40 Search Results for "Woeginger, Gerhard"


Document
Practical Computation of Graph VC-Dimension

Authors: David Coudert, Mónika Csikós, Guillaume Ducoffe, and Laurent Viennot

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
For any set system ℋ = (V,ℛ), ℛ ⊆ 2^V, a subset S ⊆ V is called shattered if every S' ⊆ S results from the intersection of S with some set in ℛ. The VC-dimension of ℋ is the size of a largest shattered set in V. In this paper, we focus on the problem of computing the VC-dimension of graphs. In particular, given a graph G = (V,E), the VC-dimension of G is defined as the VC-dimension of (V, N), where N contains each subset of V that can be obtained as the closed neighborhood of some vertex v ∈ V in G. Our main contribution is an algorithm for computing the VC-dimension of any graph, whose effectiveness is shown through experiments on various types of practical graphs, including graphs with millions of vertices. A key aspect of its efficiency resides in the fact that practical graphs have small VC-dimension, up to 8 in our experiments. As a side-product, we present several new bounds relating the graph VC-dimension to other classical graph theoretical notions. We also establish the W[1]-hardness of the graph VC-dimension problem by extending a previous result for arbitrary set systems.

Cite as

David Coudert, Mónika Csikós, Guillaume Ducoffe, and Laurent Viennot. Practical Computation of Graph VC-Dimension. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 8:1-8:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{coudert_et_al:LIPIcs.SEA.2024.8,
  author =	{Coudert, David and Csik\'{o}s, M\'{o}nika and Ducoffe, Guillaume and Viennot, Laurent},
  title =	{{Practical Computation of Graph VC-Dimension}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{8:1--8:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.8},
  URN =		{urn:nbn:de:0030-drops-203731},
  doi =		{10.4230/LIPIcs.SEA.2024.8},
  annote =	{Keywords: VC-dimension, graph, algorithm}
}
Document
Track A: Algorithms, Complexity and Games
An O(loglog n)-Approximation for Submodular Facility Location

Authors: Fateme Abbasi, Marek Adamczyk, Miguel Bosch-Calvo, Jarosław Byrka, Fabrizio Grandoni, Krzysztof Sornat, and Antoine Tinguely

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In the Submodular Facility Location problem (SFL) we are given a collection of n clients and m facilities in a metric space. A feasible solution consists of an assignment of each client to some facility. For each client, one has to pay the distance to the associated facility. Furthermore, for each facility f to which we assign the subset of clients S^f, one has to pay the opening cost g(S^f), where g() is a monotone submodular function with g(emptyset)=0. SFL is APX-hard since it includes the classical (metric uncapacitated) Facility Location problem (with uniform facility costs) as a special case. Svitkina and Tardos [SODA'06] gave the current-best O(log n) approximation algorithm for SFL. The same authors pose the open problem whether SFL admits a constant approximation and provide such an approximation for a very restricted special case of the problem. We make some progress towards the solution of the above open problem by presenting an O(loglog n) approximation. Our approach is rather flexible and can be easily extended to generalizations and variants of SFL. In more detail, we achieve the same approximation factor for the natural generalizations of SFL where the opening cost of each facility f is of the form p_f + g(S^f) or w_f * g(S^f), where p_f, w_f >= 0 are input values. We also obtain an improved approximation algorithm for the related Universal Stochastic Facility Location problem. In this problem one is given a classical (metric) facility location instance and has to a priori assign each client to some facility. Then a subset of active clients is sampled from some given distribution, and one has to pay (a posteriori) only the connection and opening costs induced by the active clients. The expected opening cost of each facility f can be modelled with a submodular function of the set of clients assigned to f.

Cite as

Fateme Abbasi, Marek Adamczyk, Miguel Bosch-Calvo, Jarosław Byrka, Fabrizio Grandoni, Krzysztof Sornat, and Antoine Tinguely. An O(loglog n)-Approximation for Submodular Facility Location. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 5:1-5:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{abbasi_et_al:LIPIcs.ICALP.2024.5,
  author =	{Abbasi, Fateme and Adamczyk, Marek and Bosch-Calvo, Miguel and Byrka, Jaros{\l}aw and Grandoni, Fabrizio and Sornat, Krzysztof and Tinguely, Antoine},
  title =	{{An O(loglog n)-Approximation for Submodular Facility Location}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{5:1--5:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.5},
  URN =		{urn:nbn:de:0030-drops-201488},
  doi =		{10.4230/LIPIcs.ICALP.2024.5},
  annote =	{Keywords: approximation algorithms, facility location, submodular facility location, universal stochastic facility location}
}
Document
Track A: Algorithms, Complexity and Games
Solving Woeginger’s Hiking Problem: Wonderful Partitions in Anonymous Hedonic Games

Authors: Andrei Constantinescu, Pascal Lenzner, Rebecca Reiffenhäuser, Daniel Schmand, and Giovanna Varricchio

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
A decade ago, Gerhard Woeginger posed an open problem that became well-known as "Woeginger’s Hiking Problem": Consider a group of n people that want to go hiking; everyone expresses preferences over the size of their hiking group in the form of an interval between 1 and n. Is it possible to efficiently assign the n people to a set of hiking subgroups so that every person approves the size of their assigned subgroup? The problem is also known as efficiently deciding if an instance of an anonymous Hedonic Game with interval approval preferences admits a wonderful partition. We resolve the open problem in the affirmative by presenting an O(n⁵) time algorithm for Woeginger’s Hiking Problem. Our solution is based on employing a dynamic programming approach for a specific rectangle stabbing problem from computational geometry. Moreover, we propose natural, more demanding extensions of the problem, e.g., maximizing the number of satisfied participants and variants with single-peaked preferences, and show that they are also efficiently solvable. Last but not least, we employ our solution to efficiently compute a partition that maximizes the egalitarian welfare for anonymous single-peaked Hedonic Games.

Cite as

Andrei Constantinescu, Pascal Lenzner, Rebecca Reiffenhäuser, Daniel Schmand, and Giovanna Varricchio. Solving Woeginger’s Hiking Problem: Wonderful Partitions in Anonymous Hedonic Games. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 48:1-48:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{constantinescu_et_al:LIPIcs.ICALP.2024.48,
  author =	{Constantinescu, Andrei and Lenzner, Pascal and Reiffenh\"{a}user, Rebecca and Schmand, Daniel and Varricchio, Giovanna},
  title =	{{Solving Woeginger’s Hiking Problem: Wonderful Partitions in Anonymous Hedonic Games}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{48:1--48:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.48},
  URN =		{urn:nbn:de:0030-drops-201910},
  doi =		{10.4230/LIPIcs.ICALP.2024.48},
  annote =	{Keywords: Algorithmic Game Theory, Dynamic Programming, Anonymous Hedonic Games, Single-Peaked Preferences, Social Optimum, Wonderful Partitions}
}
Document
Track A: Algorithms, Complexity and Games
Simultaneously Approximating All 𝓁_p-Norms in Correlation Clustering

Authors: Sami Davies, Benjamin Moseley, and Heather Newman

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
This paper considers correlation clustering on unweighted complete graphs. We give a combinatorial algorithm that returns a single clustering solution that is simultaneously O(1)-approximate for all 𝓁_p-norms of the disagreement vector; in other words, a combinatorial O(1)-approximation of the all-norms objective for correlation clustering. This is the first proof that minimal sacrifice is needed in order to optimize different norms of the disagreement vector. In addition, our algorithm is the first combinatorial approximation algorithm for the 𝓁₂-norm objective, and more generally the first combinatorial algorithm for the 𝓁_p-norm objective when 1 < p < ∞. It is also faster than all previous algorithms that minimize the 𝓁_p-norm of the disagreement vector, with run-time O(n^ω), where O(n^ω) is the time for matrix multiplication on n × n matrices. When the maximum positive degree in the graph is at most Δ, this can be improved to a run-time of O(nΔ² log n).

Cite as

Sami Davies, Benjamin Moseley, and Heather Newman. Simultaneously Approximating All 𝓁_p-Norms in Correlation Clustering. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 52:1-52:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{davies_et_al:LIPIcs.ICALP.2024.52,
  author =	{Davies, Sami and Moseley, Benjamin and Newman, Heather},
  title =	{{Simultaneously Approximating All 𝓁\underlinep-Norms in Correlation Clustering}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{52:1--52:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.52},
  URN =		{urn:nbn:de:0030-drops-201950},
  doi =		{10.4230/LIPIcs.ICALP.2024.52},
  annote =	{Keywords: Approximation algorithms, correlation clustering, all-norms, lp-norms}
}
Document
Track A: Algorithms, Complexity and Games
Two-Sets Cut-Uncut on Planar Graphs

Authors: Matthias Bentert, Pål Grønås Drange, Fedor V. Fomin, Petr A. Golovach, and Tuukka Korhonen

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study Two-Sets Cut-Uncut on planar graphs. Therein, one is given an undirected planar graph G and two disjoint sets S and T of vertices as input. The question is, what is the minimum number of edges to remove from G, such that all vertices in S are separated from all vertices in T, while maintaining that every vertex in S, and respectively in T, stays in the same connected component. We show that this problem can be solved in 2^{|S|+|T|} n^𝒪(1) time with a one-sided-error randomized algorithm. Our algorithm implies a polynomial-time algorithm for the network diversion problem on planar graphs, which resolves an open question from the literature. More generally, we show that Two-Sets Cut-Uncut is fixed-parameter tractable when parameterized by the number r of faces in a planar embedding covering the terminals S ∪ T, by providing a 2^𝒪(r) n^𝒪(1)-time algorithm.

Cite as

Matthias Bentert, Pål Grønås Drange, Fedor V. Fomin, Petr A. Golovach, and Tuukka Korhonen. Two-Sets Cut-Uncut on Planar Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 22:1-22:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bentert_et_al:LIPIcs.ICALP.2024.22,
  author =	{Bentert, Matthias and Drange, P\r{a}l Gr{\o}n\r{a}s and Fomin, Fedor V. and Golovach, Petr A. and Korhonen, Tuukka},
  title =	{{Two-Sets Cut-Uncut on Planar Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{22:1--22:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.22},
  URN =		{urn:nbn:de:0030-drops-201654},
  doi =		{10.4230/LIPIcs.ICALP.2024.22},
  annote =	{Keywords: planar graphs, cut-uncut, group-constrained paths}
}
Document
Track A: Algorithms, Complexity and Games
Lipschitz Continuous Allocations for Optimization Games

Authors: Soh Kumabe and Yuichi Yoshida

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In cooperative game theory, the primary focus is the equitable allocation of payoffs or costs among agents. However, in the practical applications of cooperative games, accurately representing games is challenging. In such cases, using an allocation method sensitive to small perturbations in the game can lead to various problems, including dissatisfaction among agents and the potential for manipulation by agents seeking to maximize their own benefits. Therefore, the allocation method must be robust against game perturbations. In this study, we explore optimization games, in which the value of the characteristic function is provided as the optimal value of an optimization problem. To assess the robustness of the allocation methods, we use the Lipschitz constant, which quantifies the extent of change in the allocation vector in response to a unit perturbation in the weight vector of the underlying problem. Thereafter, we provide an algorithm for the matching game that returns an allocation belonging to the (1/2-ε)-approximate core with Lipschitz constant O(ε^{-1}). Additionally, we provide an algorithm for a minimum spanning tree game that returns an allocation belonging to the 4-approximate core with a constant Lipschitz constant. The Shapley value is a popular allocation that satisfies several desirable properties. Therefore, we investigate the robustness of the Shapley value. We demonstrate that the Lipschitz constant of the Shapley value for the minimum spanning tree is constant, whereas that for the matching game is Ω(log n), where n denotes the number of vertices.

Cite as

Soh Kumabe and Yuichi Yoshida. Lipschitz Continuous Allocations for Optimization Games. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 102:1-102:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kumabe_et_al:LIPIcs.ICALP.2024.102,
  author =	{Kumabe, Soh and Yoshida, Yuichi},
  title =	{{Lipschitz Continuous Allocations for Optimization Games}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{102:1--102:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.102},
  URN =		{urn:nbn:de:0030-drops-202456},
  doi =		{10.4230/LIPIcs.ICALP.2024.102},
  annote =	{Keywords: Cooperative Games, Lipschitz Continuity}
}
Document
Multi-Dimensional Stable Roommates in 2-Dimensional Euclidean Space

Authors: Jiehua Chen and Sanjukta Roy

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
We investigate the Euclidean 𝖽-Dimensional Stable Roommates problem, which asks whether a given set V of 𝖽⋅ n points from the 2-dimensional Euclidean space can be partitioned into n disjoint (unordered) subsets Π = {V₁,…,V_{n}} with |V_i| = 𝖽 for each V_i ∈ Π such that Π is {stable}. Here, {stability} means that no point subset W ⊆ V is blocking Π, and W is said to be {blocking} Π if |W| = 𝖽 such that ∑_{w' ∈ W}δ(w,w') < ∑_{v ∈ Π(w)}δ(w,v) holds for each point w ∈ W, where Π(w) denotes the subset V_i ∈ Π which contains w and δ(a,b) denotes the Euclidean distance between points a and b. Complementing the existing known polynomial-time result for 𝖽 = 2, we show that such polynomial-time algorithms cannot exist for any fixed number 𝖽 ≥ 3 unless P=NP. Our result for 𝖽 = 3 answers a decade-long open question in the theory of Stable Matching and Hedonic Games [Iwama et al., 2007; Arkin et al., 2009; Vladimir G. Deineko and Gerhard J. Woeginger, 2013; Vladimir G. Deineko and Gerhard J. Woeginger, 2013; David F. Manlove, 2013].

Cite as

Jiehua Chen and Sanjukta Roy. Multi-Dimensional Stable Roommates in 2-Dimensional Euclidean Space. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 36:1-36:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ESA.2022.36,
  author =	{Chen, Jiehua and Roy, Sanjukta},
  title =	{{Multi-Dimensional Stable Roommates in 2-Dimensional Euclidean Space}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{36:1--36:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.36},
  URN =		{urn:nbn:de:0030-drops-169741},
  doi =		{10.4230/LIPIcs.ESA.2022.36},
  annote =	{Keywords: stable matchings, multidimensional stable roommates, Euclidean preferences, coalition formation games, stable cores, NP-hardness}
}
Document
Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds

Authors: Bahareh Banyassady, Mark de Berg, Karl Bringmann, Kevin Buchin, Henning Fernau, Dan Halperin, Irina Kostitsyna, Yoshio Okamoto, and Stijn Slot

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
We consider the unlabeled motion-planning problem of m unit-disc robots moving in a simple polygonal workspace of n edges. The goal is to find a motion plan that moves the robots to a given set of m target positions. For the unlabeled variant, it does not matter which robot reaches which target position as long as all target positions are occupied in the end. If the workspace has narrow passages such that the robots cannot fit through them, then the free configuration space, representing all possible unobstructed positions of the robots, will consist of multiple connected components. Even if in each component of the free space the number of targets matches the number of start positions, the motion-planning problem does not always have a solution when the robots and their targets are positioned very densely. In this paper, we prove tight bounds on how much separation between start and target positions is necessary to always guarantee a solution. Moreover, we describe an algorithm that always finds a solution in time O(n log n + mn + m²) if the separation bounds are met. Specifically, we prove that the following separation is sufficient: any two start positions are at least distance 4 apart, any two target positions are at least distance 4 apart, and any pair of a start and a target positions is at least distance 3 apart. We further show that when the free space consists of a single connected component, the separation between start and target positions is not necessary.

Cite as

Bahareh Banyassady, Mark de Berg, Karl Bringmann, Kevin Buchin, Henning Fernau, Dan Halperin, Irina Kostitsyna, Yoshio Okamoto, and Stijn Slot. Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 12:1-12:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{banyassady_et_al:LIPIcs.SoCG.2022.12,
  author =	{Banyassady, Bahareh and de Berg, Mark and Bringmann, Karl and Buchin, Kevin and Fernau, Henning and Halperin, Dan and Kostitsyna, Irina and Okamoto, Yoshio and Slot, Stijn},
  title =	{{Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{12:1--12:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.12},
  URN =		{urn:nbn:de:0030-drops-160203},
  doi =		{10.4230/LIPIcs.SoCG.2022.12},
  annote =	{Keywords: motion planning, computational geometry, simple polygon}
}
Document
An Investigation of the Recoverable Robust Assignment Problem

Authors: Dennis Fischer, Tim A. Hartmann, Stefan Lendl, and Gerhard J. Woeginger

Published in: LIPIcs, Volume 214, 16th International Symposium on Parameterized and Exact Computation (IPEC 2021)


Abstract
We investigate the so-called recoverable robust assignment problem on complete bipartite graphs, a mainstream problem in robust optimization: For two given linear cost functions c₁ and c₂ on the edges and a given integer k, the goal is to find two perfect matchings M₁ and M₂ that minimize the objective value c₁(M₁)+c₂(M₂), subject to the constraint that M₁ and M₂ have at least k edges in common. We derive a variety of results on this problem. First, we show that the problem is W[1]-hard with respect to parameter k, and also with respect to the complementary parameter k' = n/2-k. This hardness result holds even in the highly restricted special case where both cost functions c₁ and c₂ only take the values 0 and 1. (On the other hand, containment of the problem in XP is straightforward to see.) Next, as a positive result we construct a polynomial time algorithm for the special case where one cost function is Monge, whereas the other one is Anti-Monge. Finally, we study the variant where matching M₁ is frozen, and where the optimization goal is to compute the best corresponding matching M₂. This problem variant is known to be contained in the randomized parallel complexity class RNC², and we show that it is at least as hard as the infamous problem Exact Red-Blue Matching in Bipartite Graphs whose computational complexity is a long-standing open problem.

Cite as

Dennis Fischer, Tim A. Hartmann, Stefan Lendl, and Gerhard J. Woeginger. An Investigation of the Recoverable Robust Assignment Problem. In 16th International Symposium on Parameterized and Exact Computation (IPEC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 214, pp. 19:1-19:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{fischer_et_al:LIPIcs.IPEC.2021.19,
  author =	{Fischer, Dennis and Hartmann, Tim A. and Lendl, Stefan and Woeginger, Gerhard J.},
  title =	{{An Investigation of the Recoverable Robust Assignment Problem}},
  booktitle =	{16th International Symposium on Parameterized and Exact Computation (IPEC 2021)},
  pages =	{19:1--19:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-216-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{214},
  editor =	{Golovach, Petr A. and Zehavi, Meirav},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2021.19},
  URN =		{urn:nbn:de:0030-drops-154025},
  doi =		{10.4230/LIPIcs.IPEC.2021.19},
  annote =	{Keywords: assignment problem, matchings, exact matching, robust optimization, fixed paramter tractablity, RNC}
}
Document
Dispersing Obnoxious Facilities on a Graph

Authors: Alexander Grigoriev, Tim A. Hartmann, Stefan Lendl, and Gerhard J. Woeginger

Published in: LIPIcs, Volume 126, 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)


Abstract
We study a continuous facility location problem on a graph where all edges have unit length and where the facilities may also be positioned in the interior of the edges. The goal is to position as many facilities as possible subject to the condition that any two facilities have at least distance delta from each other. We investigate the complexity of this problem in terms of the rational parameter delta. The problem is polynomially solvable, if the numerator of delta is 1 or 2, while all other cases turn out to be NP-hard.

Cite as

Alexander Grigoriev, Tim A. Hartmann, Stefan Lendl, and Gerhard J. Woeginger. Dispersing Obnoxious Facilities on a Graph. In 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 126, pp. 33:1-33:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{grigoriev_et_al:LIPIcs.STACS.2019.33,
  author =	{Grigoriev, Alexander and Hartmann, Tim A. and Lendl, Stefan and Woeginger, Gerhard J.},
  title =	{{Dispersing Obnoxious Facilities on a Graph}},
  booktitle =	{36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)},
  pages =	{33:1--33:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-100-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{126},
  editor =	{Niedermeier, Rolf and Paul, Christophe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2019.33},
  URN =		{urn:nbn:de:0030-drops-102729},
  doi =		{10.4230/LIPIcs.STACS.2019.33},
  annote =	{Keywords: algorithms, complexity, optimization, graph theory, facility location}
}
Document
Graph Similarity and Approximate Isomorphism

Authors: Martin Grohe, Gaurav Rattan, and Gerhard J. Woeginger

Published in: LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)


Abstract
The graph similarity problem, also known as approximate graph isomorphism or graph matching problem, has been extensively studied in the machine learning community, but has not received much attention in the algorithms community: Given two graphs G,H of the same order n with adjacency matrices A_G,A_H, a well-studied measure of similarity is the Frobenius distance dist(G,H):=min_{pi}|A_G^{pi}-A_H|_F, where pi ranges over all permutations of the vertex set of G, where A_G^pi denotes the matrix obtained from A_G by permuting rows and columns according to pi, and where |M |_F is the Frobenius norm of a matrix M. The (weighted) graph similarity problem, denoted by GSim (WSim), is the problem of computing this distance for two graphs of same order. This problem is closely related to the notoriously hard quadratic assignment problem (QAP), which is known to be NP-hard even for severely restricted cases. It is known that GSim (WSim) is NP-hard; we strengthen this hardness result by showing that the problem remains NP-hard even for the class of trees. Identifying the boundary of tractability for WSim is best done in the framework of linear algebra. We show that WSim is NP-hard as long as one of the matrices has unbounded rank or negative eigenvalues: hence, the realm of tractability is restricted to positive semi-definite matrices of bounded rank. Our main result is a polynomial time algorithm for the special case where the associated (weighted) adjacency graph for one of the matrices has a bounded number of twin equivalence classes. The key parameter underlying our algorithm is the clustering number of a graph; this parameter arises in context of the spectral graph drawing machinery.

Cite as

Martin Grohe, Gaurav Rattan, and Gerhard J. Woeginger. Graph Similarity and Approximate Isomorphism. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 20:1-20:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{grohe_et_al:LIPIcs.MFCS.2018.20,
  author =	{Grohe, Martin and Rattan, Gaurav and Woeginger, Gerhard J.},
  title =	{{Graph Similarity and Approximate Isomorphism}},
  booktitle =	{43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)},
  pages =	{20:1--20:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-086-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{117},
  editor =	{Potapov, Igor and Spirakis, Paul and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.20},
  URN =		{urn:nbn:de:0030-drops-96021},
  doi =		{10.4230/LIPIcs.MFCS.2018.20},
  annote =	{Keywords: Graph Similarity, Quadratic Assignment Problem, Approximate Graph Isomorphism}
}
Document
The Dominating Set Problem in Geometric Intersection Graphs

Authors: Mark de Berg, Sándor Kisfaludi-Bak, and Gerhard Woeginger

Published in: LIPIcs, Volume 89, 12th International Symposium on Parameterized and Exact Computation (IPEC 2017)


Abstract
We study the parameterized complexity of dominating sets in geometric intersection graphs. In one dimension, we investigate intersection graphs induced by translates of a fixed pattern Q that consists of a finite number of intervals and a finite number of isolated points. We prove that Dominating Set on such intersection graphs is polynomially solvable whenever Q contains at least one interval, and whenever Q contains no intervals and for any two point pairs in Q the distance ratio is rational. The remaining case where Q contains no intervals but does contain an irrational distance ratio is shown to be NP-complete and contained in FPT (when parameterized by the solution size). In two and higher dimensions, we prove that Dominating Set is contained in W[1] for intersection graphs of semi-algebraic sets with constant description complexity. This generalizes known results from the literature. Finally, we establish W[1]-hardness for a large class of intersection graphs.

Cite as

Mark de Berg, Sándor Kisfaludi-Bak, and Gerhard Woeginger. The Dominating Set Problem in Geometric Intersection Graphs. In 12th International Symposium on Parameterized and Exact Computation (IPEC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 89, pp. 14:1-14:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.IPEC.2017.14,
  author =	{de Berg, Mark and Kisfaludi-Bak, S\'{a}ndor and Woeginger, Gerhard},
  title =	{{The Dominating Set Problem in Geometric Intersection Graphs}},
  booktitle =	{12th International Symposium on Parameterized and Exact Computation (IPEC 2017)},
  pages =	{14:1--14:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-051-4},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{89},
  editor =	{Lokshtanov, Daniel and Nishimura, Naomi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2017.14},
  URN =		{urn:nbn:de:0030-drops-85538},
  doi =		{10.4230/LIPIcs.IPEC.2017.14},
  annote =	{Keywords: dominating set, intersection graph, W-hierarchy}
}
Document
The Open Shop Scheduling Problem

Authors: Gerhard J. Woeginger

Published in: LIPIcs, Volume 96, 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)


Abstract
We discuss the computational complexity, the approximability, the algorithmics and the combinatorics of the open shop scheduling problem. We summarize the most important results from the literature and explain their main ideas, we sketch the most beautiful proofs, and we also list a number of open problems.

Cite as

Gerhard J. Woeginger. The Open Shop Scheduling Problem. In 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 96, pp. 4:1-4:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{woeginger:LIPIcs.STACS.2018.4,
  author =	{Woeginger, Gerhard J.},
  title =	{{The Open Shop Scheduling Problem}},
  booktitle =	{35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)},
  pages =	{4:1--4:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-062-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{96},
  editor =	{Niedermeier, Rolf and Vall\'{e}e, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2018.4},
  URN =		{urn:nbn:de:0030-drops-85375},
  doi =		{10.4230/LIPIcs.STACS.2018.4},
  annote =	{Keywords: Algorithms, Complexity, Scheduling, Approximation}
}
Document
Fully-Dynamic and Kinetic Conflict-Free Coloring of Intervals with Respect to Points

Authors: Mark de Berg, Tim Leijsen, Aleksandar Markovic, André van Renssen, Marcel Roeloffzen, and Gerhard Woeginger

Published in: LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)


Abstract
We introduce the fully-dynamic conflict-free coloring problem for a set S of intervals in R^1 with respect to points, where the goal is to maintain a conflict-free coloring for S under insertions and deletions. A coloring is conflict-free if for each point p contained in some interval, p is contained in an interval whose color is not shared with any other interval containing p. We investigate trade-offs between the number of colors used and the number of intervals that are recolored upon insertion or deletion of an interval. Our results include: - a lower bound on the number of recolorings as a function of the number of colors, which implies that with O(1) recolorings per update the worst-case number of colors is Omega(log n/log log n), and that any strategy using O(1/epsilon) colors needs Omega(epsilon n^epsilon) recolorings; - a coloring strategy that uses O(log n) colors at the cost of O(log n) recolorings, and another strategy that uses O(1/epsilon) colors at the cost of O(n^epsilon/epsilon) recolorings; - stronger upper and lower bounds for special cases. We also consider the kinetic setting where the intervals move continuously (but there are no insertions or deletions); here we show how to maintain a coloring with only four colors at the cost of three recolorings per event and show this is tight.

Cite as

Mark de Berg, Tim Leijsen, Aleksandar Markovic, André van Renssen, Marcel Roeloffzen, and Gerhard Woeginger. Fully-Dynamic and Kinetic Conflict-Free Coloring of Intervals with Respect to Points. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 26:1-26:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.ISAAC.2017.26,
  author =	{de Berg, Mark and Leijsen, Tim and Markovic, Aleksandar and van Renssen, Andr\'{e} and Roeloffzen, Marcel and Woeginger, Gerhard},
  title =	{{Fully-Dynamic and Kinetic Conflict-Free Coloring of Intervals with Respect to Points}},
  booktitle =	{28th International Symposium on Algorithms and Computation (ISAAC 2017)},
  pages =	{26:1--26:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-054-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{92},
  editor =	{Okamoto, Yoshio and Tokuyama, Takeshi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.26},
  URN =		{urn:nbn:de:0030-drops-82683},
  doi =		{10.4230/LIPIcs.ISAAC.2017.26},
  annote =	{Keywords: Conflict-free colorings, Dynamic data structures, Kinetic data structures}
}
Document
Fine-Grained Complexity Analysis of Two Classic TSP Variants

Authors: Mark de Berg, Kevin Buchin, Bart M. P. Jansen, and Gerhard Woeginger

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
We analyze two classic variants of the Traveling Salesman Problem using the toolkit of fine-grained complexity. Our first set of results is motivated by the Bitonic tsp problem: given a set of n points in the plane, compute a shortest tour consisting of two monotone chains. It is a classic dynamicprogramming exercise to solve this problem in O(n^2) time. While the near-quadratic dependency of similar dynamic programs for Longest Common Subsequence and Discrete Fréchet Distance has recently been proven to be essentially optimal under the Strong Exponential Time Hypothesis, we show that bitonic tours can be found in subquadratic time. More precisely, we present an algorithm that solves bitonic tsp in O(n*log^2(n)) time and its bottleneck version in O(n*log^3(n)) time. In the more general pyramidal tsp problem, the points to be visited are labeled 1, ..., n and the sequence of labels in the solution is required to have at most one local maximum. Our algorithms for the bitonic (bottleneck) tsp problem also work for the pyramidal tsp problem in the plane. Our second set of results concerns the popular k-opt heuristic for tsp in the graph setting. More precisely, we study the k-opt decision problem, which asks whether a given tour can be improved by a k-opt move that replaces k edges in the tour by k new edges. A simple algorithm solves k-opt in O(n^k) time for fixed k. For 2-opt, this is easily seen to be optimal. For k = 3 we prove that an algorithm with a runtime of the form ~O(n^{3-epsilon}) exists if and only if All-Pairs Shortest Paths in weighted digraphs has such an algorithm. For general k-opt, it is known that a runtime of f(k)*n^{o(k/log(k))} would contradict the Exponential Time Hypothesis. The results for k = 2, 3 may suggest that the actual time complexity of k-opt is Theta(n^k). We show that this is not the case, by presenting an algorithm that finds the best k-move in O(n^{lfoor 2k/3 rfloor +1}) time for fixed k >= 3. This implies that 4-opt can be solved in O(n^3) time, matching the best-known algorithm for 3-opt. Finally, we show how to beat the quadratic barrier for k = 2 in two important settings, namely for points in the plane and when we want to solve 2-opt repeatedly

Cite as

Mark de Berg, Kevin Buchin, Bart M. P. Jansen, and Gerhard Woeginger. Fine-Grained Complexity Analysis of Two Classic TSP Variants. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 5:1-5:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.ICALP.2016.5,
  author =	{de Berg, Mark and Buchin, Kevin and Jansen, Bart M. P. and Woeginger, Gerhard},
  title =	{{Fine-Grained Complexity Analysis of Two Classic TSP Variants}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{5:1--5:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.5},
  URN =		{urn:nbn:de:0030-drops-62770},
  doi =		{10.4230/LIPIcs.ICALP.2016.5},
  annote =	{Keywords: Traveling salesman problem, fine-grained complexity, bitonic tours, k-opt}
}
  • Refine by Author
  • 11 Woeginger, Gerhard J.
  • 9 Woeginger, Gerhard
  • 5 de Berg, Mark
  • 4 Brams, Steven J.
  • 4 Fiat, Amos
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Graph algorithms analysis
  • 2 Mathematics of computing → Graph algorithms
  • 2 Theory of computation → Approximation algorithms analysis
  • 2 Theory of computation → Computational geometry
  • 2 Theory of computation → Discrete optimization
  • Show More...

  • Refine by Keyword
  • 2 Allocation
  • 2 Approximation algorithms
  • 2 Cake cutting
  • 2 Economics
  • 2 Fairness
  • Show More...

  • Refine by Type
  • 40 document

  • Refine by Publication Year
  • 12 2007
  • 6 2024
  • 3 2018
  • 2 2006
  • 2 2010
  • Show More...