIcs.ICALP.2024.22},
  annote =	{Keywords: planar graphs, cut-uncut, group-constrained paths}
}
Document
Track A: Algorithms, Complexity and Games
Another Hamiltonian Cycle in Bipartite Pfaffian Graphs

Authors: Andreas Björklund, Petteri Kaski, and Jesper Nederlof

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Finding a Hamiltonian cycle in a given graph is computationally challenging, and in general remains so even when one is further given one Hamiltonian cycle in the graph and asked to find another. In fact, no significantly faster algorithms are known for finding another Hamiltonian cycle than for finding a first one even in the setting where another Hamiltonian cycle is structurally guaranteed to exist, such as for odd-degree graphs. We identify a graph class - the bipartite Pfaffian graphs of minimum degree three - where it is NP-complete to decide whether a given graph in the class is Hamiltonian, but when presented with a Hamiltonian cycle as part of the input, another Hamiltonian cycle can be found efficiently. We prove that Thomason’s lollipop method [Ann. Discrete Math., 1978], a well-known algorithm for finding another Hamiltonian cycle, runs in a linear number of steps in cubic bipartite Pfaffian graphs. This was conjectured for cubic bipartite planar graphs by Haddadan [MSc thesis, Waterloo, 2015]; in contrast, examples are known of both cubic bipartite graphs and cubic planar graphs where the lollipop method takes exponential time. Beyond the reach of the lollipop method, we address a slightly more general graph class and present two algorithms, one running in linear-time and one operating in logarithmic space, that take as input (i) a bipartite Pfaffian graph G of minimum degree three, (ii) a Hamiltonian cycle H in G, and (iii) an edge e in H, and output at least three other Hamiltonian cycles through the edge e in G. We also present further improved algorithms for finding optimal traveling salesperson tours and counting Hamiltonian cycles in bipartite planar graphs with running times that are not achieved yet in general planar graphs. Our technique also has purely graph-theoretical consequences; for example, we show that every cubic bipartite Pfaffian graph has either zero or at least six distinct Hamiltonian cycles; the latter case is tight for the cube graph.

Cite as

Andreas Björklund, Petteri Kaski, and Jesper Nederlof. Another Hamiltonian Cycle in Bipartite Pfaffian Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 26:1-26:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bjorklund_et_al:LIPIcs.ICALP.2024.26,
  author =	{Bj\"{o}rklund, Andreas and Kaski, Petteri and Nederlof, Jesper},
  title =	{{Another Hamiltonian Cycle in Bipartite Pfaffian Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{26:1--26:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.26},
  URN =		{urn:nbn:de:0030-drops-201692},
  doi =		{10.4230/LIPIcs.ICALP.2024.26},
  annote =	{Keywords: Another Hamiltonian cycle, Pfaffian graph, planar graph, Thomason’s lollipop method}
}
Document
Track A: Algorithms, Complexity and Games
The Discrepancy of Shortest Paths

Authors: Greg Bodwin, Chengyuan Deng, Jie Gao, Gary Hoppenworth, Jalaj Upadhyay, and Chen Wang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
The hereditary discrepancy of a set system is a quantitative measure of the pseudorandom properties of the system. Roughly speaking, hereditary discrepancy measures how well one can 2-color the elements of the system so that each set contains approximately the same number of elements of each color. Hereditary discrepancy has numerous applications in computational geometry, communication complexity and derandomization. More recently, the hereditary discrepancy of the set system of shortest paths has found applications in differential privacy [Chen et al. SODA 23]. The contribution of this paper is to improve the upper and lower bounds on the hereditary discrepancy of set systems of unique shortest paths in graphs. In particular, we show that any system of unique shortest paths in an undirected weighted graph has hereditary discrepancy O(n^{1/4}), and we construct lower bound examples demonstrating that this bound is tight up to polylog n factors. Our lower bounds hold even for planar graphs and bipartite graphs, and improve a previous lower bound of Ω(n^{1/6}) obtained by applying the trace bound of Chazelle and Lvov [SoCG'00] to a classical point-line system of Erdős. As applications, we improve the lower bound on the additive error for differentially-private all pairs shortest distances from Ω(n^{1/6}) [Chen et al. SODA 23] to Ω̃(n^{1/4}), and we improve the lower bound on additive error for the differentially-private all sets range queries problem to Ω̃(n^{1/4}), which is tight up to polylog n factors [Deng et al. WADS 23].

Cite as

Greg Bodwin, Chengyuan Deng, Jie Gao, Gary Hoppenworth, Jalaj Upadhyay, and Chen Wang. The Discrepancy of Shortest Paths. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 27:1-27:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bodwin_et_al:LIPIcs.ICALP.2024.27,
  author =	{Bodwin, Greg and Deng, Chengyuan and Gao, Jie and Hoppenworth, Gary and Upadhyay, Jalaj and Wang, Chen},
  title =	{{The Discrepancy of Shortest Paths}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{27:1--27:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.27},
  URN =		{urn:nbn:de:0030-drops-201705},
  doi =		{10.4230/LIPIcs.ICALP.2024.27},
  annote =	{Keywords: Discrepancy, hereditary discrepancy, shortest paths, differential privacy}
}
Document
Track A: Algorithms, Complexity and Games
A Tight Monte-Carlo Algorithm for Steiner Tree Parameterized by Clique-Width

Authors: Narek Bojikian and Stefan Kratsch

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Given a graph G = (V,E), a set T ⊆ V, and an integer b, the Steiner Tree problem asks whether G has a connected subgraph H with at most b vertices that spans all of T. This work presents a 3^k⋅ n^𝒪(1) time one-sided Monte-Carlo algorithm for solving Steiner Tree when additionally a clique-expression of width k is provided. Known lower bounds for less expressive parameters imply that this dependence on the clique-width of G is optimal assuming the Strong Exponential-Time Hypothesis (SETH). Indeed our work establishes that the parameter dependence of Steiner Tree is the same for any graph parameter between cutwidth and clique-width, assuming SETH. Our work contributes to the program of determining the exact parameterized complexity of fundamental hard problems relative to structural graph parameters such as treewidth, which was initiated by Lokshtanov et al. [SODA 2011 & TALG 2018] and which by now has seen a plethora of results. Since the cut-and-count framework of Cygan et al. [FOCS 2011 & TALG 2022], connectivity problems have played a key role in this program as they pose many challenges for developing tight upper and lower bounds. Recently, Hegerfeld and Kratsch [ESA 2023] gave the first application of the cut-and-count technique to problems parameterized by clique-width and obtained tight bounds for Connected Dominating Set and Connected Vertex Cover, leaving open the complexity of other benchmark connectivity problems such as Steiner Tree and Feedback Vertex Set. Our algorithm for Steiner Tree does not follow the cut-and-count technique and instead works with the connectivity patterns of partial solutions. As a first technical contribution we identify a special family of so-called complete patterns that has strong (existential) representation properties, and using these at least one solution will be preserved. Furthermore, there is a family of 3^k basis patterns that (parity) represents the complete patterns, i.e., it has the same number of solutions modulo two. Our main technical contribution, a new technique called "isolating a representative," allows us to leverage both forms of representation (existential and parity). Both complete patterns and isolation of a representative will likely be applicable to other (connectivity) problems.

Cite as

Narek Bojikian and Stefan Kratsch. A Tight Monte-Carlo Algorithm for Steiner Tree Parameterized by Clique-Width. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 29:1-29:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bojikian_et_al:LIPIcs.ICALP.2024.29,
  author =	{Bojikian, Narek and Kratsch, Stefan},
  title =	{{A Tight Monte-Carlo Algorithm for Steiner Tree Parameterized by Clique-Width}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{29:1--29:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.29},
  URN =		{urn:nbn:de:0030-drops-201728},
  doi =		{10.4230/LIPIcs.ICALP.2024.29},
  annote =	{Keywords: Parameterized complexity, Steiner tree, clique-width}
}
Document
Track A: Algorithms, Complexity and Games
Fundamental Problems on Bounded-Treewidth Graphs: The Real Source of Hardness

Authors: Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
It is known for many algorithmic problems that if a tree decomposition of width t is given in the input, then the problem can be solved with exponential dependence on t. A line of research initiated by Lokshtanov, Marx, and Saurabh [SODA 2011] produced lower bounds showing that in many cases known algorithms already achieve the best possible exponential dependence on t, assuming the Strong Exponential-Time Hypothesis (SETH). The main message of this paper is showing that the same lower bounds can already be obtained in a much more restricted setting: informally, a graph consisting of a block of t vertices connected to components of constant size already has the same hardness as a general tree decomposition of width t. Formally, a (σ,δ)-hub is a set Q of vertices such that every component of Q has size at most σ and is adjacent to at most δ vertices of Q. We explore if the known tight lower bounds parameterized by the width of the given tree decomposition remain valid if we parameterize by the size of the given hub. - For every ε > 0, there are σ,δ > 0 such that Independent Set (equivalently Vertex Cover) cannot be solved in time (2-ε)^p⋅ n, even if a (σ, δ)-hub of size p is given in the input, assuming the SETH. This matches the earlier tight lower bounds parameterized by width of the tree decomposition. Similar tight bounds are obtained for Odd Cycle Transversal, Max Cut, q-Coloring, and edge/vertex deletions versions of q-Coloring. - For every ε > 0, there are σ,δ > 0 such that △-Partition cannot be solved in time (2-ε)^p ⋅ n, even if a (σ, δ)-hub of size p is given in the input, assuming the Set Cover Conjecture (SCC). In fact, we prove that this statement is equivalent to the SCC, thus it is unlikely that this could be proved assuming the SETH. - For Dominating Set, we can prove a non-tight lower bound ruling out (2-ε)^p ⋅ n^𝒪(1) algorithms, assuming either the SETH or the SCC, but this does not match the 3^p⋅ n^{𝒪(1)} upper bound. Thus our results reveal that, for many problems, the research on lower bounds on the dependence on tree width was never really about tree decompositions, but the real source of hardness comes from a much simpler structure. Additionally, we study if the same lower bounds can be obtained if σ and δ are fixed universal constants (not depending on ε). We show that lower bounds of this form are possible for Max Cut and the edge-deletion version of q-Coloring, under the Max 3-Sat Hypothesis (M3SH). However, no such lower bounds are possible for Independent Set, Odd Cycle Transversal, and the vertex-deletion version of q-Coloring: better than brute force algorithms are possible for every fixed (σ,δ).

Cite as

Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski. Fundamental Problems on Bounded-Treewidth Graphs: The Real Source of Hardness. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 34:1-34:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{canesmer_et_al:LIPIcs.ICALP.2024.34,
  author =	{Can Esmer, Bar{\i}\c{s} and Focke, Jacob and Marx, D\'{a}niel and Rz\k{a}\.{z}ewski, Pawe{\l}},
  title =	{{Fundamental Problems on Bounded-Treewidth Graphs: The Real Source of Hardness}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{34:1--34:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.34},
  URN =		{urn:nbn:de:0030-drops-201772},
  doi =		{10.4230/LIPIcs.ICALP.2024.34},
  annote =	{Keywords: Parameterized Complexity, Tight Bounds, Hub, Treewidth, Strong Exponential Time Hypothesis, Vertex Coloring, Vertex Deletion, Edge Deletion, Triangle Packing, Triangle Partition, Set Cover Hypothesis, Dominating Set}
}
Document
Track A: Algorithms, Complexity and Games
Parameterized Algorithms for Steiner Forest in Bounded Width Graphs

Authors: Andreas Emil Feldmann and Michael Lampis

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we reassess the parameterized complexity and approximability of the well-studied Steiner Forest problem in several graph classes of bounded width. The problem takes an edge-weighted graph and pairs of vertices as input, and the aim is to find a minimum cost subgraph in which each given vertex pair lies in the same connected component. It is known that this problem is APX-hard in general, and NP-hard on graphs of treewidth 3, treedepth 4, and feedback vertex set size 2. However, Bateni, Hajiaghayi and Marx [JACM, 2011] gave an approximation scheme with a runtime of n^O(k²/ε) on graphs of treewidth k. Our main result is a much faster efficient parameterized approximation scheme (EPAS) with a runtime of 2^O(k²/ε log k/ε)⋅n^O(1). If k instead is the vertex cover number of the input graph, we show how to compute the optimum solution in 2^O(k log k)⋅n^O(1) time, and we also prove that this runtime dependence on k is asymptotically best possible, under ETH. Furthermore, if k is the size of a feedback edge set, then we obtain a faster 2^O(k)⋅n^O(1) time algorithm, which again cannot be improved under ETH.

Cite as

Andreas Emil Feldmann and Michael Lampis. Parameterized Algorithms for Steiner Forest in Bounded Width Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 61:1-61:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{feldmann_et_al:LIPIcs.ICALP.2024.61,
  author =	{Feldmann, Andreas Emil and Lampis, Michael},
  title =	{{Parameterized Algorithms for Steiner Forest in Bounded Width Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{61:1--61:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.61},
  URN =		{urn:nbn:de:0030-drops-202048},
  doi =		{10.4230/LIPIcs.ICALP.2024.61},
  annote =	{Keywords: Steiner Forest, Approximation Algorithms, FPT algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time

Authors: Nick Fischer and Leo Wennmann

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this work we revisit the elementary scheduling problem 1||∑ p_j U_j. The goal is to select, among n jobs with processing times and due dates, a subset of jobs with maximum total processing time that can be scheduled in sequence without violating their due dates. This problem is NP-hard, but a classical algorithm by Lawler and Moore from the 60s solves this problem in pseudo-polynomial time O(nP), where P is the total processing time of all jobs. With the aim to develop best-possible pseudo-polynomial-time algorithms, a recent wave of results has improved Lawler and Moore’s algorithm for 1||∑ p_j U_j: First to time Õ(P^{7/4}) [Bringmann, Fischer, Hermelin, Shabtay, Wellnitz; ICALP'20], then to time Õ(P^{5/3}) [Klein, Polak, Rohwedder; SODA'23], and finally to time Õ(P^{7/5}) [Schieber, Sitaraman; WADS'23]. It remained an exciting open question whether these works can be improved further. In this work we develop an algorithm in near-linear time Õ(P) for the 1||∑ p_j U_j problem. This running time not only significantly improves upon the previous results, but also matches conditional lower bounds based on the Strong Exponential Time Hypothesis or the Set Cover Hypothesis and is therefore likely optimal (up to subpolynomial factors). Our new algorithm also extends to the case of m machines in time Õ(P^m). In contrast to the previous improvements, we take a different, more direct approach inspired by the recent reductions from Modular Subset Sum to dynamic string problems. We thereby arrive at a satisfyingly simple algorithm.

Cite as

Nick Fischer and Leo Wennmann. Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 64:1-64:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{fischer_et_al:LIPIcs.ICALP.2024.64,
  author =	{Fischer, Nick and Wennmann, Leo},
  title =	{{Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{64:1--64:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.64},
  URN =		{urn:nbn:de:0030-drops-202079},
  doi =		{10.4230/LIPIcs.ICALP.2024.64},
  annote =	{Keywords: Scheduling, Fine-Grained Complexity, Dynamic Strings}
}
Document
Track A: Algorithms, Complexity and Games
Subexponential Parameterized Directed Steiner Network Problems on Planar Graphs: A Complete Classification

Authors: Esther Galby, Sándor Kisfaludi-Bak, Dániel Marx, and Roohani Sharma

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In the Directed Steiner Network problem, the input is a directed graph G, a set T ⊆ V(G) of k terminals, and a demand graph D on T. The task is to find a subgraph H ⊆ G with the minimum number of edges such that for every (s,t) ∈ E(D), the solution H contains a directed s → t path. The goal of this paper is to investigate how the complexity of the problem depends on the demand pattern in planar graphs. Formally, if 𝒟 is a class of directed graphs, then the 𝒟-Steiner Network (𝒟-DSN) problem is the special case where the demand graph D is restricted to be from 𝒟. We give a complete characterization of the behavior of every 𝒟-DSN problem on planar graphs. We classify every class 𝒟 closed under transitive equivalence and identification of vertices into three cases: assuming ETH, either the problem is 1) solvable in time 2^O(k)⋅n^O(1), i.e., FPT parameterized by the number k of terminals, but not solvable in time 2^o(k)⋅n^O(1), 2) solvable in time f(k)⋅n^O(√k), but cannot be solved in time f(k)⋅n^o(√k), or 3) solvable in time f(k)⋅n^O(k), but cannot be solved in time f(k)⋅n^o(k). Our result is a far-reaching generalization and unification of earlier results on Directed Steiner Tree, Directed Steiner Network, and Strongly Connected Steiner Subgraph on planar graphs. As an important step of our lower bound proof, we discover a rare example of a genuinely planar problem (i.e., described by a planar graph and two sets of vertices) that cannot be solved in time f(k)⋅n^o(k): given two sets of terminals S and T with |S|+|T| = k, find a subgraph with minimum number of edges such that every vertex of T is reachable from every vertex of S.

Cite as

Esther Galby, Sándor Kisfaludi-Bak, Dániel Marx, and Roohani Sharma. Subexponential Parameterized Directed Steiner Network Problems on Planar Graphs: A Complete Classification. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 67:1-67:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{galby_et_al:LIPIcs.ICALP.2024.67,
  author =	{Galby, Esther and Kisfaludi-Bak, S\'{a}ndor and Marx, D\'{a}niel and Sharma, Roohani},
  title =	{{Subexponential Parameterized Directed Steiner Network Problems on Planar Graphs: A Complete Classification}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{67:1--67:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.67},
  URN =		{urn:nbn:de:0030-drops-202104},
  doi =		{10.4230/LIPIcs.ICALP.2024.67},
  annote =	{Keywords: Directed Steiner Network, Sub-exponential algorithm}
}
Document
Track A: Algorithms, Complexity and Games
A Tight Subexponential-Time Algorithm for Two-Page Book Embedding

Authors: Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
A book embedding of a graph is a drawing that maps vertices onto a line and edges to simple pairwise non-crossing curves drawn into "pages", which are half-planes bounded by that line. Two-page book embeddings, i.e., book embeddings into 2 pages, are of special importance as they are both NP-hard to compute and have specific applications. We obtain a 2^𝒪(√n) algorithm for computing a book embedding of an n-vertex graph on two pages - a result which is asymptotically tight under the Exponential Time Hypothesis. As a key tool in our approach, we obtain a single-exponential fixed-parameter algorithm for the same problem when parameterized by the treewidth of the input graph. We conclude by establishing the fixed-parameter tractability of computing minimum-page book embeddings when parameterized by the feedback edge number, settling an open question arising from previous work on the problem.

Cite as

Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki. A Tight Subexponential-Time Algorithm for Two-Page Book Embedding. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 68:1-68:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ganian_et_al:LIPIcs.ICALP.2024.68,
  author =	{Ganian, Robert and M\"{u}ller, Haiko and Ordyniak, Sebastian and Paesani, Giacomo and Rychlicki, Mateusz},
  title =	{{A Tight Subexponential-Time Algorithm for Two-Page Book Embedding}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{68:1--68:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.68},
  URN =		{urn:nbn:de:0030-drops-202114},
  doi =		{10.4230/LIPIcs.ICALP.2024.68},
  annote =	{Keywords: book embedding, page number, subexponential algorithms, subhamiltonicity, feedback edge number}
}
Document
Track A: Algorithms, Complexity and Games
A Faster Algorithm for Pigeonhole Equal Sums

Authors: Ce Jin and Hongxun Wu

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
An important area of research in exact algorithms is to solve Subset-Sum-type problems faster than meet-in-middle. In this paper we study Pigeonhole Equal Sums, a total search problem proposed by Papadimitriou (1994): given n positive integers w₁,… ,w_n of total sum ∑_{i = 1}ⁿ w_i < 2ⁿ-1, the task is to find two distinct subsets A, B ⊆ [n] such that ∑_{i ∈ A}w_i = ∑_{i ∈ B}w_i. Similar to the status of the Subset Sum problem, the best known algorithm for Pigeonhole Equal Sums runs in O^*(2^{n/2}) time, via either meet-in-middle or dynamic programming (Allcock, Hamoudi, Joux, Klingelhöfer, and Santha, 2022). Our main result is an improved algorithm for Pigeonhole Equal Sums in O^*(2^{0.4n}) time. We also give a polynomial-space algorithm in O^*(2^{0.75n}) time. Unlike many previous works in this area, our approach does not use the representation method, but rather exploits a simple structural characterization of input instances with few solutions.

Cite as

Ce Jin and Hongxun Wu. A Faster Algorithm for Pigeonhole Equal Sums. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 94:1-94:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jin_et_al:LIPIcs.ICALP.2024.94,
  author =	{Jin, Ce and Wu, Hongxun},
  title =	{{A Faster Algorithm for Pigeonhole Equal Sums}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{94:1--94:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.94},
  URN =		{urn:nbn:de:0030-drops-202375},
  doi =		{10.4230/LIPIcs.ICALP.2024.94},
  annote =	{Keywords: Subset Sum, Pigeonhole, PPP}
}
Document
Track A: Algorithms, Complexity and Games
Towards Tight Bounds for the Graph Homomorphism Problem Parameterized by Cutwidth via Asymptotic Matrix Parameters

Authors: Carla Groenland, Isja Mannens, Jesper Nederlof, Marta Piecyk, and Paweł Rzążewski

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
A homomorphism from a graph G to a graph H is an edge-preserving mapping from V(G) to V(H). In the graph homomorphism problem, denoted by Hom(H), the graph H is fixed and we need to determine if there exists a homomorphism from an instance graph G to H. We study the complexity of the problem parameterized by the cutwidth of G, i.e., we assume that G is given along with a linear ordering v_1,…,v_n of V(G) such that, for each i ∈ {1,…,n-1}, the number of edges with one endpoint in {v_1,…,v_i} and the other in {v_{i+1},…,v_n} is at most k. We aim, for each H, for algorithms for Hom(H) running in time c_H^k n^𝒪(1) and matching lower bounds that exclude c_H^{k⋅o(1)} n^𝒪(1) or c_H^{k(1-Ω(1))} n^𝒪(1) time algorithms under the (Strong) Exponential Time Hypothesis. In the paper we introduce a new parameter that we call mimsup(H). Our main contribution is strong evidence of a close connection between c_H and mimsup(H): - an information-theoretic argument that the number of states needed in a natural dynamic programming algorithm is at most mimsup(H)^k, - lower bounds that show that for almost all graphs H indeed we have c_H ≥ mimsup(H), assuming the (Strong) Exponential-Time Hypothesis, and - an algorithm with running time exp(𝒪(mimsup(H)⋅k log k)) n^𝒪(1). In the last result we do not need to assume that H is a fixed graph. Thus, as a consequence, we obtain that the problem of deciding whether G admits a homomorphism to H is fixed-parameter tractable, when parameterized by cutwidth of G and mimsup(H). The parameter mimsup(H) can be thought of as the p-th root of the maximum induced matching number in the graph obtained by multiplying p copies of H via a certain graph product, where p tends to infinity. It can also be defined as an asymptotic rank parameter of the adjacency matrix of H. Such parameters play a central role in, among others, algebraic complexity theory and additive combinatorics. Our results tightly link the parameterized complexity of a problem to such an asymptotic matrix parameter for the first time.

Cite as

Carla Groenland, Isja Mannens, Jesper Nederlof, Marta Piecyk, and Paweł Rzążewski. Towards Tight Bounds for the Graph Homomorphism Problem Parameterized by Cutwidth via Asymptotic Matrix Parameters. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 77:1-77:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{groenland_et_al:LIPIcs.ICALP.2024.77,
  author =	{Groenland, Carla and Mannens, Isja and Nederlof, Jesper and Piecyk, Marta and Rz\k{a}\.{z}ewski, Pawe{\l}},
  title =	{{Towards Tight Bounds for the Graph Homomorphism Problem Parameterized by Cutwidth via Asymptotic Matrix Parameters}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{77:1--77:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.77},
  URN =		{urn:nbn:de:0030-drops-202208},
  doi =		{10.4230/LIPIcs.ICALP.2024.77},
  annote =	{Keywords: graph homomorphism, cutwidth, asymptotic matrix parameters}
}
Document
Brief Announcement
Brief Announcement: Collision Detection for Modular Robots - It Is Easy to Cause Collisions and Hard to Avoid Them

Authors: Siddharth Gupta, Marc van Kreveld, Othon Michail, and Andreas Padalkin

Published in: LIPIcs, Volume 292, 3rd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2024)


Abstract
We consider geometric collision-detection problems for modular reconfigurable robots. Assuming the nodes (modules) are connected squares on a grid, we investigate the complexity of deciding whether collisions may occur, or can be avoided, if a set of expansion and contraction operations is executed. We study both discrete- and continuous-time models, and allow operations to be coupled into a single parallel group. Our algorithms to decide if a collision may occur run in O(n²log² n) time, O(n²) time, or O(nlog² n) time, depending on the presence and type of coupled operations, in a continuous-time model for a modular robot with n nodes. To decide if collisions can be avoided, we show that a very restricted version is already NP-complete in the discrete-time model, while the same problem is polynomial in the continuous-time model. A less restricted version is NP-hard in the continuous-time model.

Cite as

Siddharth Gupta, Marc van Kreveld, Othon Michail, and Andreas Padalkin. Brief Announcement: Collision Detection for Modular Robots - It Is Easy to Cause Collisions and Hard to Avoid Them. In 3rd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 292, pp. 26:1-26:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gupta_et_al:LIPIcs.SAND.2024.26,
  author =	{Gupta, Siddharth and van Kreveld, Marc and Michail, Othon and Padalkin, Andreas},
  title =	{{Brief Announcement: Collision Detection for Modular Robots - It Is Easy to Cause Collisions and Hard to Avoid Them}},
  booktitle =	{3rd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2024)},
  pages =	{26:1--26:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-315-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{292},
  editor =	{Casteigts, Arnaud and Kuhn, Fabian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2024.26},
  URN =		{urn:nbn:de:0030-drops-199044},
  doi =		{10.4230/LIPIcs.SAND.2024.26},
  annote =	{Keywords: Modular robots, Collision detection, Computational Geometry, Complexity}
}
Document
RANDOM
Subset Sum in Time 2^{n/2} / poly(n)

Authors: Xi Chen, Yaonan Jin, Tim Randolph, and Rocco A. Servedio

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
A major goal in the area of exact exponential algorithms is to give an algorithm for the (worst-case) n-input Subset Sum problem that runs in time 2^{(1/2 - c)n} for some constant c > 0. In this paper we give a Subset Sum algorithm with worst-case running time O(2^{n/2} ⋅ n^{-γ}) for a constant γ > 0.5023 in standard word RAM or circuit RAM models. To the best of our knowledge, this is the first improvement on the classical "meet-in-the-middle" algorithm for worst-case Subset Sum, due to Horowitz and Sahni, which can be implemented in time O(2^{n/2}) in these memory models [Horowitz and Sahni, 1974]. Our algorithm combines a number of different techniques, including the "representation method" introduced by Howgrave-Graham and Joux [Howgrave-Graham and Joux, 2010] and subsequent adaptations of the method in Austrin, Kaski, Koivisto, and Nederlof [Austrin et al., 2016], and Nederlof and Węgrzycki [Jesper Nederlof and Karol Wegrzycki, 2021], and "bit-packing" techniques used in the work of Baran, Demaine, and Pǎtraşcu [Baran et al., 2005] on subquadratic algorithms for 3SUM.

Cite as

Xi Chen, Yaonan Jin, Tim Randolph, and Rocco A. Servedio. Subset Sum in Time 2^{n/2} / poly(n). In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 39:1-39:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.APPROX/RANDOM.2023.39,
  author =	{Chen, Xi and Jin, Yaonan and Randolph, Tim and Servedio, Rocco A.},
  title =	{{Subset Sum in Time 2^\{n/2\} / poly(n)}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{39:1--39:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.39},
  URN =		{urn:nbn:de:0030-drops-188641},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.39},
  annote =	{Keywords: Exact algorithms, subset sum, log shaving}
}
Document
Polynomial-Time Approximation of Independent Set Parameterized by Treewidth

Authors: Parinya Chalermsook, Fedor Fomin, Thekla Hamm, Tuukka Korhonen, Jesper Nederlof, and Ly Orgo

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
We prove the following result about approximating the maximum independent set in a graph. Informally, we show that any approximation algorithm with a "non-trivial" approximation ratio (as a function of the number of vertices of the input graph G) can be turned into an approximation algorithm achieving almost the same ratio, albeit as a function of the treewidth of G. More formally, we prove that for any function f, the existence of a polynomial time (n/f(n))-approximation algorithm yields the existence of a polynomial time O(tw⋅log{f(tw)}/f(tw))-approximation algorithm, where n and tw denote the number of vertices and the width of a given tree decomposition of the input graph. By pipelining our result with the state-of-the-art O(n ⋅ (log log n)²/log³n)-approximation algorithm by Feige (2004), this implies an O(tw⋅(log log tw)³/log³tw)-approximation algorithm.

Cite as

Parinya Chalermsook, Fedor Fomin, Thekla Hamm, Tuukka Korhonen, Jesper Nederlof, and Ly Orgo. Polynomial-Time Approximation of Independent Set Parameterized by Treewidth. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 33:1-33:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chalermsook_et_al:LIPIcs.ESA.2023.33,
  author =	{Chalermsook, Parinya and Fomin, Fedor and Hamm, Thekla and Korhonen, Tuukka and Nederlof, Jesper and Orgo, Ly},
  title =	{{Polynomial-Time Approximation of Independent Set Parameterized by Treewidth}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{33:1--33:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.33},
  URN =		{urn:nbn:de:0030-drops-186865},
  doi =		{10.4230/LIPIcs.ESA.2023.33},
  annote =	{Keywords: Maximum Independent Set, Treewidth, Approximation Algorithms, Parameterized Approximation}
}
  • Refine by Author
  • 17 Nederlof, Jesper
  • 5 Groenland, Carla
  • 5 Marx, Dániel
  • 4 Bodlaender, Hans L.
  • 3 Fomin, Fedor V.
  • Show More...

  • Refine by Classification
  • 31 Theory of computation → Parameterized complexity and exact algorithms
  • 13 Theory of computation → Graph algorithms analysis
  • 9 Theory of computation → Fixed parameter tractability
  • 8 Mathematics of computing → Graph algorithms
  • 4 Theory of computation → Approximation algorithms analysis
  • Show More...

  • Refine by Keyword
  • 6 Parameterized Complexity
  • 5 Treewidth
  • 4 parameterized complexity
  • 3 Approximation Algorithms
  • 3 Parameterized complexity
  • Show More...

  • Refine by Type
  • 62 document
  • 1 volume

  • Refine by Publication Year
  • 38 2022
  • 12 2024
  • 4 2016
  • 4 2023
  • 2 2019
  • Show More...