321 Search Results for "Worrell, James"


Volume

LIPIcs, Volume 198

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)

ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference)

Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell

Volume

LIPIcs, Volume 117

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)

MFCS 2018, August 27-31, 2018, Liverpool, GB

Editors: Igor Potapov, Paul Spirakis, and James Worrell

Document
List Homomorphisms by Deleting Edges and Vertices: Tight Complexity Bounds for Bounded-Treewidth Graphs

Authors: Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
The goal of this paper is to investigate a family of optimization problems arising from list homomorphisms, and to understand what the best possible algorithms are if we restrict the problem to bounded-treewidth graphs. Given graphs G, H, and lists L(v) ⊆ V(H) for every v ∈ V(G), a list homomorphism from (G,L) to H is a function f:V(G) → V(H) that preserves the edges (i.e., uv ∈ E(G) implies f(u)f(v) ∈ E(H)) and respects the lists (i.e., f(v) ∈ L(v)). The graph H may have loops. For a fixed H, the input of the optimization problem LHomVD(H) is a graph G with lists L(v), and the task is to find a set X of vertices having minimum size such that (G-X,L) has a list homomorphism to H. We define analogously the edge-deletion variant LHomED(H), where we have to delete as few edges as possible from G to obtain a graph that has a list homomorphism. This expressive family of problems includes members that are essentially equivalent to fundamental problems such as Vertex Cover, Max Cut, Odd Cycle Transversal, and Edge/Vertex Multiway Cut. For both variants, we first characterize those graphs H that make the problem polynomial-time solvable and show that the problem is NP-hard for every other fixed H. Second, as our main result, we determine for every graph H for which the problem is NP-hard, the smallest possible constant c_H such that the problem can be solved in time c^t_H⋅ n^{𝒪(1)} if a tree decomposition of G having width t is given in the input. Let i(H) be the maximum size of a set of vertices in H that have pairwise incomparable neighborhoods. For the vertex-deletion variant LHomVD(H), we show that the smallest possible constant is i(H)+1 for every H: - Given a tree decomposition of width t of G, LHomVD(H) can be solved in time (i(H)+1)^t⋅ n^{𝒪(1)}. - For any ε > 0 and H, an (i(H)+1-ε)^t⋅ n^{𝒪(1)} algorithm would violate the Strong Exponential-Time Hypothesis (SETH). The situation is more complex for the edge-deletion version. For every H, one can solve LHomED(H) in time i(H)^t⋅ n^{𝒪(1)} if a tree decomposition of width t is given. However, the existence of a specific type of decomposition of H shows that there are graphs H where LHomED(H) can be solved significantly more efficiently and the best possible constant can be arbitrarily smaller than i(H). Nevertheless, we determine this best possible constant and (assuming the SETH) prove tight bounds for every fixed H.

Cite as

Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski. List Homomorphisms by Deleting Edges and Vertices: Tight Complexity Bounds for Bounded-Treewidth Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 39:1-39:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{canesmer_et_al:LIPIcs.ESA.2024.39,
  author =	{Can Esmer, Bar{\i}\c{s} and Focke, Jacob and Marx, D\'{a}niel and Rz\k{a}\.{z}ewski, Pawe{\l}},
  title =	{{List Homomorphisms by Deleting Edges and Vertices: Tight Complexity Bounds for Bounded-Treewidth Graphs}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{39:1--39:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.39},
  URN =		{urn:nbn:de:0030-drops-211103},
  doi =		{10.4230/LIPIcs.ESA.2024.39},
  annote =	{Keywords: Graph Homomorphism, List Homomorphism, Vertex Deletion, Edge Deletion, Multiway Cut, Parameterized Complexity, Tight Bounds, Treewidth, SETH}
}
Document
Qafny: A Quantum-Program Verifier

Authors: Liyi Li, Mingwei Zhu, Rance Cleaveland, Alexander Nicolellis, Yi Lee, Le Chang, and Xiaodi Wu

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Because of the probabilistic/nondeterministic behavior of quantum programs, it is highly advisable to verify them formally to ensure that they correctly implement their specifications. Formal verification, however, also traditionally requires significant effort. To address this challenge, we present Qafny, an automated proof system based on the program verifier Dafny and designed for verifying quantum programs. At its core, Qafny uses a type-guided quantum proof system that translates quantum operations to classical array operations modeled within a classical separation logic framework. We prove the soundness and completeness of our proof system and implement a prototype compiler that transforms Qafny programs and specifications into Dafny for automated verification purposes. We then illustrate the utility of Qafny’s automated capabilities in efficiently verifying important quantum algorithms, including quantum-walk algorithms, Grover’s algorithm, and Shor’s algorithm.

Cite as

Liyi Li, Mingwei Zhu, Rance Cleaveland, Alexander Nicolellis, Yi Lee, Le Chang, and Xiaodi Wu. Qafny: A Quantum-Program Verifier. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 24:1-24:31, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.ECOOP.2024.24,
  author =	{Li, Liyi and Zhu, Mingwei and Cleaveland, Rance and Nicolellis, Alexander and Lee, Yi and Chang, Le and Wu, Xiaodi},
  title =	{{Qafny: A Quantum-Program Verifier}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{24:1--24:31},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.24},
  URN =		{urn:nbn:de:0030-drops-208735},
  doi =		{10.4230/LIPIcs.ECOOP.2024.24},
  annote =	{Keywords: Quantum Computing, Automated Verification, Separation Logic}
}
Document
MITL Model Checking via Generalized Timed Automata and a New Liveness Algorithm

Authors: S. Akshay, Paul Gastin, R. Govind, and B. Srivathsan

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
The translation of Metric Interval Temporal Logic (MITL) to timed automata is a topic that has been extensively studied. A key challenge here is the conversion of future modalities into equivalent automata. Typical conversions equip the automata with a guess-and-check mechanism to ascertain the truth of future modalities. Guess-and-check can be naturally implemented via alternation. However, since timed automata tools do not handle alternation, existing methods perform an additional step of converting the alternating timed automata into timed automata. This "de-alternation" step proceeds by an intricate finite abstraction of the space of configurations of the alternating automaton. Recently, a model of generalized timed automata (GTA) has been proposed. The model comes with several powerful additional features, and yet, the best known zone-based reachability algorithms for timed automata have been extended to the GTA model, with the same complexity for all the zone operations. An attractive feature of GTAs is the presence of future clocks which act like timers that guess a time to an event and stay alive until a timeout. Future clocks seem to provide another natural way to implement the guess-and-check: start the future clock with a guessed time to an event and check its occurrence using a timeout. Indeed, using this feature, we provide a new concise translation from MITL to GTA. In particular, for the timed until modality, our translation offers an exponential improvement w.r.t. the state-of-the-art. Thanks to this conversion, MITL model checking reduces to checking liveness for GTAs. However, no liveness algorithm is known for GTAs. Due to the presence of future clocks, there is no finite time-abstract bisimulation (region equivalence) for GTAs, whereas liveness algorithms for timed automata crucially rely on the presence of the finite region equivalence. As our second contribution, we provide a new zone-based algorithm for checking Büchi non-emptiness in GTAs, which circumvents this fundamental challenge.

Cite as

S. Akshay, Paul Gastin, R. Govind, and B. Srivathsan. MITL Model Checking via Generalized Timed Automata and a New Liveness Algorithm. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 5:1-5:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{akshay_et_al:LIPIcs.CONCUR.2024.5,
  author =	{Akshay, S. and Gastin, Paul and Govind, R. and Srivathsan, B.},
  title =	{{MITL Model Checking via Generalized Timed Automata and a New Liveness Algorithm}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{5:1--5:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.5},
  URN =		{urn:nbn:de:0030-drops-207774},
  doi =		{10.4230/LIPIcs.CONCUR.2024.5},
  annote =	{Keywords: MITL model checking, timed automata, zones, liveness}
}
Document
Invariants for One-Counter Automata with Disequality Tests

Authors: Dmitry Chistikov, Jérôme Leroux, Henry Sinclair-Banks, and Nicolas Waldburger

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We study the reachability problem for one-counter automata in which transitions can carry disequality tests. A disequality test is a guard that prohibits a specified counter value. This reachability problem has been known to be NP-hard and in PSPACE, and characterising its computational complexity has been left as a challenging open question by Almagor, Cohen, Pérez, Shirmohammadi, and Worrell (2020). We reduce the complexity gap, placing the problem into the second level of the polynomial hierarchy, namely into the class coNP^NP. In the presence of both equality and disequality tests, our upper bound is at the third level, P^NP^NP. To prove this result, we show that non-reachability can be witnessed by a pair of invariants (forward and backward). These invariants are almost inductive. They aim to over-approximate only a "core" of the reachability set instead of the entire set. The invariants are also leaky: it is possible to escape the set. We complement this with separate checks as the leaks can only occur in a controlled way.

Cite as

Dmitry Chistikov, Jérôme Leroux, Henry Sinclair-Banks, and Nicolas Waldburger. Invariants for One-Counter Automata with Disequality Tests. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 17:1-17:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chistikov_et_al:LIPIcs.CONCUR.2024.17,
  author =	{Chistikov, Dmitry and Leroux, J\'{e}r\^{o}me and Sinclair-Banks, Henry and Waldburger, Nicolas},
  title =	{{Invariants for One-Counter Automata with Disequality Tests}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{17:1--17:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.17},
  URN =		{urn:nbn:de:0030-drops-207898},
  doi =		{10.4230/LIPIcs.CONCUR.2024.17},
  annote =	{Keywords: Inductive invariant, Vector addition system, One-counter automaton}
}
Document
Weighted Basic Parallel Processes and Combinatorial Enumeration

Authors: Lorenzo Clemente

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We study weighted basic parallel processes (WBPP), a nonlinear recursive generalisation of weighted finite automata inspired from process algebra and Petri net theory. Our main result is an algorithm of 2-EXPSPACE complexity for the WBPP equivalence problem. While (unweighted) BPP language equivalence is undecidable, we can use this algorithm to decide multiplicity equivalence of BPP and language equivalence of unambiguous BPP, with the same complexity. These are long-standing open problems for the related model of weighted context-free grammars. Our second contribution is a connection between WBPP, power series solutions of systems of polynomial differential equations, and combinatorial enumeration. To this end we consider constructible differentially finite power series (CDF), a class of multivariate differentially algebraic series introduced by Bergeron and Reutenauer in order to provide a combinatorial interpretation to differential equations. CDF series generalise rational, algebraic, and a large class of D-finite (holonomic) series, for which no complexity upper bound for equivalence was known. We show that CDF series correspond to commutative WBPP series. As a consequence of our result on WBPP and commutativity, we show that equivalence of CDF power series can be decided with 2-EXPTIME complexity. In order to showcase the CDF equivalence algorithm, we show that CDF power series naturally arise from combinatorial enumeration, namely as the exponential generating series of constructible species of structures. Examples of such species include sequences, binary trees, ordered trees, Cayley trees, set partitions, series-parallel graphs, and many others. As a consequence of this connection, we obtain an algorithm to decide multiplicity equivalence of constructible species, decidability of which was not known before. The complexity analysis is based on effective bounds from algebraic geometry, namely on the length of chains of polynomial ideals constructed by repeated application of finitely many, not necessarily commuting derivations of a multivariate polynomial ring. This is obtained by generalising a result of Novikov and Yakovenko in the case of a single derivation, which is noteworthy since generic bounds on ideal chains are non-primitive recursive in general. On the way, we develop the theory of WBPP series and CDF power series, exposing several of their appealing properties.

Cite as

Lorenzo Clemente. Weighted Basic Parallel Processes and Combinatorial Enumeration. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 18:1-18:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{clemente:LIPIcs.CONCUR.2024.18,
  author =	{Clemente, Lorenzo},
  title =	{{Weighted Basic Parallel Processes and Combinatorial Enumeration}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{18:1--18:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.18},
  URN =		{urn:nbn:de:0030-drops-207903},
  doi =		{10.4230/LIPIcs.CONCUR.2024.18},
  annote =	{Keywords: weighted automata, combinatorial enumeration, shuffle, algebraic differential equations, process algebra, basic parallel processes, species of structures}
}
Document
Behavioural Metrics: Compositionality of the Kantorovich Lifting and an Application to Up-To Techniques

Authors: Keri D'Angelo, Sebastian Gurke, Johanna Maria Kirss, Barbara König, Matina Najafi, Wojciech Różowski, and Paul Wild

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
Behavioural distances of transition systems modelled via coalgebras for endofunctors generalize traditional notions of behavioural equivalence to a quantitative setting, in which states are equipped with a measure of how (dis)similar they are. Endowing transition systems with such distances essentially relies on the ability to lift functors describing the one-step behavior of the transition systems to the category of pseudometric spaces. We consider the category theoretic generalization of the Kantorovich lifting from transportation theory to the case of lifting functors to quantale-valued relations, which subsumes equivalences, preorders and (directed) metrics. We use tools from fibred category theory, which allow one to see the Kantorovich lifting as arising from an appropriate fibred adjunction. Our main contributions are compositionality results for the Kantorovich lifting, where we show that that the lifting of a composed functor coincides with the composition of the liftings. In addition, we describe how to lift distributive laws in the case where one of the two functors is polynomial (with finite coproducts). These results are essential ingredients for adapting up-to-techniques to the case of quantale-valued behavioural distances. Up-to techniques are a well-known coinductive technique for efficiently showing lower bounds for behavioural distances. We illustrate the results of our paper in two case studies.

Cite as

Keri D'Angelo, Sebastian Gurke, Johanna Maria Kirss, Barbara König, Matina Najafi, Wojciech Różowski, and Paul Wild. Behavioural Metrics: Compositionality of the Kantorovich Lifting and an Application to Up-To Techniques. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 20:1-20:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dangelo_et_al:LIPIcs.CONCUR.2024.20,
  author =	{D'Angelo, Keri and Gurke, Sebastian and Kirss, Johanna Maria and K\"{o}nig, Barbara and Najafi, Matina and R\'{o}\.{z}owski, Wojciech and Wild, Paul},
  title =	{{Behavioural Metrics: Compositionality of the Kantorovich Lifting and an Application to Up-To Techniques}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{20:1--20:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.20},
  URN =		{urn:nbn:de:0030-drops-207921},
  doi =		{10.4230/LIPIcs.CONCUR.2024.20},
  annote =	{Keywords: behavioural metrics, coalgebra, Galois connections, quantales, Kantorovich lifting, up-to techniques}
}
Document
Inaproximability in Weighted Timed Games

Authors: Quentin Guilmant and Joël Ouaknine

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We consider two-player, turn-based weighted timed games played on timed automata equipped with (positive and negative) integer weights, in which one player seeks to reach a goal location whilst minimising the cumulative weight of the underlying path. Although the value problem for such games (is the value of the game below a given threshold?) is known to be undecidable, the question of whether one can approximate this value has remained a longstanding open problem. In this paper, we resolve this question by showing that approximating arbitrarily closely the value of a given weighted timed game is computationally unsolvable.

Cite as

Quentin Guilmant and Joël Ouaknine. Inaproximability in Weighted Timed Games. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 27:1-27:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{guilmant_et_al:LIPIcs.CONCUR.2024.27,
  author =	{Guilmant, Quentin and Ouaknine, Jo\"{e}l},
  title =	{{Inaproximability in Weighted Timed Games}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{27:1--27:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.27},
  URN =		{urn:nbn:de:0030-drops-207998},
  doi =		{10.4230/LIPIcs.CONCUR.2024.27},
  annote =	{Keywords: Weighted timed games, approximation, undecidability}
}
Document
Bi-Reachability in Petri Nets with Data

Authors: Łukasz Kamiński and Sławomir Lasota

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We investigate Petri nets with data, an extension of plain Petri nets where tokens carry values from an infinite data domain, and executability of transitions is conditioned by equalities between data values. We provide a decision procedure for the bi-reachability problem: given a Petri net and its two configurations, we ask if each of the configurations is reachable from the other. This pushes forward the decidability borderline, as the bi-reachability problem subsumes the coverability problem (which is known to be decidable) and is subsumed by the reachability problem (whose decidability status is unknown).

Cite as

Łukasz Kamiński and Sławomir Lasota. Bi-Reachability in Petri Nets with Data. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 31:1-31:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kaminski_et_al:LIPIcs.CONCUR.2024.31,
  author =	{Kami\'{n}ski, {\L}ukasz and Lasota, S{\l}awomir},
  title =	{{Bi-Reachability in Petri Nets with Data}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{31:1--31:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.31},
  URN =		{urn:nbn:de:0030-drops-208038},
  doi =		{10.4230/LIPIcs.CONCUR.2024.31},
  annote =	{Keywords: Petri nets, Petri nets with data, reachability, bi-reachability, reversible reachability, mutual reachability, orbit-finite sets}
}
Document
Minimising the Probabilistic Bisimilarity Distance

Authors: Stefan Kiefer and Qiyi Tang

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
A labelled Markov decision process (MDP) is a labelled Markov chain with nondeterminism; i.e., together with a strategy a labelled MDP induces a labelled Markov chain. The model is related to interval Markov chains. Motivated by applications to the verification of probabilistic noninterference in security, we study problems of minimising probabilistic bisimilarity distances of labelled MDPs, in particular, whether there exist strategies such that the probabilistic bisimilarity distance between the induced labelled Markov chains is less than a given rational number, both for memoryless strategies and general strategies. We show that the distance minimisation problem is ∃ℝ-complete for memoryless strategies and undecidable for general strategies. We also study the computational complexity of the qualitative problem about making the distance less than one. This problem is known to be NP-complete for memoryless strategies. We show that it is EXPTIME-complete for general strategies.

Cite as

Stefan Kiefer and Qiyi Tang. Minimising the Probabilistic Bisimilarity Distance. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 32:1-32:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kiefer_et_al:LIPIcs.CONCUR.2024.32,
  author =	{Kiefer, Stefan and Tang, Qiyi},
  title =	{{Minimising the Probabilistic Bisimilarity Distance}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{32:1--32:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.32},
  URN =		{urn:nbn:de:0030-drops-208049},
  doi =		{10.4230/LIPIcs.CONCUR.2024.32},
  annote =	{Keywords: Markov decision processes, Markov chains}
}
Document
Invited Paper
Challenges of the Reachability Problem in Infinite-State Systems (Invited Paper)

Authors: Wojciech Czerwiński

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
The reachability problem is a central problem for various infinite state systems like automata with pushdown, with different kinds of counters or combinations thereof. Despite its centrality and decades of research the community still lacks a lot of answers for fundamental and basic questions of that type. I briefly describe my personal viewpoint on the current state of art and emphasise interesting directions, which are worth investigating in my opinion. I also formulate several easy to formulate and understand challenges, which might be pretty hard to solve but at the same time illustrate fundamental lack of our understanding in the area.

Cite as

Wojciech Czerwiński. Challenges of the Reachability Problem in Infinite-State Systems (Invited Paper). In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 2:1-2:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{czerwinski:LIPIcs.MFCS.2024.2,
  author =	{Czerwi\'{n}ski, Wojciech},
  title =	{{Challenges of the Reachability Problem in Infinite-State Systems}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{2:1--2:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.2},
  URN =		{urn:nbn:de:0030-drops-205582},
  doi =		{10.4230/LIPIcs.MFCS.2024.2},
  annote =	{Keywords: reachability problem, infinite-state systems, vector addition systems, pushdown}
}
Document
Minimizing Cost Register Automata over a Field

Authors: Yahia Idriss Benalioua, Nathan Lhote, and Pierre-Alain Reynier

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Weighted automata (WA) are an extension of finite automata that define functions from words to values in a given semiring. An alternative deterministic model, called Cost Register Automata (CRA), was introduced by Alur et al. It enriches deterministic finite automata with a finite number of registers, which store values, updated at each transition using the operations of the semiring. It is known that CRA with register updates defined by linear maps have the same expressiveness as WA. Previous works have studied the register minimization problem: given a function computable by a WA and an integer k, is it possible to realize it using a CRA with at most k registers? In this paper, we solve this problem for CRA over a field with linear register updates, using the notion of linear hull, an algebraic invariant of WA introduced recently by Bell and Smertnig. We then generalise the approach to solve a more challenging problem, that consists in minimizing simultaneously the number of states and that of registers. In addition, we also lift our results to the setting of CRA with affine updates. Last, while the linear hull was recently shown to be computable by Bell and Smertnig, no complexity bounds were given. To fill this gap, we provide two new algorithms to compute invariants of WA. This allows us to show that the register (resp. state-register) minimization problem can be solved in 2-ExpTime (resp. in NExpTime).

Cite as

Yahia Idriss Benalioua, Nathan Lhote, and Pierre-Alain Reynier. Minimizing Cost Register Automata over a Field. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 23:1-23:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{benalioua_et_al:LIPIcs.MFCS.2024.23,
  author =	{Benalioua, Yahia Idriss and Lhote, Nathan and Reynier, Pierre-Alain},
  title =	{{Minimizing Cost Register Automata over a Field}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{23:1--23:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.23},
  URN =		{urn:nbn:de:0030-drops-205798},
  doi =		{10.4230/LIPIcs.MFCS.2024.23},
  annote =	{Keywords: Weighted automata, Cost Register automata, Zariski topology}
}
Document
Generalized Completion Problems with Forbidden Tournaments

Authors: Zeno Bitter and Antoine Mottet

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
A recent result by Bodirsky and Guzmán-Pro gives a complexity dichotomy for the following class of computational problems, parametrized by a finite family F of finite tournaments: given an undirected graph, does there exist an orientation of the graph that avoids every tournament in F? One can see the edges of the input graphs as constraints imposing to find an orientation. In this paper, we consider a more general version of this problem where the constraints in the input are not necessarily about pairs of variables and impose local constraints on the global oriented graph to be found. Our main result is a complexity dichotomy for such problems, as well as a classification of such problems where the yes-instances have bounded treewidth duality. As a consequence, we obtain a streamlined proof of the result by Bodirsky and Guzmán-Pro using the theory of smooth approximations due to Mottet and Pinsker.

Cite as

Zeno Bitter and Antoine Mottet. Generalized Completion Problems with Forbidden Tournaments. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 28:1-28:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bitter_et_al:LIPIcs.MFCS.2024.28,
  author =	{Bitter, Zeno and Mottet, Antoine},
  title =	{{Generalized Completion Problems with Forbidden Tournaments}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{28:1--28:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.28},
  URN =		{urn:nbn:de:0030-drops-205844},
  doi =		{10.4230/LIPIcs.MFCS.2024.28},
  annote =	{Keywords: Tournaments, completion problems, constraint satisfaction problems, homogeneous structures, polymorphisms}
}
Document
Scheduling with Locality by Routing

Authors: Alison Hsiang-Hsuan Liu and Fu-Hong Liu

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
This work examines a strongly NP-hard routing problem on trees, in which multiple servers need to serve a given set of requests (on vertices), where the routes of the servers start from a common source and end at their respective terminals. Each server can travel free of cost on its source-to-terminal path but has to pay for travel on other edges. The objective is to minimize the maximum cost over all servers. As the servers may pay different costs for traveling through a common edge, balancing the loads of the servers can be difficult. We propose a polynomial-time 4-approximation algorithm that applies the parametric pruning framework but consists of two phases. The first phase of the algorithm partitions the requests into packets, and the second phase of the algorithm assigns the packets to the servers. Unlike the standard parametric pruning techniques, the challenge of our algorithm design and analysis is to harmoniously relate the quality of the partition in the first phase, the balances of the servers' loads in the second phase, and the hypothetical optimal values of the framework. For the problem in general graphs, we show that there is no algorithm better than 2-approximate unless P = NP. The problem is a generalization of unrelated machine scheduling and other classic scheduling problems. It also models scheduling problems where the job processing times depend on the machine serving the job and the other jobs served by that machine. This modeling provides a framework that physicalizes scheduling problems through the graph’s point of view.

Cite as

Alison Hsiang-Hsuan Liu and Fu-Hong Liu. Scheduling with Locality by Routing. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 69:1-69:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{liu_et_al:LIPIcs.MFCS.2024.69,
  author =	{Liu, Alison Hsiang-Hsuan and Liu, Fu-Hong},
  title =	{{Scheduling with Locality by Routing}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{69:1--69:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.69},
  URN =		{urn:nbn:de:0030-drops-206250},
  doi =		{10.4230/LIPIcs.MFCS.2024.69},
  annote =	{Keywords: Makespan minimization, Approximation algorithms, Routing problems, Parametric pruning framework}
}
  • Refine by Author
  • 46 Worrell, James
  • 35 Ouaknine, Joël
  • 7 Kiefer, Stefan
  • 7 Lefaucheux, Engel
  • 6 Almagor, Shaull
  • Show More...

  • Refine by Classification
  • 23 Theory of computation → Design and analysis of algorithms
  • 22 Theory of computation → Logic and verification
  • 19 Theory of computation → Graph algorithms analysis
  • 15 Mathematics of computing → Graph algorithms
  • 14 Theory of computation → Problems, reductions and completeness
  • Show More...

  • Refine by Keyword
  • 7 Treewidth
  • 7 approximation algorithms
  • 6 Approximation Algorithms
  • 6 linear dynamical systems
  • 6 reachability
  • Show More...

  • Refine by Type
  • 319 document
  • 2 volume

  • Refine by Publication Year
  • 152 2021
  • 91 2018
  • 39 2024
  • 11 2020
  • 6 2019
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail