60 Search Results for "Zhang, Peng"


Document
A Faster Algorithm for Finding Negative Cycles in Simple Temporal Networks with Uncertainty

Authors: Luke Hunsberger and Roberto Posenato

Published in: LIPIcs, Volume 318, 31st International Symposium on Temporal Representation and Reasoning (TIME 2024)


Abstract
Temporal constraint networks are data structures for representing and reasoning about time (e.g., temporal constraints among actions in a plan). Finding and computing negative cycles in temporal networks is important for planning and scheduling applications since it is the first step toward resolving inconsistent networks. For Simple Temporal Networks (STNs), the problem reduces to finding simple negative cycles (i.e., no repeat nodes), resulting in numerous efficient algorithms. For Simple Temporal Networks with Uncertainty (STNUs), which accommodate actions with uncertain durations, the situation is more complex because the characteristic of a non-dynamically controllable (non-DC) network is a so-called semi-reducible negative (SRN) cycle, which can have repeat edges and, in the worst case, an exponential number of occurrences of such edges. Algorithms for computing SRN cycles in non-DC STNUs that have been presented so far are based on older, less efficient DC-checking algorithms. In addition, the issue of repeated edges has either been ignored or given scant attention. This paper presents a new, faster algorithm for identifying SRN cycles in non-DC STNUs. Its worst-case time complexity is O(mn + k²n + knlog n), where n is the number of timepoints, m is the number of constraints, and k is the number of actions with uncertain durations. This complexity is the same as that of the fastest DC-checking algorithm for STNUs. It avoids an exponential blow-up by efficiently dealing with repeated structures and outputting a compact representation of the SRN cycle it finds. The space required to compactly store accumulated path information while avoiding redundant storage of repeated edges is O(mk + k²n). An empirical evaluation demonstrates the effectiveness of the new algorithm on an existing benchmark.

Cite as

Luke Hunsberger and Roberto Posenato. A Faster Algorithm for Finding Negative Cycles in Simple Temporal Networks with Uncertainty. In 31st International Symposium on Temporal Representation and Reasoning (TIME 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 318, pp. 9:1-9:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hunsberger_et_al:LIPIcs.TIME.2024.9,
  author =	{Hunsberger, Luke and Posenato, Roberto},
  title =	{{A Faster Algorithm for Finding Negative Cycles in Simple Temporal Networks with Uncertainty}},
  booktitle =	{31st International Symposium on Temporal Representation and Reasoning (TIME 2024)},
  pages =	{9:1--9:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-349-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{318},
  editor =	{Sala, Pietro and Sioutis, Michael and Wang, Fusheng},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2024.9},
  URN =		{urn:nbn:de:0030-drops-212160},
  doi =		{10.4230/LIPIcs.TIME.2024.9},
  annote =	{Keywords: Temporal constraint networks, overconstrained networks, negative cycles}
}
Document
FastMinTC+: A Fast and Effective Heuristic for Minimum Timeline Cover on Temporal Networks

Authors: Giorgio Lazzarinetti, Sara Manzoni, Italo Zoppis, and Riccardo Dondi

Published in: LIPIcs, Volume 318, 31st International Symposium on Temporal Representation and Reasoning (TIME 2024)


Abstract
The analysis and summarization of temporal networks are crucial for understanding complex interactions over time, yet pose significant computational challenges. This paper introduces FastMinTC+, an innovative heuristic approach designed to efficiently solve the Minimum Timeline Cover (MinTCover) problem in temporal networks. Our approach focuses on the optimization of activity timelines within temporal networks, aiming to provide both effective and computationally feasible solutions. By employing a low-complexity approach, FastMinTC+ adeptly handles massive temporal graphs, improving upon existing methods. Indeed, comparative evaluations on both synthetic and real-world datasets demonstrate that our algorithm outperforms established benchmarks with remarkable efficiency and accuracy. The results highlight the potential of heuristic approaches in the domain of temporal network analysis and open up new avenues for further research incorporating other computational techniques, for example deep learning, to enhance the adaptability and precision of such heuristics.

Cite as

Giorgio Lazzarinetti, Sara Manzoni, Italo Zoppis, and Riccardo Dondi. FastMinTC+: A Fast and Effective Heuristic for Minimum Timeline Cover on Temporal Networks. In 31st International Symposium on Temporal Representation and Reasoning (TIME 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 318, pp. 20:1-20:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lazzarinetti_et_al:LIPIcs.TIME.2024.20,
  author =	{Lazzarinetti, Giorgio and Manzoni, Sara and Zoppis, Italo and Dondi, Riccardo},
  title =	{{FastMinTC+: A Fast and Effective Heuristic for Minimum Timeline Cover on Temporal Networks}},
  booktitle =	{31st International Symposium on Temporal Representation and Reasoning (TIME 2024)},
  pages =	{20:1--20:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-349-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{318},
  editor =	{Sala, Pietro and Sioutis, Michael and Wang, Fusheng},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2024.20},
  URN =		{urn:nbn:de:0030-drops-212275},
  doi =		{10.4230/LIPIcs.TIME.2024.20},
  annote =	{Keywords: Temporal Networks, Activity Timeline, Timeline Cover, Vertex Cover, Optimization, Heuristic}
}
Document
A Bayesian Rolling Horizon Approach for Rolling Stock Rotation Planning with Predictive Maintenance

Authors: Felix Prause and Ralf Borndörfer

Published in: OASIcs, Volume 123, 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024)


Abstract
We consider the rolling stock rotation planning problem with predictive maintenance (RSRP-PdM), where a timetable given by a set of trips must be operated by a fleet of vehicles. Here, the health states of the vehicles are assumed to be random variables, and their maintenance schedule should be planned based on their predicted failure probabilities. Utilizing the Bayesian update step of the Kalman filter, we develop a rolling horizon approach for RSRP-PdM, in which the predicted health state distributions are updated as new data become available. This approach reduces the uncertainty of the health states and thus improves the decision-making basis for maintenance planning. To solve the instances, we employ a local neighborhood search, which is a modification of a heuristic for RSRP-PdM, and demonstrate its effectiveness. Using this solution algorithm, the presented approach is compared with the results of common maintenance strategies on test instances derived from real-world timetables. The obtained results show the benefits of the rolling horizon approach.

Cite as

Felix Prause and Ralf Borndörfer. A Bayesian Rolling Horizon Approach for Rolling Stock Rotation Planning with Predictive Maintenance. In 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024). Open Access Series in Informatics (OASIcs), Volume 123, pp. 13:1-13:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{prause_et_al:OASIcs.ATMOS.2024.13,
  author =	{Prause, Felix and Bornd\"{o}rfer, Ralf},
  title =	{{A Bayesian Rolling Horizon Approach for Rolling Stock Rotation Planning with Predictive Maintenance}},
  booktitle =	{24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024)},
  pages =	{13:1--13:19},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-350-8},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{123},
  editor =	{Bouman, Paul C. and Kontogiannis, Spyros C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2024.13},
  URN =		{urn:nbn:de:0030-drops-212013},
  doi =		{10.4230/OASIcs.ATMOS.2024.13},
  annote =	{Keywords: Rolling stock rotation planning, Predictive maintenance, Rolling horizon approach, Bayesian inference, Local neighborhood search}
}
Document
Faster Min-Cost Flow and Approximate Tree Decomposition on Bounded Treewidth Graphs

Authors: Sally Dong and Guanghao Ye

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We present an algorithm for min-cost flow in graphs with n vertices and m edges, given a tree decomposition of width τ and size S, and polynomially bounded, integral edge capacities and costs, running in Õ(m√{τ} + S) time. This improves upon the previous fastest algorithm in this setting achieved by the bounded-treewidth linear program solver of [Gu and Song, 2022; Dong et al., 2024], which runs in Õ(m τ^{(ω+1)/2}) time, where ω ≈ 2.37 is the matrix multiplication exponent. Our approach leverages recent advances in structured linear program solvers and robust interior point methods (IPM). In general graphs where treewidth is trivially bounded by n, the algorithm runs in Õ(m √ n) time, which is the best-known result without using the Lee-Sidford barrier or 𝓁₁ IPM, demonstrating the surprising power of robust interior point methods. As a corollary, we obtain a Õ(tw³ ⋅ m) time algorithm to compute a tree decomposition of width O(tw⋅ log(n)), given a graph with m edges.

Cite as

Sally Dong and Guanghao Ye. Faster Min-Cost Flow and Approximate Tree Decomposition on Bounded Treewidth Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 49:1-49:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dong_et_al:LIPIcs.ESA.2024.49,
  author =	{Dong, Sally and Ye, Guanghao},
  title =	{{Faster Min-Cost Flow and Approximate Tree Decomposition on Bounded Treewidth Graphs}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{49:1--49:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.49},
  URN =		{urn:nbn:de:0030-drops-211207},
  doi =		{10.4230/LIPIcs.ESA.2024.49},
  annote =	{Keywords: Min-cost flow, tree decomposition, interior point method, bounded treewidth graphs}
}
Document
Practical Expander Decomposition

Authors: Lars Gottesbüren, Nikos Parotsidis, and Maximilian Probst Gutenberg

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
The expander decomposition of a graph decomposes the set of vertices into clusters such that the induced subgraph of each cluster is a subgraph with high conductance, and there is only a small number of inter-cluster edges. Expander decompositions are at the forefront of recent theoretical developments in the area of efficient graph algorithms and act as a central component in several state-of-the-art graph algorithms for fundamental problems like maximum flow, min-cost flow, Gomory-Hu trees, global min-cut, and more. Despite this crucial role and the existence of theoretically efficient expander decomposition algorithms, little is known on their behavior in practice. In this paper we explore the engineering design space in implementations for computing expander decompositions. We base our implementation on the near-linear time algorithm of Saranurak and Wang [SODA'19], and enhance it with practical optimizations that accelerate its running time in practice and at the same time preserve the theoretical runtime and approximation guarantees. We evaluate our algorithm on real-world graphs with up to tens of millions of edges. We demonstrate significant speedups of up to two orders of magnitude over the only prior implementation. To the best of our knowledge, our implementation is the first to compute expander decompositions at this scale within reasonable time.

Cite as

Lars Gottesbüren, Nikos Parotsidis, and Maximilian Probst Gutenberg. Practical Expander Decomposition. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 61:1-61:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gottesburen_et_al:LIPIcs.ESA.2024.61,
  author =	{Gottesb\"{u}ren, Lars and Parotsidis, Nikos and Gutenberg, Maximilian Probst},
  title =	{{Practical Expander Decomposition}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{61:1--61:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.61},
  URN =		{urn:nbn:de:0030-drops-211323},
  doi =		{10.4230/LIPIcs.ESA.2024.61},
  annote =	{Keywords: Expander Decomposition, Clustering, Graph Algorithms}
}
Document
Competitive Capacitated Online Recoloring

Authors: Rajmohan Rajaraman and Omer Wasim

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In this paper, we revisit the online recoloring problem introduced recently by Azar, Machluf, Patt-Shamir and Touitou [Azar et al., 2022] to investigate algorithmic challenges that arise while scheduling virtual machines or processes in distributed systems and cloud services. In online recoloring, there is a fixed set V of n vertices and an initial coloring c₀: V → [k] for some k ∈ ℤ^{> 0}. Under an online sequence σ of requests where each request is an edge (u_t,v_t), a proper vertex coloring c of the graph G_t induced by requests until time t needs to be maintained for all t; i.e., for any (u,v) ∈ G_t, c(u)≠ c(v). In the distributed systems application, a vertex corresponds to a VM, an edge corresponds to the requirement that the two endpoint VMs be on different clusters, and a coloring is an allocation of VMs to clusters. The objective is to minimize the total weight of vertices recolored for the sequence σ. In [Azar et al., 2022], the authors give competitive algorithms for two polynomially tractable cases - 2-coloring for bipartite G_t and (Δ+1)-coloring for Δ-degree G_t - and lower bounds for the fully dynamic case where G_t can be arbitrary. We obtain the first competitive algorithms for capacitated online recoloring and fully dynamic recoloring, in which there is a bound on the number or weight of vertices in each color. Our first set of results is for 2-recoloring using algorithms that are (1+ε)-resource augmented where ε ∈ (0,1) is an arbitrarily small constant. Our main result is an O(log n)-competitive deterministic algorithm for weighted bipartite graphs, which is asymptotically optimal in light of an Ω(log n) lower bound that holds for an unbounded amount of augmentation. We also present an O(nlog n)-competitive deterministic algorithm for fully dynamic recoloring, which is optimal within an O(log n) factor in light of a Ω(n) lower bound that holds for an unbounded amount of augmentation. Our second set of results is for Δ-recoloring in an (1+ε)-overprovisioned setting where the maximum degree of G_t is bounded by (1-ε)Δ for all t, and each color assigned to at most (1+ε)n/(Δ) vertices, for an arbitrary ε > 0. Our main result is an O(1)-competitive randomized algorithm for Δ = O(√{n/log n}). We also present an O(Δ)-competitive deterministic algorithm for Δ ≤ ε n/2. Both results are asymptotically optimal.

Cite as

Rajmohan Rajaraman and Omer Wasim. Competitive Capacitated Online Recoloring. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 95:1-95:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{rajaraman_et_al:LIPIcs.ESA.2024.95,
  author =	{Rajaraman, Rajmohan and Wasim, Omer},
  title =	{{Competitive Capacitated Online Recoloring}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{95:1--95:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.95},
  URN =		{urn:nbn:de:0030-drops-211666},
  doi =		{10.4230/LIPIcs.ESA.2024.95},
  annote =	{Keywords: online algorithms, competitive ratio, recoloring, resource augmentation}
}
Document
APPROX
On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms

Authors: Karthekeyan Chandrasekaran, Chandra Chekuri, Manuel R. Torres, and Weihao Zhu

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
Dense subgraph discovery is an important problem in graph mining and network analysis with several applications. Two canonical polynomial-time solvable problems here are to find a maxcore (subgraph of maximum min degree) and to find a densest subgraph (subgraph of maximum average degree). Both of these problems can be solved in polynomial time. Veldt, Benson, and Kleinberg [Veldt et al., 2021] introduced the generalized p-mean densest subgraph problem which captures the maxcore problem when p = -∞ and the densest subgraph problem when p = 1. They observed that for p ≥ 1, the objective function is supermodular and hence the problem can be solved in polynomial time. In this work, we focus on the p-mean densest subgraph problem for p ∈ (-∞, 1). We prove that for every p ∈ (-∞,1), the problem is NP-hard, thus resolving an open question from [Veldt et al., 2021]. We also show that for every p ∈ (0,1), the weighted version of the problem is APX-hard. On the algorithmic front, we describe two simple 1/2-approximation algorithms for every p ∈ (-∞, 1). We complement the approximation algorithms by exhibiting non-trivial instances on which the algorithms simultaneously achieve an approximation factor of at most 1/2.

Cite as

Karthekeyan Chandrasekaran, Chandra Chekuri, Manuel R. Torres, and Weihao Zhu. On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 9:1-9:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chandrasekaran_et_al:LIPIcs.APPROX/RANDOM.2024.9,
  author =	{Chandrasekaran, Karthekeyan and Chekuri, Chandra and Torres, Manuel R. and Zhu, Weihao},
  title =	{{On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{9:1--9:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.9},
  URN =		{urn:nbn:de:0030-drops-210025},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.9},
  annote =	{Keywords: Densest subgraph problem, Hardness of approximation, Approximation algorithms}
}
Document
APPROX
Weighted Matching in the Random-Order Streaming and Robust Communication Models

Authors: Diba Hashemi and Weronika Wrzos-Kaminska

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We study the maximum weight matching problem in the random-order semi-streaming model and in the robust communication model. Unlike many other sublinear models, in these two frameworks, there is a large gap between the guarantees of the best known algorithms for the unweighted and weighted versions of the problem. In the random-order semi-streaming setting, the edges of an n-vertex graph arrive in a stream in a random order. The goal is to compute an approximate maximum weight matching with a single pass over the stream using O(npolylog n) space. Our main result is a (2/3-ε)-approximation algorithm for maximum weight matching in random-order streams, using space O(n log n log R), where R is the ratio between the heaviest and the lightest edge in the graph. Our result nearly matches the best known unweighted (2/3+ε₀)-approximation (where ε₀ ∼ 10^{-14} is a small constant) achieved by Assadi and Behnezhad [Assadi and Behnezhad, 2021], and significantly improves upon previous weighted results. Our techniques also extend to the related robust communication model, in which the edges of a graph are partitioned randomly between Alice and Bob. Alice sends a single message of size O(npolylog n) to Bob, who must compute an approximate maximum weight matching. We achieve a (5/6-ε)-approximation using O(n log n log R) words of communication, matching the results of Azarmehr and Behnezhad [Azarmehr and Behnezhad, 2023] for unweighted graphs.

Cite as

Diba Hashemi and Weronika Wrzos-Kaminska. Weighted Matching in the Random-Order Streaming and Robust Communication Models. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 16:1-16:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hashemi_et_al:LIPIcs.APPROX/RANDOM.2024.16,
  author =	{Hashemi, Diba and Wrzos-Kaminska, Weronika},
  title =	{{Weighted Matching in the Random-Order Streaming and Robust Communication Models}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{16:1--16:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.16},
  URN =		{urn:nbn:de:0030-drops-210097},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.16},
  annote =	{Keywords: Maximum Weight Matching, Streaming, Random-Order Streaming, Robust Communication Complexity}
}
Document
DeFiAligner: Leveraging Symbolic Analysis and Large Language Models for Inconsistency Detection in Decentralized Finance

Authors: Rundong Gan, Liyi Zhou, Le Wang, Kaihua Qin, and Xiaodong Lin

Published in: LIPIcs, Volume 316, 6th Conference on Advances in Financial Technologies (AFT 2024)


Abstract
Decentralized Finance (DeFi) has witnessed a monumental surge, reaching 53.039 billion USD in total value locked. As this sector continues to expand, ensuring the reliability of DeFi smart contracts becomes increasingly crucial. While some users are adept at reading code or the compiled bytecode to understand smart contracts, many rely on documentation. Therefore, discrepancies between the documentation and the deployed code can pose significant risks, whether these discrepancies are due to errors or intentional fraud. To tackle these challenges, we developed DeFiAligner, an end-to-end system to identify inconsistencies between documentation and smart contracts. DeFiAligner incorporates a symbolic execution tool, SEVM, which explores execution paths of on-chain binary code, recording memory and stack states. It automatically generates symbolic expressions for token balance changes and branch conditions, which, along with related project documents, are processed by LLMs. Using structured prompts, the LLMs evaluate the alignment between the symbolic expressions and the documentation. Our tests across three distinct scenarios demonstrate DeFiAligner’s capability to automate inconsistency detection in DeFi, achieving recall rates of 92% and 90% on two public datasets respectively.

Cite as

Rundong Gan, Liyi Zhou, Le Wang, Kaihua Qin, and Xiaodong Lin. DeFiAligner: Leveraging Symbolic Analysis and Large Language Models for Inconsistency Detection in Decentralized Finance. In 6th Conference on Advances in Financial Technologies (AFT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 316, pp. 7:1-7:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gan_et_al:LIPIcs.AFT.2024.7,
  author =	{Gan, Rundong and Zhou, Liyi and Wang, Le and Qin, Kaihua and Lin, Xiaodong},
  title =	{{DeFiAligner: Leveraging Symbolic Analysis and Large Language Models for Inconsistency Detection in Decentralized Finance}},
  booktitle =	{6th Conference on Advances in Financial Technologies (AFT 2024)},
  pages =	{7:1--7:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-345-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{316},
  editor =	{B\"{o}hme, Rainer and Kiffer, Lucianna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.7},
  URN =		{urn:nbn:de:0030-drops-209431},
  doi =		{10.4230/LIPIcs.AFT.2024.7},
  annote =	{Keywords: Decentralized Finance Security, Large Language Models, Project Review, Symbolic Analysis, Smart Contracts}
}
Document
Dynamically Generating Callback Summaries for Enhancing Static Analysis

Authors: Steven Arzt, Marc Miltenberger, and Julius Näumann

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Interprocedural static analyses require a complete and precise callgraph. Since third-party libraries are responsible for large portions of the code of an app, a substantial fraction of the effort in callgraph generation is therefore spent on the library code for each app. For analyses that are oblivious to the inner workings of a library and only require the user code to be processed, the library can be replaced with a summary that allows to reconstruct the callbacks from library code back to user code. To improve performance, we propose the automatic generation and use of precise pre-computed callgraph summaries for commonly used libraries. Reflective method calls within libraries and callback-driven APIs pose further challenges for generating precise callgraphs using static analysis. Pre-computed summaries can also help analyses avoid these challenges. We present CGMiner, an approach for automatically generating callgraph models for library code. It dynamically observes sample apps that use one or more particular target libraries. As we show, CGMiner yields more than 94% of correct edges, whereas existing work only achieves around 33% correct edges. CGMiner avoids the high false positive rate of existing tools. We show that CGMiner integrated into FlowDroid uncovers 40% more data flows than our baseline without callback summaries.

Cite as

Steven Arzt, Marc Miltenberger, and Julius Näumann. Dynamically Generating Callback Summaries for Enhancing Static Analysis. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 4:1-4:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{arzt_et_al:LIPIcs.ECOOP.2024.4,
  author =	{Arzt, Steven and Miltenberger, Marc and N\"{a}umann, Julius},
  title =	{{Dynamically Generating Callback Summaries for Enhancing Static Analysis}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{4:1--4:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.4},
  URN =		{urn:nbn:de:0030-drops-208533},
  doi =		{10.4230/LIPIcs.ECOOP.2024.4},
  annote =	{Keywords: dynamic analysis, callback detection, java, android}
}
Document
Cross Module Quickening - The Curious Case of C Extensions

Authors: Felix Berlakovich and Stefan Brunthaler

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Dynamic programming languages such as Python offer expressive power and programmer productivity at the expense of performance. Although the topic of optimizing Python has received considerable attention over the years, a key obstacle remains elusive: C extensions. Time and again, optimized run-time environments, such as JIT compilers and optimizing interpreters, fall short of optimizing across C extensions, as they cannot reason about the native code hiding underneath. To bridge this gap, we present an analysis of C extensions for Python. The analysis data indicates that C extensions come in different varieties. One such variety is to merely speed up a single thing, such as reading a file and processing it directly in C. Another variety offers broad access through an API, resulting in a domain-specific language realized by function calls. While the former variety of C extensions offer little optimization potential for optimizing run-times, we find that the latter variety does offer considerable optimization potential. This optimization potential rests on dynamic locality that C extensions cannot readily tap. We introduce a new, interpreter-based optimization leveraging this untapped optimization potential called Cross-Module Quickening. The key idea is that C extensions can use an optimization interface to register highly-optimized operations on C extension-specific datatypes. A quickening interpreter uses these information to continuously specialize programs with C extensions. To quantify the attainable performance potential of going beyond C extensions, we demonstrate a concrete instantiation of Cross-Module Quickening for the CPython interpreter and the popular NumPy C extension. We evaluate our implementation with the NPBench benchmark suite and report performance improvements by a factor of up to 2.84.

Cite as

Felix Berlakovich and Stefan Brunthaler. Cross Module Quickening - The Curious Case of C Extensions. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 6:1-6:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{berlakovich_et_al:LIPIcs.ECOOP.2024.6,
  author =	{Berlakovich, Felix and Brunthaler, Stefan},
  title =	{{Cross Module Quickening - The Curious Case of C Extensions}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{6:1--6:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.6},
  URN =		{urn:nbn:de:0030-drops-208557},
  doi =		{10.4230/LIPIcs.ECOOP.2024.6},
  annote =	{Keywords: interpreter, optimizations, C extensions, Python}
}
Document
HOBBIT: Hashed OBject Based InTegrity

Authors: Matthias Bernad and Stefan Brunthaler

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
C vulnerabilities usually hold verbatim for C++ programs. The counterfeit-object-oriented programming attack demonstrated that this relation is asymmetric, i.e., it only applies to C++. The problem pinpointed by this COOP attack is that C++ does not validate the integrity of its objects. By injecting malicious objects with manipulated virtual function table pointers, attackers can hijack control-flow of programs. The software security community addressed the COOP-problem in the years following its discovery, but together with the emergence of transient-execution attacks, such as Spectre, researchers also shifted their attention. We present Hobbit, a software-only solution to prevent COOP attacks by validating object integrity for virtual function pointer tables. Hobbit does not require any hardware specific features, scales to multi-million lines of C++ source code, and our LLVM-based implementation offers a configurable performance impact between 121.63% and 2.80% on compute-intensive SPEC CPU C++ benchmarks. Hobbit’s security analysis indicates strong resistance to brute forcing attacks and demonstrates additional benefits of using execute-only memory.

Cite as

Matthias Bernad and Stefan Brunthaler. HOBBIT: Hashed OBject Based InTegrity. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 7:1-7:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bernad_et_al:LIPIcs.ECOOP.2024.7,
  author =	{Bernad, Matthias and Brunthaler, Stefan},
  title =	{{HOBBIT: Hashed OBject Based InTegrity}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{7:1--7:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.7},
  URN =		{urn:nbn:de:0030-drops-208566},
  doi =		{10.4230/LIPIcs.ECOOP.2024.7},
  annote =	{Keywords: software security, code-reuse attacks, language-based security, counterfeit-object-oriented programming, object integrity, compiler security}
}
Document
Learning Gradual Typing Performance

Authors: Mohammad Wahiduzzaman Khan, Sheng Chen, and Yi He

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Gradual typing has emerged as a promising typing discipline for reconciling static and dynamic typing, which have respective strengths and shortcomings. Thanks to its promises, gradual typing has gained tremendous momentum in both industry and academia. A main challenge in gradual typing is that, however, the performance of its programs can often be unpredictable, and adding or removing the type of a a single parameter may lead to wild performance swings. Many approaches have been proposed to optimize gradual typing performance, but little work has been done to aid the understanding of the performance landscape of gradual typing and navigating the migration process (which adds type annotations to make programs more static) to avert performance slowdowns. Motivated by this situation, this work develops a machine-learning-based approach to predict the performance of each possible way of adding type annotations to a program. On top of that, many supports for program migrations could be developed, such as finding the most performant neighbor of any given configuration. Our approach gauges runtime overheads of dynamic type checks inserted by gradual typing and uses that information to train a machine learning model, which is used to predict the running time of gradual programs. We have evaluated our approach on 12 Python benchmarks for both guarded and transient semantics. For guarded semantics, our evaluation results indicate that with only 40 training instances generated from each benchmark, the predicted times for all other instances differ on average by 4% from the measured times. For transient semantics, the time difference ratio is higher but the time difference is often within 0.1 seconds.

Cite as

Mohammad Wahiduzzaman Khan, Sheng Chen, and Yi He. Learning Gradual Typing Performance. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 21:1-21:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{khan_et_al:LIPIcs.ECOOP.2024.21,
  author =	{Khan, Mohammad Wahiduzzaman and Chen, Sheng and He, Yi},
  title =	{{Learning Gradual Typing Performance}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{21:1--21:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.21},
  URN =		{urn:nbn:de:0030-drops-208706},
  doi =		{10.4230/LIPIcs.ECOOP.2024.21},
  annote =	{Keywords: Gradual typing performance, type migration, performance prediction, machine learning}
}
Document
InferType: A Compiler Toolkit for Implementing Efficient Constraint-Based Type Inference

Authors: Senxi Li, Tetsuro Yamazaki, and Shigeru Chiba

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Supporting automatic type inference is in demand in modern language development. It is a challenging task but without appropriate supporting toolkits. This paper presents InferType, a Java library that helps implement constraint-based type inference. A compiler writer uses InferType’s classes and methods to describe type constraints and typing rules for type inference. InferType then performs constraint solving by translation to the Z3 SMT solver. InferType is equipped with our developed optimization technique. It reduces the search space for type variables by pre-computing the structures of those type variables for mitigating the performance bottleneck of constraint solving with deeply nested types. We use InferType to implement type inference for a subset of Python, and conduct experiments to evaluate how the developed optimization technique can affect the performance of type inference. Our results show that InferType’s optimization can greatly mitigate the performance bottleneck for programs with deeply nested types, and can potentially improve the performance for large nested types.

Cite as

Senxi Li, Tetsuro Yamazaki, and Shigeru Chiba. InferType: A Compiler Toolkit for Implementing Efficient Constraint-Based Type Inference. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 23:1-23:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.ECOOP.2024.23,
  author =	{Li, Senxi and Yamazaki, Tetsuro and Chiba, Shigeru},
  title =	{{InferType: A Compiler Toolkit for Implementing Efficient Constraint-Based Type Inference}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{23:1--23:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.23},
  URN =		{urn:nbn:de:0030-drops-208728},
  doi =		{10.4230/LIPIcs.ECOOP.2024.23},
  annote =	{Keywords: Domain Specific Languages, Compilation, Static Analysis, Type Inference, Constraint Solving, SMT Solver}
}
Document
Qafny: A Quantum-Program Verifier

Authors: Liyi Li, Mingwei Zhu, Rance Cleaveland, Alexander Nicolellis, Yi Lee, Le Chang, and Xiaodi Wu

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Because of the probabilistic/nondeterministic behavior of quantum programs, it is highly advisable to verify them formally to ensure that they correctly implement their specifications. Formal verification, however, also traditionally requires significant effort. To address this challenge, we present Qafny, an automated proof system based on the program verifier Dafny and designed for verifying quantum programs. At its core, Qafny uses a type-guided quantum proof system that translates quantum operations to classical array operations modeled within a classical separation logic framework. We prove the soundness and completeness of our proof system and implement a prototype compiler that transforms Qafny programs and specifications into Dafny for automated verification purposes. We then illustrate the utility of Qafny’s automated capabilities in efficiently verifying important quantum algorithms, including quantum-walk algorithms, Grover’s algorithm, and Shor’s algorithm.

Cite as

Liyi Li, Mingwei Zhu, Rance Cleaveland, Alexander Nicolellis, Yi Lee, Le Chang, and Xiaodi Wu. Qafny: A Quantum-Program Verifier. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 24:1-24:31, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.ECOOP.2024.24,
  author =	{Li, Liyi and Zhu, Mingwei and Cleaveland, Rance and Nicolellis, Alexander and Lee, Yi and Chang, Le and Wu, Xiaodi},
  title =	{{Qafny: A Quantum-Program Verifier}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{24:1--24:31},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.24},
  URN =		{urn:nbn:de:0030-drops-208735},
  doi =		{10.4230/LIPIcs.ECOOP.2024.24},
  annote =	{Keywords: Quantum Computing, Automated Verification, Separation Logic}
}
  • Refine by Author
  • 6 Zhang, Peng
  • 3 Cai, Shaowei
  • 3 Ding, Ming
  • 2 Brunthaler, Stefan
  • 2 Chen, Sheng
  • Show More...

  • Refine by Classification
  • 5 Theory of computation → Graph algorithms analysis
  • 5 Theory of computation → Problems, reductions and completeness
  • 4 Theory of computation → Design and analysis of algorithms
  • 4 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 3 Mathematics of computing → Computations on matrices
  • Show More...

  • Refine by Keyword
  • 2 Approximate counting
  • 2 Approximation algorithm
  • 2 Deep learning theory
  • 2 Edge coloring
  • 2 Expander Decomposition
  • Show More...

  • Refine by Type
  • 60 document

  • Refine by Publication Year
  • 48 2024
  • 4 2022
  • 2 2020
  • 2 2023
  • 1 2016
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail