24 Search Results for "Rahul, C. S."


Document
A Technique for Hardness Amplification Against AC⁰

Authors: William M. Hoza

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We study hardness amplification in the context of two well-known "moderate" average-case hardness results for AC⁰ circuits. First, we investigate the extent to which AC⁰ circuits of depth d can approximate AC⁰ circuits of some larger depth d + k. The case k = 1 is resolved by Håstad, Rossman, Servedio, and Tan’s celebrated average-case depth hierarchy theorem (JACM 2017). Our contribution is a significantly stronger correlation bound when k ≥ 3. Specifically, we show that there exists a linear-size AC⁰_{d + k} circuit h : {0, 1}ⁿ → {0, 1} such that for every AC⁰_d circuit g, either g has size exp(n^{Ω(1/d)}), or else g agrees with h on at most a (1/2 + ε)-fraction of inputs where ε = exp(-(1/d) ⋅ Ω(log n)^{k-1}). For comparison, Håstad, Rossman, Servedio, and Tan’s result has ε = n^{-Θ(1/d)}. Second, we consider the majority function. It is well known that the majority function is moderately hard for AC⁰ circuits (and stronger classes). Our contribution is a stronger correlation bound for the XOR of t copies of the n-bit majority function, denoted MAJ_n^{⊕ t}. We show that if g is an AC⁰_d circuit of size S, then g agrees with MAJ_n^{⊕ t} on at most a (1/2 + ε)-fraction of inputs, where ε = (O(log S)^{d - 1} / √n)^t. To prove these results, we develop a hardness amplification technique that is tailored to a specific type of circuit lower bound proof. In particular, one way to show that a function h is moderately hard for AC⁰ circuits is to (a) design some distribution over random restrictions or random projections, (b) show that AC⁰ circuits simplify to shallow decision trees under these restrictions/projections, and finally (c) show that after applying the restriction/projection, h is moderately hard for shallow decision trees with respect to an appropriate distribution. We show that (roughly speaking) if h can be proven to be moderately hard by a proof with that structure, then XORing multiple copies of h amplifies its hardness. Our analysis involves a new kind of XOR lemma for decision trees, which might be of independent interest.

Cite as

William M. Hoza. A Technique for Hardness Amplification Against AC⁰. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 1:1-1:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hoza:LIPIcs.CCC.2024.1,
  author =	{Hoza, William M.},
  title =	{{A Technique for Hardness Amplification Against AC⁰}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{1:1--1:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.1},
  URN =		{urn:nbn:de:0030-drops-203977},
  doi =		{10.4230/LIPIcs.CCC.2024.1},
  annote =	{Keywords: Bounded-depth circuits, average-case lower bounds, hardness amplification, XOR lemmas}
}
Document
Derandomizing Logspace with a Small Shared Hard Drive

Authors: Edward Pyne

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We obtain new catalytic algorithms for space-bounded derandomization. In the catalytic computation model introduced by (Buhrman, Cleve, Koucký, Loff, and Speelman STOC 2013), we are given a small worktape, and a larger catalytic tape that has an arbitrary initial configuration. We may edit this tape, but it must be exactly restored to its initial configuration at the completion of the computation. We prove that BPSPACE[S] ⊆ CSPACE[S,S²] where BPSPACE[S] corresponds to randomized space S computation, and CSPACE[S,C] corresponds to catalytic algorithms that use O(S) bits of workspace and O(C) bits of catalytic space. Previously, only BPSPACE[S] ⊆ CSPACE[S,2^O(S)] was known. In fact, we prove a general tradeoff, that for every α ∈ [1,1.5], BPSPACE[S] ⊆ CSPACE[S^α,S^(3-α)]. We do not use the algebraic techniques of prior work on catalytic computation. Instead, we develop an algorithm that branches based on if the catalytic tape is conditionally random, and instantiate this primitive in a recursive framework. Our result gives an alternate proof of the best known time-space tradeoff for BPSPACE[S], due to (Cai, Chakaravarthy, and van Melkebeek, Theory Comput. Sys. 2006). As a final application, we extend our results to solve search problems in CSPACE[S,S²]. As far as we are aware, this constitutes the first study of search problems in the catalytic computing model.

Cite as

Edward Pyne. Derandomizing Logspace with a Small Shared Hard Drive. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 4:1-4:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{pyne:LIPIcs.CCC.2024.4,
  author =	{Pyne, Edward},
  title =	{{Derandomizing Logspace with a Small Shared Hard Drive}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{4:1--4:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.4},
  URN =		{urn:nbn:de:0030-drops-204006},
  doi =		{10.4230/LIPIcs.CCC.2024.4},
  annote =	{Keywords: Catalytic computation, space-bounded computation, derandomization}
}
Document
Explicit Time and Space Efficient Encoders Exist Only with Random Access

Authors: Joshua Cook and Dana Moshkovitz

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We give the first explicit constant rate, constant relative distance, linear codes with an encoder that runs in time n^{1 + o(1)} and space polylog(n) provided random access to the message. Prior to this work, the only such codes were non-explicit, for instance repeat accumulate codes [Divsalar et al., 1998] and the codes described in [Gál et al., 2013]. To construct our codes, we also give explicit, efficiently invertible, lossless condensers with constant entropy gap and polylogarithmic seed length. In contrast to encoders with random access to the message, we show that encoders with sequential access to the message can not run in almost linear time and polylogarithmic space. Our notion of sequential access is much stronger than streaming access.

Cite as

Joshua Cook and Dana Moshkovitz. Explicit Time and Space Efficient Encoders Exist Only with Random Access. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 5:1-5:54, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cook_et_al:LIPIcs.CCC.2024.5,
  author =	{Cook, Joshua and Moshkovitz, Dana},
  title =	{{Explicit Time and Space Efficient Encoders Exist Only with Random Access}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{5:1--5:54},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.5},
  URN =		{urn:nbn:de:0030-drops-204015},
  doi =		{10.4230/LIPIcs.CCC.2024.5},
  annote =	{Keywords: Time-Space Trade Offs, Error Correcting Codes, Encoders, Explicit Constructions, Streaming Lower Bounds, Sequential Access, Time-Space Lower Bounds, Lossless Condensers, Invertible Condensers, Condensers}
}
Document
Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy

Authors: Sepehr Assadi, Prantar Ghosh, Bruno Loff, Parth Mittal, and Sagnik Mukhopadhyay

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
The following question arises naturally in the study of graph streaming algorithms: Is there any graph problem which is "not too hard", in that it can be solved efficiently with total communication (nearly) linear in the number n of vertices, and for which, nonetheless, any streaming algorithm with Õ(n) space (i.e., a semi-streaming algorithm) needs a polynomial n^Ω(1) number of passes? Assadi, Chen, and Khanna [STOC 2019] were the first to prove that this is indeed the case. However, the lower bounds that they obtained are for rather non-standard graph problems. Our first main contribution is to present the first polynomial-pass lower bounds for natural "not too hard" graph problems studied previously in the streaming model: k-cores and degeneracy. We devise a novel communication protocol for both problems with near-linear communication, thus showing that k-cores and degeneracy are natural examples of "not too hard" problems. Indeed, previous work have developed single-pass semi-streaming algorithms for approximating these problems. In contrast, we prove that any semi-streaming algorithm for exactly solving these problems requires (almost) Ω(n^{1/3}) passes. The lower bound follows by a reduction from a generalization of the hidden pointer chasing (HPC) problem of Assadi, Chen, and Khanna, which is also the basis of their earlier semi-streaming lower bounds. Our second main contribution is improved round-communication lower bounds for the underlying communication problems at the basis of these reductions: - We improve the previous lower bound of Assadi, Chen, and Khanna for HPC to achieve optimal bounds for this problem. - We further observe that all current reductions from HPC can also work with a generalized version of this problem that we call MultiHPC, and prove an even stronger and optimal lower bound for this generalization. These two results collectively allow us to improve the resulting pass lower bounds for semi-streaming algorithms by a polynomial factor, namely, from n^{1/5} to n^{1/3} passes.

Cite as

Sepehr Assadi, Prantar Ghosh, Bruno Loff, Parth Mittal, and Sagnik Mukhopadhyay. Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 7:1-7:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{assadi_et_al:LIPIcs.CCC.2024.7,
  author =	{Assadi, Sepehr and Ghosh, Prantar and Loff, Bruno and Mittal, Parth and Mukhopadhyay, Sagnik},
  title =	{{Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{7:1--7:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.7},
  URN =		{urn:nbn:de:0030-drops-204035},
  doi =		{10.4230/LIPIcs.CCC.2024.7},
  annote =	{Keywords: Graph streaming, Lower bounds, Communication complexity, k-Cores and degeneracy}
}
Document
Linear-Size Boolean Circuits for Multiselection

Authors: Justin Holmgren and Ron Rothblum

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We study the circuit complexity of the multiselection problem: given an input string x ∈ {0,1}ⁿ along with indices i_1,… ,i_q ∈ [n], output (x_{i_1},… ,x_{i_q}). A trivial lower bound for the circuit size is the input length n + q⋅log(n), but the straightforward construction has size Θ(q⋅n). Our main result is an O(n+q⋅log³(n))-size and O(log(n+q))-depth circuit for multiselection. In particular, for any q ≤ n/log³(n) the circuit has linear size and logarithmic depth. Prior to our work no linear-size circuit for multiselection was known for any q = ω(1) and regardless of depth.

Cite as

Justin Holmgren and Ron Rothblum. Linear-Size Boolean Circuits for Multiselection. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 11:1-11:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{holmgren_et_al:LIPIcs.CCC.2024.11,
  author =	{Holmgren, Justin and Rothblum, Ron},
  title =	{{Linear-Size Boolean Circuits for Multiselection}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{11:1--11:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.11},
  URN =		{urn:nbn:de:0030-drops-204070},
  doi =		{10.4230/LIPIcs.CCC.2024.11},
  annote =	{Keywords: Private Information Retrieval, Batch Selection, Boolean Circuits}
}
Document
Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

Authors: Peter Bürgisser, Mahmut Levent Doğan, Visu Makam, Michael Walter, and Avi Wigderson

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
When a group acts on a set, it naturally partitions it into orbits, giving rise to orbit problems. These are natural algorithmic problems, as symmetries are central in numerous questions and structures in physics, mathematics, computer science, optimization, and more. Accordingly, it is of high interest to understand their computational complexity. Recently, Bürgisser et al. (2021) gave the first polynomial-time algorithms for orbit problems of torus actions, that is, actions of commutative continuous groups on Euclidean space. In this work, motivated by theoretical and practical applications, we study the computational complexity of robust generalizations of these orbit problems, which amount to approximating the distance of orbits in ℂⁿ up to a factor γ ≥ 1. In particular, this allows deciding whether two inputs are approximately in the same orbit or far from being so. On the one hand, we prove the NP-hardness of this problem for γ = n^Ω(1/log log n) by reducing the closest vector problem for lattices to it. On the other hand, we describe algorithms for solving this problem for an approximation factor γ = exp(poly(n)). Our algorithms combine tools from invariant theory and algorithmic lattice theory, and they also provide group elements witnessing the proximity of the given orbits (in contrast to the algebraic algorithms of prior work). We prove that they run in polynomial time if and only if a version of the famous number-theoretic abc-conjecture holds - establishing a new and surprising connection between computational complexity and number theory.

Cite as

Peter Bürgisser, Mahmut Levent Doğan, Visu Makam, Michael Walter, and Avi Wigderson. Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 14:1-14:48, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{burgisser_et_al:LIPIcs.CCC.2024.14,
  author =	{B\"{u}rgisser, Peter and Do\u{g}an, Mahmut Levent and Makam, Visu and Walter, Michael and Wigderson, Avi},
  title =	{{Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{14:1--14:48},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.14},
  URN =		{urn:nbn:de:0030-drops-204100},
  doi =		{10.4230/LIPIcs.CCC.2024.14},
  annote =	{Keywords: computational invariant theory, geometric complexity theory, orbit problems, abc-conjecture, closest vector problem}
}
Document
Lower Bounds for Set-Multilinear Branching Programs

Authors: Prerona Chatterjee, Deepanshu Kush, Shubhangi Saraf, and Amir Shpilka

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
In this paper, we prove super-polynomial lower bounds for the model of sum of ordered set-multilinear algebraic branching programs, each with a possibly different ordering (∑smABP). Specifically, we give an explicit nd-variate polynomial of degree d such that any ∑smABP computing it must have size n^ω(1) for d as low as ω(log n). Notably, this constitutes the first such lower bound in the low degree regime. Moreover, for d = poly(n), we demonstrate an exponential lower bound. This result generalizes the seminal work of Nisan (STOC, 1991), which proved an exponential lower bound for a single ordered set-multilinear ABP. The significance of our lower bounds is underscored by the recent work of Bhargav, Dwivedi, and Saxena (TAMC, 2024), which showed that super-polynomial lower bounds against a sum of ordered set-multilinear branching programs - for a polynomial of sufficiently low degree - would imply super-polynomial lower bounds against general ABPs, thereby resolving Valiant’s longstanding conjecture that the permanent polynomial can not be computed efficiently by ABPs. More precisely, their work shows that if one could obtain such lower bounds when the degree is bounded by O(log n/ log log n), then it would imply super-polynomial lower bounds against general ABPs. Our results strengthen the works of Arvind & Raja (Chic. J. Theor. Comput. Sci., 2016) and Bhargav, Dwivedi & Saxena (TAMC, 2024), as well as the works of Ramya & Rao (Theor. Comput. Sci., 2020) and Ghoshal & Rao (International Computer Science Symposium in Russia, 2021), each of which established lower bounds for related or restricted versions of this model. They also strongly answer a question from the former two, which asked to prove super-polynomial lower bounds for general ∑smABP.

Cite as

Prerona Chatterjee, Deepanshu Kush, Shubhangi Saraf, and Amir Shpilka. Lower Bounds for Set-Multilinear Branching Programs. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 20:1-20:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chatterjee_et_al:LIPIcs.CCC.2024.20,
  author =	{Chatterjee, Prerona and Kush, Deepanshu and Saraf, Shubhangi and Shpilka, Amir},
  title =	{{Lower Bounds for Set-Multilinear Branching Programs}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{20:1--20:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.20},
  URN =		{urn:nbn:de:0030-drops-204167},
  doi =		{10.4230/LIPIcs.CCC.2024.20},
  annote =	{Keywords: Lower Bounds, Algebraic Branching Programs, Set-multilinear polynomials}
}
Document
Dimension Independent Disentanglers from Unentanglement and Applications

Authors: Fernando Granha Jeronimo and Pei Wu

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Quantum entanglement, a distinctive form of quantum correlation, has become a key enabling ingredient in diverse applications in quantum computation, complexity, cryptography, etc. However, the presence of unwanted adversarial entanglement also poses challenges and even prevents the correct behaviour of many protocols and applications. In this paper, we explore methods to "break" the quantum correlations. Specifically, we construct a dimension-independent k-partite disentangler (like) channel from bipartite unentangled input. In particular, we show: For every d,𝓁 ≥ k ∈ ℕ^+, there is an efficient channel Λ : ℂ^{d𝓁} ⊗ ℂ^{d𝓁} → ℂ^{dk} such that for every bipartite separable density operator ρ₁⊗ ρ₂, the output Λ(ρ₁⊗ρ₂) is close to a k-partite separable state. Concretely, for some distribution μ on states from C^d, ║ Λ(ρ₁⊗ρ₂) - ∫ |ψ⟩⟨ψ|^{⊗k} dμ(ψ) ║₁ ≤ Õ((k³/𝓁)^{1/4}). Moreover, Λ(|ψ⟩⟨ψ|^{⊗𝓁} ⊗ |ψ⟩⟨ψ|^{⊗𝓁}) = |ψ⟩⟨ψ|^{⊗k}. Without the bipartite unentanglement assumption, the above bound is conjectured to be impossible and would imply QMA(2) = QMA. Leveraging multipartite unentanglement ensured by our disentanglers, we achieve the following: (i) a new proof that QMA(2) admits arbitrary gap amplification; (ii) a variant of the swap test and product test with improved soundness, addressing a major limitation of their original versions. More importantly, we demonstrate that unentangled quantum proofs of almost general real amplitudes capture NEXP, thereby greatly relaxing the non-negative amplitudes assumption in the recent work of QMA^+(2) = NEXP [Jeronimo and Wu, STOC 2023]. Specifically, our findings show that to capture NEXP, it suffices to have unentangled proofs of the form |ψ⟩ = √a |ψ_{+}⟩ + √{1-a} |ψ_{-}⟩ where |ψ_{+}⟩ has non-negative amplitudes, |ψ_{-}⟩ only has negative amplitudes and |a-(1-a)| ≥ 1/poly(n) with a ∈ [0,1]. Additionally, we present a protocol achieving an almost largest possible completeness-soundness gap before obtaining QMA^ℝ(k) = NEXP, namely, a 1/poly(n) additive improvement to the gap results in this equality.

Cite as

Fernando Granha Jeronimo and Pei Wu. Dimension Independent Disentanglers from Unentanglement and Applications. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 26:1-26:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jeronimo_et_al:LIPIcs.CCC.2024.26,
  author =	{Jeronimo, Fernando Granha and Wu, Pei},
  title =	{{Dimension Independent Disentanglers from Unentanglement and Applications}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{26:1--26:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.26},
  URN =		{urn:nbn:de:0030-drops-204228},
  doi =		{10.4230/LIPIcs.CCC.2024.26},
  annote =	{Keywords: QMA(2), disentangler, quantum proofs}
}
Document
Baby PIH: Parameterized Inapproximability of Min CSP

Authors: Venkatesan Guruswami, Xuandi Ren, and Sai Sandeep

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
The Parameterized Inapproximability Hypothesis (PIH) is the analog of the PCP theorem in the world of parameterized complexity. It asserts that no FPT algorithm can distinguish a satisfiable 2CSP instance from one which is only (1-ε)-satisfiable (where the parameter is the number of variables) for some constant 0 < ε < 1. We consider a minimization version of CSPs (Min-CSP), where one may assign r values to each variable, and the goal is to ensure that every constraint is satisfied by some choice among the r × r pairs of values assigned to its variables (call such a CSP instance r-list-satisfiable). We prove the following strong parameterized inapproximability for Min CSP: For every r ≥ 1, it is W[1]-hard to tell if a 2CSP instance is satisfiable or is not even r-list-satisfiable. We refer to this statement as "Baby PIH", following the recently proved Baby PCP Theorem (Barto and Kozik, 2021). Our proof adapts the combinatorial arguments underlying the Baby PCP theorem, overcoming some basic obstacles that arise in the parameterized setting. Furthermore, our reduction runs in time polynomially bounded in both the number of variables and the alphabet size, and thus implies the Baby PCP theorem as well.

Cite as

Venkatesan Guruswami, Xuandi Ren, and Sai Sandeep. Baby PIH: Parameterized Inapproximability of Min CSP. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 27:1-27:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{guruswami_et_al:LIPIcs.CCC.2024.27,
  author =	{Guruswami, Venkatesan and Ren, Xuandi and Sandeep, Sai},
  title =	{{Baby PIH: Parameterized Inapproximability of Min CSP}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{27:1--27:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.27},
  URN =		{urn:nbn:de:0030-drops-204237},
  doi =		{10.4230/LIPIcs.CCC.2024.27},
  annote =	{Keywords: Parameterized Inapproximability Hypothesis, Constraint Satisfaction Problems}
}
Document
Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

Authors: Shuichi Hirahara, Valentine Kabanets, Zhenjian Lu, and Igor C. Oliveira

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
A search-to-decision reduction is a procedure that allows one to find a solution to a problem from the mere ability to decide when a solution exists. The existence of a search-to-decision reduction for time-bounded Kolmogorov complexity, i.e., the problem of checking if a string x can be generated by a t-time bounded program of description length s, is a long-standing open problem that dates back to the 1960s. In this work, we obtain new average-case and worst-case search-to-decision reductions for the complexity measure 𝖪^t and its randomized analogue rK^t: 1) (Conditional Errorless and Error-Prone Reductions for 𝖪^t) Under the assumption that 𝖤 requires exponential size circuits, we design polynomial-time average-case search-to-decision reductions for 𝖪^t in both errorless and error-prone settings. In fact, under the easiness of deciding 𝖪^t under the uniform distribution, we obtain a search algorithm for any given polynomial-time samplable distribution. In the error-prone reduction, the search algorithm works in the more general setting of conditional 𝖪^t complexity, i.e., it finds a minimum length t-time bound program for generating x given a string y. 2) (Unconditional Errorless Reduction for rK^t) We obtain an unconditional polynomial-time average-case search-to-decision reduction for rK^t in the errorless setting. Similarly to the results described above, we obtain a search algorithm for each polynomial-time samplable distribution, assuming the existence of a decision algorithm under the uniform distribution. To our knowledge, this is the first unconditional sub-exponential time search-to-decision reduction among the measures 𝖪^t and rK^t that works with respect to any given polynomial-time samplable distribution. 3) (Worst-Case to Average-Case Reductions) Under the errorless average-case easiness of deciding rK^t, we design a worst-case search algorithm running in time 2^O(n/log n) that produces a minimum length randomized t-time program for every input string x ∈ {0,1}ⁿ, with the caveat that it only succeeds on some explicitly computed sub-exponential time bound t ≤ 2^{n^ε} that depends on x. A similar result holds for 𝖪^t, under the assumption that 𝖤 requires exponential size circuits. In these results, the corresponding search problem is solved exactly, i.e., a successful run of the search algorithm outputs a t-time bounded program for x of minimum length, as opposed to an approximately optimal program of slightly larger description length or running time.

Cite as

Shuichi Hirahara, Valentine Kabanets, Zhenjian Lu, and Igor C. Oliveira. Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 29:1-29:56, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hirahara_et_al:LIPIcs.CCC.2024.29,
  author =	{Hirahara, Shuichi and Kabanets, Valentine and Lu, Zhenjian and Oliveira, Igor C.},
  title =	{{Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{29:1--29:56},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.29},
  URN =		{urn:nbn:de:0030-drops-204256},
  doi =		{10.4230/LIPIcs.CCC.2024.29},
  annote =	{Keywords: average-case complexity, Kolmogorov complexity, search-to-decision reductions}
}
Document
Low-Depth Algebraic Circuit Lower Bounds over Any Field

Authors: Michael A. Forbes

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
The recent breakthrough of Limaye, Srinivasan and Tavenas [Limaye et al., 2022] (LST) gave the first super-polynomial lower bounds against low-depth algebraic circuits, for any field of zero (or sufficiently large) characteristic. It was an open question to extend this result to small-characteristic ([Limaye et al., 2022; Govindasamy et al., 2022; Fournier et al., 2023]), which in particular is relevant for an approach to prove superpolynomial AC⁰[p]-Frege lower bounds ([Govindasamy et al., 2022]). In this work, we prove super-polynomial algebraic circuit lower bounds against low-depth algebraic circuits over any field, with the same parameters as LST (or even matching the improved parameters of Bhargav, Dutta, and Saxena [Bhargav et al., 2022]). We give two proofs. The first is logical, showing that even though the proof of LST naively fails in small characteristic, the proof is sufficiently algebraic that generic transfer results imply the result over characteristic zero implies the result over all fields. Motivated by this indirect proof, we then proceed to give a second constructive proof, replacing the field-dependent set-multilinearization result of LST with a set-multilinearization that works over any field, by using the Binet-Minc identity [Minc, 1979].

Cite as

Michael A. Forbes. Low-Depth Algebraic Circuit Lower Bounds over Any Field. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 31:1-31:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{forbes:LIPIcs.CCC.2024.31,
  author =	{Forbes, Michael A.},
  title =	{{Low-Depth Algebraic Circuit Lower Bounds over Any Field}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{31:1--31:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.31},
  URN =		{urn:nbn:de:0030-drops-204271},
  doi =		{10.4230/LIPIcs.CCC.2024.31},
  annote =	{Keywords: algebraic circuits, lower bounds, low-depth circuits, positive characteristic}
}
Document
Search-To-Decision Reductions for Kolmogorov Complexity

Authors: Noam Mazor and Rafael Pass

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
A long-standing open problem dating back to the 1960s is whether there exists a search-to-decision reduction for the time-bounded Kolmogorov complexity problem - that is, the problem of determining whether the length of the shortest time-t program generating a given string x is at most s. In this work, we consider the more "robust" version of the time-bounded Kolmogorov complexity problem, referred to as the GapMINKT problem, where given a size bound s and a running time bound t, the goal is to determine whether there exists a poly(t,|x|)-time program of length s+O(log |x|) that generates x. We present the first non-trivial search-to-decision reduction R for the GapMINKT problem; R has a running-time bound of 2^{ε n} for any ε > 0 and additionally only queries its oracle on "thresholds" s of size s+O(log |x|). As such, we get that any algorithm with running-time (resp. circuit size) 2^{α s} poly(|x|,t,s) for solving GapMINKT (given an instance (x,t,s), yields an algorithm for finding a witness with running-time (resp. circuit size) 2^{(α+ε) s} poly(|x|,t,s). Our second result is a polynomial-time search-to-decision reduction for the time-bounded Kolmogorov complexity problem in the average-case regime. Such a reduction was recently shown by Liu and Pass (FOCS'20), heavily relying on cryptographic techniques. Our reduction is more direct and additionally has the advantage of being length-preserving, and as such also applies in the exponential time/size regime. A central component in both of these results is the use of Kolmogorov and Levin’s Symmetry of Information Theorem.

Cite as

Noam Mazor and Rafael Pass. Search-To-Decision Reductions for Kolmogorov Complexity. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 34:1-34:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mazor_et_al:LIPIcs.CCC.2024.34,
  author =	{Mazor, Noam and Pass, Rafael},
  title =	{{Search-To-Decision Reductions for Kolmogorov Complexity}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{34:1--34:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.34},
  URN =		{urn:nbn:de:0030-drops-204308},
  doi =		{10.4230/LIPIcs.CCC.2024.34},
  annote =	{Keywords: Kolmogorov complexity, search to decision}
}
Document
Track A: Algorithms, Complexity and Games
NP-Hardness of Testing Equivalence to Sparse Polynomials and to Constant-Support Polynomials

Authors: Omkar Baraskar, Agrim Dewan, Chandan Saha, and Pulkit Sinha

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
An s-sparse polynomial has at most s monomials with nonzero coefficients. The Equivalence Testing problem for sparse polynomials (ETsparse) asks to decide if a given polynomial f is equivalent to (i.e., in the orbit of) some s-sparse polynomial. In other words, given f ∈ 𝔽[𝐱] and s ∈ ℕ, ETsparse asks to check if there exist A ∈ GL(|𝐱|, 𝔽) and 𝐛 ∈ 𝔽^|𝐱| such that f(A𝐱 + 𝐛) is s-sparse. We show that ETsparse is NP-hard over any field 𝔽, if f is given in the sparse representation, i.e., as a list of nonzero coefficients and exponent vectors. This answers a question posed by Gupta, Saha and Thankey (SODA 2023) and also, more explicitly, by Baraskar, Dewan and Saha (STACS 2024). The result implies that the Minimum Circuit Size Problem (MCSP) is NP-hard for a dense subclass of depth-3 arithmetic circuits if the input is given in sparse representation. We also show that approximating the smallest s₀ such that a given s-sparse polynomial f is in the orbit of some s₀-sparse polynomial to within a factor of s^{1/3 - ε} is NP-hard for any ε > 0; observe that s-factor approximation is trivial as the input is s-sparse. Finally, we show that for any constant σ ≥ 6, checking if a polynomial (given in sparse representation) is in the orbit of some support-σ polynomial is NP-hard. Support of a polynomial f is the maximum number of variables present in any monomial of f. These results are obtained via direct reductions from the 3-SAT problem.

Cite as

Omkar Baraskar, Agrim Dewan, Chandan Saha, and Pulkit Sinha. NP-Hardness of Testing Equivalence to Sparse Polynomials and to Constant-Support Polynomials. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 16:1-16:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{baraskar_et_al:LIPIcs.ICALP.2024.16,
  author =	{Baraskar, Omkar and Dewan, Agrim and Saha, Chandan and Sinha, Pulkit},
  title =	{{NP-Hardness of Testing Equivalence to Sparse Polynomials and to Constant-Support Polynomials}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{16:1--16:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.16},
  URN =		{urn:nbn:de:0030-drops-201598},
  doi =		{10.4230/LIPIcs.ICALP.2024.16},
  annote =	{Keywords: Equivalence testing, MCSP, sparse polynomials, 3SAT}
}
Document
Track A: Algorithms, Complexity and Games
Kernelization Dichotomies for Hitting Subgraphs Under Structural Parameterizations

Authors: Marin Bougeret, Bart M. P. Jansen, and Ignasi Sau

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
For a fixed graph H, the H-Subgraph Hitting problem consists in deleting the minimum number of vertices from an input graph to obtain a graph without any occurrence of H as a subgraph. This problem can be seen as a generalization of Vertex Cover, which corresponds to the case H = K₂. We initiate a study of H-Subgraph Hitting from the point of view of characterizing structural parameterizations that allow for polynomial kernels, within the recently active framework of taking as the parameter the number of vertex deletions to obtain a graph in a "simple" class 𝒞. Our main contribution is to identify graph parameters that, when H-Subgraph Hitting is parameterized by the vertex-deletion distance to a class 𝒞 where any of these parameters is bounded, and assuming standard complexity assumptions and that H is biconnected, allow us to prove the following sharp dichotomy: the problem admits a polynomial kernel if and only if H is a clique. These new graph parameters are inspired by the notion of 𝒞-elimination distance introduced by Bulian and Dawar [Algorithmica 2016], and generalize it in two directions. Our results also apply to the version of the problem where one wants to hit H as an induced subgraph, and imply in particular, that the problems of hitting minors and hitting (induced) subgraphs have a substantially different behavior with respect to the existence of polynomial kernels under structural parameterizations.

Cite as

Marin Bougeret, Bart M. P. Jansen, and Ignasi Sau. Kernelization Dichotomies for Hitting Subgraphs Under Structural Parameterizations. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 33:1-33:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bougeret_et_al:LIPIcs.ICALP.2024.33,
  author =	{Bougeret, Marin and Jansen, Bart M. P. and Sau, Ignasi},
  title =	{{Kernelization Dichotomies for Hitting Subgraphs Under Structural Parameterizations}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{33:1--33:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.33},
  URN =		{urn:nbn:de:0030-drops-201766},
  doi =		{10.4230/LIPIcs.ICALP.2024.33},
  annote =	{Keywords: hitting subgraphs, hitting induced subgraphs, parameterized complexity, polynomial kernel, complexity dichotomy, elimination distance}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Smoothed Analysis of Deterministic Discounted and Mean-Payoff Games

Authors: Bruno Loff and Mateusz Skomra

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We devise a policy-iteration algorithm for deterministic two-player discounted and mean-payoff games, that runs in polynomial time with high probability, on any input where each payoff is chosen independently from a sufficiently random distribution and the underlying graph of the game is ergodic. This includes the case where an arbitrary set of payoffs has been perturbed by a Gaussian, showing for the first time that deterministic two-player games can be solved efficiently, in the sense of smoothed analysis. More generally, we devise a condition number for deterministic discounted and mean-payoff games played on ergodic graphs, and show that our algorithm runs in time polynomial in this condition number. Our result confirms a previous conjecture of Boros et al., which was claimed as a theorem [Boros et al., 2011] and later retracted [Boros et al., 2018]. It stands in contrast with a recent counter-example by Christ and Yannakakis [Christ and Yannakakis, 2023], showing that Howard’s policy-iteration algorithm does not run in smoothed polynomial time on stochastic single-player mean-payoff games. Our approach is inspired by the analysis of random optimal assignment instances by Frieze and Sorkin [Frieze and Sorkin, 2007], and the analysis of bias-induced policies for mean-payoff games by Akian, Gaubert and Hochart [Akian et al., 2018].

Cite as

Bruno Loff and Mateusz Skomra. Smoothed Analysis of Deterministic Discounted and Mean-Payoff Games. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 147:1-147:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{loff_et_al:LIPIcs.ICALP.2024.147,
  author =	{Loff, Bruno and Skomra, Mateusz},
  title =	{{Smoothed Analysis of Deterministic Discounted and Mean-Payoff Games}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{147:1--147:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.147},
  URN =		{urn:nbn:de:0030-drops-202908},
  doi =		{10.4230/LIPIcs.ICALP.2024.147},
  annote =	{Keywords: Mean-payoff games, discounted games, policy iteration, smoothed analysis}
}
  • Refine by Author
  • 2 Ganian, Robert
  • 2 Hirahara, Shuichi
  • 2 Loff, Bruno
  • 2 Ordyniak, Sebastian
  • 2 Rahul, C. S.
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Algebraic complexity theory
  • 4 Theory of computation → Computational complexity and cryptography
  • 3 Theory of computation → Pseudorandomness and derandomization
  • 2 Theory of computation → Circuit complexity
  • 2 Theory of computation → Graph algorithms analysis
  • Show More...

  • Refine by Keyword
  • 2 Kolmogorov complexity
  • 2 Lower Bounds
  • 2 Lower bounds
  • 2 derandomization
  • 1 3SAT
  • Show More...

  • Refine by Type
  • 24 document

  • Refine by Publication Year
  • 17 2024
  • 2 2016
  • 1 2017
  • 1 2018
  • 1 2019
  • Show More...