31 Search Results for "Rzazewski, Pawel"


Volume

LIPIcs, Volume 321

19th International Symposium on Parameterized and Exact Computation (IPEC 2024)

IPEC 2024, September 4-6, 2024, Royal Holloway, University of London, Egham, United Kingdom

Editors: Édouard Bonnet and Paweł Rzążewski

Document
Complete Volume
LIPIcs, Volume 321, IPEC 2024, Complete Volume

Authors: Édouard Bonnet and Paweł Rzążewski

Published in: LIPIcs, Volume 321, 19th International Symposium on Parameterized and Exact Computation (IPEC 2024)


Abstract
LIPIcs, Volume 321, IPEC 2024, Complete Volume

Cite as

19th International Symposium on Parameterized and Exact Computation (IPEC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 321, pp. 1-516, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Proceedings{bonnet_et_al:LIPIcs.IPEC.2024,
  title =	{{LIPIcs, Volume 321, IPEC 2024, Complete Volume}},
  booktitle =	{19th International Symposium on Parameterized and Exact Computation (IPEC 2024)},
  pages =	{1--516},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-353-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{321},
  editor =	{Bonnet, \'{E}douard and Rz\k{a}\.{z}ewski, Pawe{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2024},
  URN =		{urn:nbn:de:0030-drops-225835},
  doi =		{10.4230/LIPIcs.IPEC.2024},
  annote =	{Keywords: LIPIcs, Volume 321, IPEC 2024, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Édouard Bonnet and Paweł Rzążewski

Published in: LIPIcs, Volume 321, 19th International Symposium on Parameterized and Exact Computation (IPEC 2024)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

19th International Symposium on Parameterized and Exact Computation (IPEC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 321, pp. 0:i-0:xviii, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.IPEC.2024.0,
  author =	{Bonnet, \'{E}douard and Rz\k{a}\.{z}ewski, Pawe{\l}},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{19th International Symposium on Parameterized and Exact Computation (IPEC 2024)},
  pages =	{0:i--0:xviii},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-353-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{321},
  editor =	{Bonnet, \'{E}douard and Rz\k{a}\.{z}ewski, Pawe{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2024.0},
  URN =		{urn:nbn:de:0030-drops-225828},
  doi =		{10.4230/LIPIcs.IPEC.2024.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
List Homomorphisms by Deleting Edges and Vertices: Tight Complexity Bounds for Bounded-Treewidth Graphs

Authors: Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
The goal of this paper is to investigate a family of optimization problems arising from list homomorphisms, and to understand what the best possible algorithms are if we restrict the problem to bounded-treewidth graphs. Given graphs G, H, and lists L(v) ⊆ V(H) for every v ∈ V(G), a list homomorphism from (G,L) to H is a function f:V(G) → V(H) that preserves the edges (i.e., uv ∈ E(G) implies f(u)f(v) ∈ E(H)) and respects the lists (i.e., f(v) ∈ L(v)). The graph H may have loops. For a fixed H, the input of the optimization problem LHomVD(H) is a graph G with lists L(v), and the task is to find a set X of vertices having minimum size such that (G-X,L) has a list homomorphism to H. We define analogously the edge-deletion variant LHomED(H), where we have to delete as few edges as possible from G to obtain a graph that has a list homomorphism. This expressive family of problems includes members that are essentially equivalent to fundamental problems such as Vertex Cover, Max Cut, Odd Cycle Transversal, and Edge/Vertex Multiway Cut. For both variants, we first characterize those graphs H that make the problem polynomial-time solvable and show that the problem is NP-hard for every other fixed H. Second, as our main result, we determine for every graph H for which the problem is NP-hard, the smallest possible constant c_H such that the problem can be solved in time c^t_H⋅ n^{𝒪(1)} if a tree decomposition of G having width t is given in the input. Let i(H) be the maximum size of a set of vertices in H that have pairwise incomparable neighborhoods. For the vertex-deletion variant LHomVD(H), we show that the smallest possible constant is i(H)+1 for every H: - Given a tree decomposition of width t of G, LHomVD(H) can be solved in time (i(H)+1)^t⋅ n^{𝒪(1)}. - For any ε > 0 and H, an (i(H)+1-ε)^t⋅ n^{𝒪(1)} algorithm would violate the Strong Exponential-Time Hypothesis (SETH). The situation is more complex for the edge-deletion version. For every H, one can solve LHomED(H) in time i(H)^t⋅ n^{𝒪(1)} if a tree decomposition of width t is given. However, the existence of a specific type of decomposition of H shows that there are graphs H where LHomED(H) can be solved significantly more efficiently and the best possible constant can be arbitrarily smaller than i(H). Nevertheless, we determine this best possible constant and (assuming the SETH) prove tight bounds for every fixed H.

Cite as

Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski. List Homomorphisms by Deleting Edges and Vertices: Tight Complexity Bounds for Bounded-Treewidth Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 39:1-39:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{canesmer_et_al:LIPIcs.ESA.2024.39,
  author =	{Can Esmer, Bar{\i}\c{s} and Focke, Jacob and Marx, D\'{a}niel and Rz\k{a}\.{z}ewski, Pawe{\l}},
  title =	{{List Homomorphisms by Deleting Edges and Vertices: Tight Complexity Bounds for Bounded-Treewidth Graphs}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{39:1--39:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.39},
  URN =		{urn:nbn:de:0030-drops-211103},
  doi =		{10.4230/LIPIcs.ESA.2024.39},
  annote =	{Keywords: Graph Homomorphism, List Homomorphism, Vertex Deletion, Edge Deletion, Multiway Cut, Parameterized Complexity, Tight Bounds, Treewidth, SETH}
}
Document
Tree Decompositions Meet Induced Matchings: Beyond Max Weight Independent Set

Authors: Paloma T. Lima, Martin Milanič, Peter Muršič, Karolina Okrasa, Paweł Rzążewski, and Kenny Štorgel

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
For a tree decomposition 𝒯 of a graph G, by μ(𝒯) we denote the size of a largest induced matching in G all of whose edges intersect one bag of 𝒯. The induced matching treewidth of a graph G is the minimum value of μ(𝒯) over all tree decompositions 𝒯 of G. Yolov [SODA 2018] proved that for graphs of bounded induced matching treewidth, tree decompositions with bounded μ(𝒯) can be computed in polynomial time and Max Weight Independent Set can be solved in polynomial time. In this paper we explore what other problems are tractable in such classes of graphs. As our main result, we give a polynomial-time algorithm for Min Weight Feedback Vertex Set. We also provide some positive results concerning packing induced subgraphs, which in particular imply a PTAS for the problem of finding a largest induced subgraph of bounded treewidth. These results suggest that in graphs of bounded induced matching treewidth, one could find in polynomial time a maximum-weight induced subgraph of bounded treewidth satisfying a given CMSO₂ formula. We conjecture that such a result indeed holds and prove it for graphs of bounded tree-independence number, which form a rich and important family of subclasses of graphs of bounded induced matching treewidth. We complement these algorithmic results with a number of complexity and structural results concerning induced matching treewidth, including a linear relation to treewidth for graphs with bounded degree.

Cite as

Paloma T. Lima, Martin Milanič, Peter Muršič, Karolina Okrasa, Paweł Rzążewski, and Kenny Štorgel. Tree Decompositions Meet Induced Matchings: Beyond Max Weight Independent Set. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 85:1-85:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lima_et_al:LIPIcs.ESA.2024.85,
  author =	{Lima, Paloma T. and Milani\v{c}, Martin and Mur\v{s}i\v{c}, Peter and Okrasa, Karolina and Rz\k{a}\.{z}ewski, Pawe{\l} and \v{S}torgel, Kenny},
  title =	{{Tree Decompositions Meet Induced Matchings: Beyond Max Weight Independent Set}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{85:1--85:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.85},
  URN =		{urn:nbn:de:0030-drops-211569},
  doi =		{10.4230/LIPIcs.ESA.2024.85},
  annote =	{Keywords: induced matching treewidth, tree-independence number, feedback vertex set, induced packing, algorithmic meta-theorem}
}
Document
RNA Inverse Folding Can Be Solved in Linear Time for Structures Without Isolated Stacks or Base Pairs

Authors: Théo Boury, Laurent Bulteau, and Yann Ponty

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
Inverse folding is a classic instance of negative RNA design which consists in finding a sequence that uniquely folds into a target secondary structure with respect to energy minimization. A breakthrough result of Bonnet et al. shows that, even in simple base pairs-based (BP) models, the decision version of a mildly constrained version of inverse folding is NP-hard. In this work, we show that inverse folding can be solved in linear time for a large collection of targets, including every structure that contains no isolated BP and no isolated stack (or, equivalently, when all helices consist of 3^{+} base pairs). For structures featuring shorter helices, our linear algorithm is no longer guaranteed to produce a solution, but still does so for a large proportion of instances. Our approach introduces a notion of modulo m-separability, generalizing a property pioneered by Hales et al. Separability is a sufficient condition for the existence of a solution to the inverse folding problem. We show that, for any input secondary structure of length n, a modulo m-separated sequence can be produced in time 𝒪(n 2^m) anytime such a sequence exists. Meanwhile, we show that any structure consisting of 3^{+} base pairs is either trivially non-designable, or always admits a modulo-2 separated solution (m = 2). Solution sequences can thus be produced in linear time, and even be uniformly generated within the set of modulo-2 separable sequences.

Cite as

Théo Boury, Laurent Bulteau, and Yann Ponty. RNA Inverse Folding Can Be Solved in Linear Time for Structures Without Isolated Stacks or Base Pairs. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 19:1-19:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{boury_et_al:LIPIcs.WABI.2024.19,
  author =	{Boury, Th\'{e}o and Bulteau, Laurent and Ponty, Yann},
  title =	{{RNA Inverse Folding Can Be Solved in Linear Time for Structures Without Isolated Stacks or Base Pairs}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{19:1--19:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.19},
  URN =		{urn:nbn:de:0030-drops-206632},
  doi =		{10.4230/LIPIcs.WABI.2024.19},
  annote =	{Keywords: RNA structure, String Design, Parameterized Complexity, Uniform Sampling}
}
Document
Minimal Obstructions to C₅-Coloring in Hereditary Graph Classes

Authors: Jan Goedgebeur, Jorik Jooken, Karolina Okrasa, Paweł Rzążewski, and Oliver Schaudt

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
For graphs G and H, an H-coloring of G is an edge-preserving mapping from V(G) to V(H). Note that if H is the triangle, then H-colorings are equivalent to 3-colorings. In this paper we are interested in the case that H is the five-vertex cycle C₅. A minimal obstruction to C₅-coloring is a graph that does not have a C₅-coloring, but every proper induced subgraph thereof has a C₅-coloring. In this paper we are interested in minimal obstructions to C₅-coloring in F-free graphs, i.e., graphs that exclude some fixed graph F as an induced subgraph. Let P_t denote the path on t vertices, and let S_{a,b,c} denote the graph obtained from paths P_{a+1},P_{b+1},P_{c+1} by identifying one of their endvertices. We show that there is only a finite number of minimal obstructions to C₅-coloring among F-free graphs, where F ∈ {P₈, S_{2,2,1}, S_{3,1,1}} and explicitly determine all such obstructions. This extends the results of Kamiński and Pstrucha [Discr. Appl. Math. 261, 2019] who proved that there is only a finite number of P₇-free minimal obstructions to C₅-coloring, and of Dębski et al. [ISAAC 2022 Proc.] who showed that the triangle is the unique S_{2,1,1}-free minimal obstruction to C₅-coloring. We complement our results with a construction of an infinite family of minimal obstructions to C₅-coloring, which are simultaneously P_{13}-free and S_{2,2,2}-free. We also discuss infinite families of F-free minimal obstructions to H-coloring for other graphs H.

Cite as

Jan Goedgebeur, Jorik Jooken, Karolina Okrasa, Paweł Rzążewski, and Oliver Schaudt. Minimal Obstructions to C₅-Coloring in Hereditary Graph Classes. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 55:1-55:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{goedgebeur_et_al:LIPIcs.MFCS.2024.55,
  author =	{Goedgebeur, Jan and Jooken, Jorik and Okrasa, Karolina and Rz\k{a}\.{z}ewski, Pawe{\l} and Schaudt, Oliver},
  title =	{{Minimal Obstructions to C₅-Coloring in Hereditary Graph Classes}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{55:1--55:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.55},
  URN =		{urn:nbn:de:0030-drops-206110},
  doi =		{10.4230/LIPIcs.MFCS.2024.55},
  annote =	{Keywords: graph homomorphism, critical graphs, hereditary graph classes}
}
Document
C_{2k+1}-Coloring of Bounded-Diameter Graphs

Authors: Marta Piecyk

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
For a fixed graph H, in the graph homomorphism problem, denoted by Hom(H), we are given a graph G and we have to determine whether there exists an edge-preserving mapping φ: V(G) → V(H). Note that Hom(C₃), where C₃ is the cycle of length 3, is equivalent to 3-Coloring. The question of whether 3-Coloring is polynomial-time solvable on diameter-2 graphs is a well-known open problem. In this paper we study the Hom(C_{2k+1}) problem on bounded-diameter graphs for k ≥ 2, so we consider all other odd cycles than C₃. We prove that for k ≥ 2, the Hom(C_{2k+1}) problem is polynomial-time solvable on diameter-(k+1) graphs - note that such a result for k = 1 would be precisely a polynomial-time algorithm for 3-Coloring of diameter-2 graphs. Furthermore, we give subexponential-time algorithms for diameter-(k+2) and -(k+3) graphs. We complement these results with a lower bound for diameter-(2k+2) graphs - in this class of graphs the Hom(C_{2k+1}) problem is NP-hard and cannot be solved in subexponential-time, unless the ETH fails. Finally, we consider another direction of generalizing 3-Coloring on diameter-2 graphs. We consider other target graphs H than odd cycles but we restrict ourselves to diameter 2. We show that if H is triangle-free, then Hom(H) is polynomial-time solvable on diameter-2 graphs.

Cite as

Marta Piecyk. C_{2k+1}-Coloring of Bounded-Diameter Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 78:1-78:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{piecyk:LIPIcs.MFCS.2024.78,
  author =	{Piecyk, Marta},
  title =	{{C\underline\{2k+1\}-Coloring of Bounded-Diameter Graphs}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{78:1--78:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.78},
  URN =		{urn:nbn:de:0030-drops-206348},
  doi =		{10.4230/LIPIcs.MFCS.2024.78},
  annote =	{Keywords: graph homomorphism, odd cycles, diameter}
}
Document
Track A: Algorithms, Complexity and Games
Fundamental Problems on Bounded-Treewidth Graphs: The Real Source of Hardness

Authors: Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
It is known for many algorithmic problems that if a tree decomposition of width t is given in the input, then the problem can be solved with exponential dependence on t. A line of research initiated by Lokshtanov, Marx, and Saurabh [SODA 2011] produced lower bounds showing that in many cases known algorithms already achieve the best possible exponential dependence on t, assuming the Strong Exponential-Time Hypothesis (SETH). The main message of this paper is showing that the same lower bounds can already be obtained in a much more restricted setting: informally, a graph consisting of a block of t vertices connected to components of constant size already has the same hardness as a general tree decomposition of width t. Formally, a (σ,δ)-hub is a set Q of vertices such that every component of Q has size at most σ and is adjacent to at most δ vertices of Q. We explore if the known tight lower bounds parameterized by the width of the given tree decomposition remain valid if we parameterize by the size of the given hub. - For every ε > 0, there are σ,δ > 0 such that Independent Set (equivalently Vertex Cover) cannot be solved in time (2-ε)^p⋅ n, even if a (σ, δ)-hub of size p is given in the input, assuming the SETH. This matches the earlier tight lower bounds parameterized by width of the tree decomposition. Similar tight bounds are obtained for Odd Cycle Transversal, Max Cut, q-Coloring, and edge/vertex deletions versions of q-Coloring. - For every ε > 0, there are σ,δ > 0 such that △-Partition cannot be solved in time (2-ε)^p ⋅ n, even if a (σ, δ)-hub of size p is given in the input, assuming the Set Cover Conjecture (SCC). In fact, we prove that this statement is equivalent to the SCC, thus it is unlikely that this could be proved assuming the SETH. - For Dominating Set, we can prove a non-tight lower bound ruling out (2-ε)^p ⋅ n^𝒪(1) algorithms, assuming either the SETH or the SCC, but this does not match the 3^p⋅ n^{𝒪(1)} upper bound. Thus our results reveal that, for many problems, the research on lower bounds on the dependence on tree width was never really about tree decompositions, but the real source of hardness comes from a much simpler structure. Additionally, we study if the same lower bounds can be obtained if σ and δ are fixed universal constants (not depending on ε). We show that lower bounds of this form are possible for Max Cut and the edge-deletion version of q-Coloring, under the Max 3-Sat Hypothesis (M3SH). However, no such lower bounds are possible for Independent Set, Odd Cycle Transversal, and the vertex-deletion version of q-Coloring: better than brute force algorithms are possible for every fixed (σ,δ).

Cite as

Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski. Fundamental Problems on Bounded-Treewidth Graphs: The Real Source of Hardness. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 34:1-34:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{canesmer_et_al:LIPIcs.ICALP.2024.34,
  author =	{Can Esmer, Bar{\i}\c{s} and Focke, Jacob and Marx, D\'{a}niel and Rz\k{a}\.{z}ewski, Pawe{\l}},
  title =	{{Fundamental Problems on Bounded-Treewidth Graphs: The Real Source of Hardness}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{34:1--34:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.34},
  URN =		{urn:nbn:de:0030-drops-201772},
  doi =		{10.4230/LIPIcs.ICALP.2024.34},
  annote =	{Keywords: Parameterized Complexity, Tight Bounds, Hub, Treewidth, Strong Exponential Time Hypothesis, Vertex Coloring, Vertex Deletion, Edge Deletion, Triangle Packing, Triangle Partition, Set Cover Hypothesis, Dominating Set}
}
Document
Track A: Algorithms, Complexity and Games
Towards Tight Bounds for the Graph Homomorphism Problem Parameterized by Cutwidth via Asymptotic Matrix Parameters

Authors: Carla Groenland, Isja Mannens, Jesper Nederlof, Marta Piecyk, and Paweł Rzążewski

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
A homomorphism from a graph G to a graph H is an edge-preserving mapping from V(G) to V(H). In the graph homomorphism problem, denoted by Hom(H), the graph H is fixed and we need to determine if there exists a homomorphism from an instance graph G to H. We study the complexity of the problem parameterized by the cutwidth of G, i.e., we assume that G is given along with a linear ordering v_1,…,v_n of V(G) such that, for each i ∈ {1,…,n-1}, the number of edges with one endpoint in {v_1,…,v_i} and the other in {v_{i+1},…,v_n} is at most k. We aim, for each H, for algorithms for Hom(H) running in time c_H^k n^𝒪(1) and matching lower bounds that exclude c_H^{k⋅o(1)} n^𝒪(1) or c_H^{k(1-Ω(1))} n^𝒪(1) time algorithms under the (Strong) Exponential Time Hypothesis. In the paper we introduce a new parameter that we call mimsup(H). Our main contribution is strong evidence of a close connection between c_H and mimsup(H): - an information-theoretic argument that the number of states needed in a natural dynamic programming algorithm is at most mimsup(H)^k, - lower bounds that show that for almost all graphs H indeed we have c_H ≥ mimsup(H), assuming the (Strong) Exponential-Time Hypothesis, and - an algorithm with running time exp(𝒪(mimsup(H)⋅k log k)) n^𝒪(1). In the last result we do not need to assume that H is a fixed graph. Thus, as a consequence, we obtain that the problem of deciding whether G admits a homomorphism to H is fixed-parameter tractable, when parameterized by cutwidth of G and mimsup(H). The parameter mimsup(H) can be thought of as the p-th root of the maximum induced matching number in the graph obtained by multiplying p copies of H via a certain graph product, where p tends to infinity. It can also be defined as an asymptotic rank parameter of the adjacency matrix of H. Such parameters play a central role in, among others, algebraic complexity theory and additive combinatorics. Our results tightly link the parameterized complexity of a problem to such an asymptotic matrix parameter for the first time.

Cite as

Carla Groenland, Isja Mannens, Jesper Nederlof, Marta Piecyk, and Paweł Rzążewski. Towards Tight Bounds for the Graph Homomorphism Problem Parameterized by Cutwidth via Asymptotic Matrix Parameters. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 77:1-77:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{groenland_et_al:LIPIcs.ICALP.2024.77,
  author =	{Groenland, Carla and Mannens, Isja and Nederlof, Jesper and Piecyk, Marta and Rz\k{a}\.{z}ewski, Pawe{\l}},
  title =	{{Towards Tight Bounds for the Graph Homomorphism Problem Parameterized by Cutwidth via Asymptotic Matrix Parameters}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{77:1--77:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.77},
  URN =		{urn:nbn:de:0030-drops-202208},
  doi =		{10.4230/LIPIcs.ICALP.2024.77},
  annote =	{Keywords: graph homomorphism, cutwidth, asymptotic matrix parameters}
}
Document
Max Weight Independent Set in Sparse Graphs with No Long Claws

Authors: Tara Abrishami, Maria Chudnovsky, Marcin Pilipczuk, and Paweł Rzążewski

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
We revisit the recent polynomial-time algorithm for the Max Weight Independent Set (MWIS) problem in bounded-degree graphs that do not contain a fixed graph whose every component is a subdivided claw as an induced subgraph [Abrishami, Chudnovsky, Dibek, Rzążewski, SODA 2022]. First, we show that with an arguably simpler approach we can obtain a faster algorithm with running time n^{𝒪(Δ²)}, where n is the number of vertices of the instance and Δ is the maximum degree. Then we combine our technique with known results concerning tree decompositions and provide a polynomial-time algorithm for MWIS in graphs excluding a fixed graph whose every component is a subdivided claw as an induced subgraph, and a fixed biclique as a subgraph.

Cite as

Tara Abrishami, Maria Chudnovsky, Marcin Pilipczuk, and Paweł Rzążewski. Max Weight Independent Set in Sparse Graphs with No Long Claws. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 4:1-4:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{abrishami_et_al:LIPIcs.STACS.2024.4,
  author =	{Abrishami, Tara and Chudnovsky, Maria and Pilipczuk, Marcin and Rz\k{a}\.{z}ewski, Pawe{\l}},
  title =	{{Max Weight Independent Set in Sparse Graphs with No Long Claws}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{4:1--4:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.4},
  URN =		{urn:nbn:de:0030-drops-197148},
  doi =		{10.4230/LIPIcs.STACS.2024.4},
  annote =	{Keywords: Max Weight Independent Set, subdivided claw, hereditary classes}
}
Document
Coloring and Recognizing Mixed Interval Graphs

Authors: Grzegorz Gutowski, Konstanty Junosza-Szaniawski, Felix Klesen, Paweł Rzążewski, Alexander Wolff, and Johannes Zink

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
A mixed interval graph is an interval graph that has, for every pair of intersecting intervals, either an arc (directed arbitrarily) or an (undirected) edge. We are particularly interested in scenarios where edges and arcs are defined by the geometry of intervals. In a proper coloring of a mixed interval graph G, an interval u receives a lower (different) color than an interval v if G contains arc (u,v) (edge {u,v}). Coloring of mixed graphs has applications, for example, in scheduling with precedence constraints; see a survey by Sotskov [Mathematics, 2020]. For coloring general mixed interval graphs, we present a min {ω(G), λ(G)+1}-approximation algorithm, where ω(G) is the size of a largest clique and λ(G) is the length of a longest directed path in G. For the subclass of bidirectional interval graphs (introduced recently for an application in graph drawing), we show that optimal coloring is NP-hard. This was known for general mixed interval graphs. We introduce a new natural class of mixed interval graphs, which we call containment interval graphs. In such a graph, there is an arc (u,v) if interval u contains interval v, and there is an edge {u,v} if u and v overlap. We show that these graphs can be recognized in polynomial time, that coloring them with the minimum number of colors is NP-hard, and that there is a 2-approximation algorithm for coloring.

Cite as

Grzegorz Gutowski, Konstanty Junosza-Szaniawski, Felix Klesen, Paweł Rzążewski, Alexander Wolff, and Johannes Zink. Coloring and Recognizing Mixed Interval Graphs. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 36:1-36:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{gutowski_et_al:LIPIcs.ISAAC.2023.36,
  author =	{Gutowski, Grzegorz and Junosza-Szaniawski, Konstanty and Klesen, Felix and Rz\k{a}\.{z}ewski, Pawe{\l} and Wolff, Alexander and Zink, Johannes},
  title =	{{Coloring and Recognizing Mixed Interval Graphs}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{36:1--36:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.36},
  URN =		{urn:nbn:de:0030-drops-193388},
  doi =		{10.4230/LIPIcs.ISAAC.2023.36},
  annote =	{Keywords: Interval Graphs, Mixed Graphs, Graph Coloring}
}
Document
Computing Homomorphisms in Hereditary Graph Classes: The Peculiar Case of the 5-Wheel and Graphs with No Long Claws

Authors: Michał Dębski, Zbigniew Lonc, Karolina Okrasa, Marta Piecyk, and Paweł Rzążewski

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
For graphs G and H, an H-coloring of G is an edge-preserving mapping from V(G) to V(H). In the H-Coloring problem the graph H is fixed and we ask whether an instance graph G admits an H-coloring. A generalization of this problem is H-ColoringExt, where some vertices of G are already mapped to vertices of H and we ask if this partial mapping can be extended to an H-coloring. We study the complexity of variants of H-Coloring in F-free graphs, i.e., graphs excluding a fixed graph F as an induced subgraph. For integers a,b,c ⩾ 1, by S_{a,b,c} we denote the graph obtained by identifying one endvertex of three paths on a+1, b+1, and c+1 vertices, respectively. For odd k ⩾ 5, by W_k we denote the graph obtained from the k-cycle by adding a universal vertex. As our main algorithmic result we show that W_5-ColoringExt is polynomial-time solvable in S_{2,1,1}-free graphs. This result exhibits an interesting non-monotonicity of H-ColoringExt with respect to taking induced subgraphs of H. Indeed, W_5 contains a triangle, and K_3-Coloring, i.e., classical 3-coloring, is NP-hard already in claw-free (i.e., S_{1,1,1}-free) graphs. Our algorithm is based on two main observations: 1) W_5-ColoringExt in S_{2,1,1}-free graphs can be in polynomial time reduced to a variant of the problem of finding an independent set intersecting all triangles, and 2) the latter problem can be solved in polynomial time in S_{2,1,1}-free graphs. We complement this algorithmic result with several negative ones. In particular, we show that W_5-Coloring is NP-hard in P_t-free graphs for some constant t and W_5-ColoringExt is NP-hard in S_{3,3,3}-free graphs of bounded degree. This is again uncommon, as usually problems that are NP-hard in S_{a,b,c}-free graphs for some constant a,b,c are already hard in claw-free graphs

Cite as

Michał Dębski, Zbigniew Lonc, Karolina Okrasa, Marta Piecyk, and Paweł Rzążewski. Computing Homomorphisms in Hereditary Graph Classes: The Peculiar Case of the 5-Wheel and Graphs with No Long Claws. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 14:1-14:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{debski_et_al:LIPIcs.ISAAC.2022.14,
  author =	{D\k{e}bski, Micha{\l} and Lonc, Zbigniew and Okrasa, Karolina and Piecyk, Marta and Rz\k{a}\.{z}ewski, Pawe{\l}},
  title =	{{Computing Homomorphisms in Hereditary Graph Classes: The Peculiar Case of the 5-Wheel and Graphs with No Long Claws}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{14:1--14:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.14},
  URN =		{urn:nbn:de:0030-drops-172996},
  doi =		{10.4230/LIPIcs.ISAAC.2022.14},
  annote =	{Keywords: graph homomorphism, forbidden induced subgraphs, precoloring extension}
}
Document
List Locally Surjective Homomorphisms in Hereditary Graph Classes

Authors: Pavel Dvořák, Tomáš Masařík, Jana Novotná, Monika Krawczyk, Paweł Rzążewski, and Aneta Żuk

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
A locally surjective homomorphism from a graph G to a graph H is an edge-preserving mapping from V(G) to V(H) that is surjective in the neighborhood of each vertex in G. In the list locally surjective homomorphism problem, denoted by LLSHom(H), the graph H is fixed and the instance consists of a graph G whose every vertex is equipped with a subset of V(H), called list. We ask for the existence of a locally surjective homomorphism from G to H, where every vertex of G is mapped to a vertex from its list. In this paper, we study the complexity of the LLSHom(H) problem in F-free graphs, i.e., graphs that exclude a fixed graph F as an induced subgraph. We aim to understand for which pairs (H,F) the problem can be solved in subexponential time. We show that for all graphs H, for which the problem is NP-hard in general graphs, it cannot be solved in subexponential time in F-free graphs for F being a bounded-degree forest, unless the ETH fails. The initial study reveals that a natural subfamily of bounded-degree forests F, that might lead to some tractability results, is the family 𝒮 consisting of forests whose every component has at most three leaves. In this case, we exhibit the following dichotomy theorem: besides the cases that are polynomial-time solvable in general graphs, the graphs H ∈ {P₃,C₄} are the only connected ones that allow for a subexponential-time algorithm in F-free graphs for every F ∈ 𝒮 (unless the ETH fails).

Cite as

Pavel Dvořák, Tomáš Masařík, Jana Novotná, Monika Krawczyk, Paweł Rzążewski, and Aneta Żuk. List Locally Surjective Homomorphisms in Hereditary Graph Classes. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 30:1-30:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{dvorak_et_al:LIPIcs.ISAAC.2022.30,
  author =	{Dvo\v{r}\'{a}k, Pavel and Masa\v{r}{\'\i}k, Tom\'{a}\v{s} and Novotn\'{a}, Jana and Krawczyk, Monika and Rz\k{a}\.{z}ewski, Pawe{\l} and \.{Z}uk, Aneta},
  title =	{{List Locally Surjective Homomorphisms in Hereditary Graph Classes}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{30:1--30:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.30},
  URN =		{urn:nbn:de:0030-drops-173154},
  doi =		{10.4230/LIPIcs.ISAAC.2022.30},
  annote =	{Keywords: Homomorphism, Hereditary graphs, Subexponential-time algorithms}
}
Document
Taming Graphs with No Large Creatures and Skinny Ladders

Authors: Jakub Gajarský, Lars Jaffke, Paloma T. Lima, Jana Novotná, Marcin Pilipczuk, Paweł Rzążewski, and Uéverton S. Souza

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
We confirm a conjecture of Gartland and Lokshtanov [arXiv:2007.08761]: if for a hereditary graph class 𝒢 there exists a constant k such that no member of 𝒢 contains a k-creature as an induced subgraph or a k-skinny-ladder as an induced minor, then there exists a polynomial p such that every G ∈ 𝒢 contains at most p(|V(G)|) minimal separators. By a result of Fomin, Todinca, and Villanger [SIAM J. Comput. 2015] the latter entails the existence of polynomial-time algorithms for Maximum Weight Independent Set, Feedback Vertex Set and many other problems, when restricted to an input graph from 𝒢. Furthermore, as shown by Gartland and Lokshtanov, our result implies a full dichotomy of hereditary graph classes defined by a finite set of forbidden induced subgraphs into tame (admitting a polynomial bound of the number of minimal separators) and feral (containing infinitely many graphs with exponential number of minimal separators).

Cite as

Jakub Gajarský, Lars Jaffke, Paloma T. Lima, Jana Novotná, Marcin Pilipczuk, Paweł Rzążewski, and Uéverton S. Souza. Taming Graphs with No Large Creatures and Skinny Ladders. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 58:1-58:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gajarsky_et_al:LIPIcs.ESA.2022.58,
  author =	{Gajarsk\'{y}, Jakub and Jaffke, Lars and Lima, Paloma T. and Novotn\'{a}, Jana and Pilipczuk, Marcin and Rz\k{a}\.{z}ewski, Pawe{\l} and Souza, U\'{e}verton S.},
  title =	{{Taming Graphs with No Large Creatures and Skinny Ladders}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{58:1--58:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.58},
  URN =		{urn:nbn:de:0030-drops-169969},
  doi =		{10.4230/LIPIcs.ESA.2022.58},
  annote =	{Keywords: Minimal separator, hereditary graph class}
}
  • Refine by Author
  • 23 Rzążewski, Paweł
  • 8 Okrasa, Karolina
  • 6 Piecyk, Marta
  • 5 Bonnet, Édouard
  • 4 Marx, Dániel
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 5 graph homomorphism
  • 4 fine-grained complexity
  • 3 Parameterized Complexity
  • 3 SETH
  • 3 feedback vertex set
  • Show More...

  • Refine by Type
  • 30 document
  • 1 volume

  • Refine by Publication Year
  • 11 2024
  • 4 2019
  • 4 2021
  • 4 2022
  • 3 2020
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail