112 Search Results for "Cabello, Sergio"


Volume

LIPIcs, Volume 164

36th International Symposium on Computational Geometry (SoCG 2020)

SoCG 2020, June 23-26, 2020, Zürich, Switzerland

Editors: Sergio Cabello and Danny Z. Chen

Document
Note on Min- k-Planar Drawings of Graphs

Authors: Petr Hliněný and Lili Ködmön

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
The k-planar graphs, which are (usually with small values of k such as 1,2,3) subject to recent intense research, admit a drawing in which edges are allowed to cross, but each one edge is allowed to carry at most k crossings. In recently introduced [Binucci et al., GD 2023] min-k-planar drawings of graphs, edges may possibly carry more than k crossings, but in any two crossing edges, at least one of the two must have at most k crossings. In both concepts, one may consider general drawings or a popular restricted concept of drawings called simple. In a simple drawing, every two edges are allowed to cross at most once, and any two edges which share a vertex are forbidden to cross. While, regarding the former concept, it is for k ≤ 3 known (but perhaps not widely known) that every general k-planar graph admits a simple k-planar drawing and this ceases to be true for any k ≤ 4, the difference between general and simple drawings in the latter concept is more striking. We prove that there exist graphs with a min-2-planar drawing, or with a min-3-planar drawing avoiding crossings of adjacent edges, which have no simple min-k-planar drawings for arbitrarily large fixed k.

Cite as

Petr Hliněný and Lili Ködmön. Note on Min- k-Planar Drawings of Graphs. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 8:1-8:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hlineny_et_al:LIPIcs.GD.2024.8,
  author =	{Hlin\v{e}n\'{y}, Petr and K\"{o}dm\"{o}n, Lili},
  title =	{{Note on Min- k-Planar Drawings of Graphs}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{8:1--8:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.8},
  URN =		{urn:nbn:de:0030-drops-212924},
  doi =		{10.4230/LIPIcs.GD.2024.8},
  annote =	{Keywords: Crossing Number, Planarity, k-Planar Graph, Min-k-Planar Graph}
}
Document
Upward Pointset Embeddings of Planar st-Graphs

Authors: Carlos Alegría, Susanna Caroppo, Giordano Da Lozzo, Marco D'Elia, Giuseppe Di Battista, Fabrizio Frati, Fabrizio Grosso, and Maurizio Patrignani

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
We study upward pointset embeddings (UPSEs) of planar st-graphs. Let G be a planar st-graph and let S ⊂ ℝ² be a pointset with |S| = |V(G)|. An UPSE of G on S is an upward planar straight-line drawing of G that maps the vertices of G to the points of S. We consider both the problem of testing the existence of an UPSE of G on S (UPSE Testing) and the problem of enumerating all UPSEs of G on S. We prove that UPSE Testing is NP-complete even for st-graphs that consist of a set of directed st-paths sharing only s and t. On the other hand, for n-vertex planar st-graphs whose maximum st-cutset has size k, we prove that it is possible to solve UPSE Testing in 𝒪(n^{4k}) time with 𝒪(n^{3k}) space, and to enumerate all UPSEs of G on S with 𝒪(n) worst-case delay, using 𝒪(k n^{4k} log n) space, after 𝒪(k n^{4k} log n) set-up time. Moreover, for an n-vertex st-graph whose underlying graph is a cycle, we provide a necessary and sufficient condition for the existence of an UPSE on a given poinset, which can be tested in 𝒪(n log n) time. Related to this result, we give an algorithm that, for a set S of n points, enumerates all the non-crossing monotone Hamiltonian cycles on S with 𝒪(n) worst-case delay, using 𝒪(n²) space, after 𝒪(n²) set-up time.

Cite as

Carlos Alegría, Susanna Caroppo, Giordano Da Lozzo, Marco D'Elia, Giuseppe Di Battista, Fabrizio Frati, Fabrizio Grosso, and Maurizio Patrignani. Upward Pointset Embeddings of Planar st-Graphs. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 24:1-24:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{alegria_et_al:LIPIcs.GD.2024.24,
  author =	{Alegr{\'\i}a, Carlos and Caroppo, Susanna and Da Lozzo, Giordano and D'Elia, Marco and Di Battista, Giuseppe and Frati, Fabrizio and Grosso, Fabrizio and Patrignani, Maurizio},
  title =	{{Upward Pointset Embeddings of Planar st-Graphs}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{24:1--24:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.24},
  URN =		{urn:nbn:de:0030-drops-213082},
  doi =		{10.4230/LIPIcs.GD.2024.24},
  annote =	{Keywords: Upward pointset embeddings, planar st-graphs, st-cutset, non-crossing monotone Hamiltonian cycles, graph drawing enumeration}
}
Document
Parameterized Algorithms for Beyond-Planar Crossing Numbers

Authors: Miriam Münch and Ignaz Rutter

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
Beyond-planar graph classes are usually defined via forbidden configurations or patterns in a drawing. In this paper, we formalize these concepts on a combinatorial level and show that, for any fixed family ℱ of crossing patterns, deciding whether a given graph G admits a drawing that avoids all patterns in F and that has at most c crossings is FPT w.r.t. c. In particular, we show that for any fixed k, deciding whether a graph is k-planar, k-quasi-planar, fan-crossing, fan-crossing-free or min-k-planar, respectively, is FPT with respect to the corresponding beyond-planar crossing number.

Cite as

Miriam Münch and Ignaz Rutter. Parameterized Algorithms for Beyond-Planar Crossing Numbers. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 25:1-25:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{munch_et_al:LIPIcs.GD.2024.25,
  author =	{M\"{u}nch, Miriam and Rutter, Ignaz},
  title =	{{Parameterized Algorithms for Beyond-Planar Crossing Numbers}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{25:1--25:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.25},
  URN =		{urn:nbn:de:0030-drops-213096},
  doi =		{10.4230/LIPIcs.GD.2024.25},
  annote =	{Keywords: FPT, Beyond-planarity, Crossing-number, Crossing Patterns}
}
Document
Noncrossing Longest Paths and Cycles

Authors: Greg Aloupis, Ahmad Biniaz, Prosenjit Bose, Jean-Lou De Carufel, David Eppstein, Anil Maheshwari, Saeed Odak, Michiel Smid, Csaba D. Tóth, and Pavel Valtr

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
Edge crossings in geometric graphs are sometimes undesirable as they could lead to unwanted situations such as collisions in motion planning and inconsistency in VLSI layout. Short geometric structures such as shortest perfect matchings, shortest spanning trees, shortest spanning paths, and shortest spanning cycles on a given point set are inherently noncrossing. However, the longest such structures need not be noncrossing. In fact, it is intuitive to expect many edge crossings in various geometric graphs that are longest. Recently, Álvarez-Rebollar, Cravioto-Lagos, Marín, Solé-Pi, and Urrutia (Graphs and Combinatorics, 2024) constructed a set of points for which the longest perfect matching is noncrossing. They raised several challenging questions in this direction. In particular, they asked whether the longest spanning path, on any finite set of points in the plane, must have a pair of crossing edges. They also conjectured that the longest spanning cycle must have a pair of crossing edges. In this paper, we give a negative answer to the question and also refute the conjecture. We present a framework for constructing arbitrarily large point sets for which the longest perfect matchings, the longest spanning paths, and the longest spanning cycles are noncrossing.

Cite as

Greg Aloupis, Ahmad Biniaz, Prosenjit Bose, Jean-Lou De Carufel, David Eppstein, Anil Maheshwari, Saeed Odak, Michiel Smid, Csaba D. Tóth, and Pavel Valtr. Noncrossing Longest Paths and Cycles. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 36:1-36:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{aloupis_et_al:LIPIcs.GD.2024.36,
  author =	{Aloupis, Greg and Biniaz, Ahmad and Bose, Prosenjit and De Carufel, Jean-Lou and Eppstein, David and Maheshwari, Anil and Odak, Saeed and Smid, Michiel and T\'{o}th, Csaba D. and Valtr, Pavel},
  title =	{{Noncrossing Longest Paths and Cycles}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{36:1--36:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.36},
  URN =		{urn:nbn:de:0030-drops-213203},
  doi =		{10.4230/LIPIcs.GD.2024.36},
  annote =	{Keywords: Longest Paths, Longest Cycles, Noncrossing Paths, Noncrossing Cycles}
}
Document
Rectilinear Crossing Number of Graphs Excluding a Single-Crossing Graph as a Minor

Authors: Vida Dujmović and Camille La Rose

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
The rectilinear crossing number of G is the minimum number of crossings in a straight-line drawing of G. A single-crossing graph is a graph whose crossing number is at most one. We prove that every n-vertex graph G that excludes a single-crossing graph as a minor has rectilinear crossing number O(Δ n), where Δ is the maximum degree of G. This dependence on n and Δ is best possible. The result applies, for example, to K₅-minor-free graphs, and bounded treewidth graphs. Prior to our work, the only bounded degree minor-closed families known to have linear rectilinear crossing number were bounded degree graphs of bounded treewidth as well as bounded degree K_{3,3}-minor-free graphs. In the case of bounded treewidth graphs, our O(Δ n) result is again tight and it improves on the previous best known bound of O(Δ² n) by Wood and Telle, 2007.

Cite as

Vida Dujmović and Camille La Rose. Rectilinear Crossing Number of Graphs Excluding a Single-Crossing Graph as a Minor. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 37:1-37:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dujmovic_et_al:LIPIcs.GD.2024.37,
  author =	{Dujmovi\'{c}, Vida and La Rose, Camille},
  title =	{{Rectilinear Crossing Number of Graphs Excluding a Single-Crossing Graph as a Minor}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{37:1--37:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.37},
  URN =		{urn:nbn:de:0030-drops-213219},
  doi =		{10.4230/LIPIcs.GD.2024.37},
  annote =	{Keywords: (rectilinear) crossing number, graph minors, maximum degree, clique-sums}
}
Document
Interval Selection in Sliding Windows

Authors: Cezar-Mihail Alexandru and Christian Konrad

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We initiate the study of the Interval Selection problem in the (streaming) sliding window model of computation. In this problem, an algorithm receives a potentially infinite stream of intervals on the line, and the objective is to maintain at every moment an approximation to a largest possible subset of disjoint intervals among the L most recent intervals, for some integer L. We give the following results: 1) In the unit-length intervals case, we give a 2-approximation sliding window algorithm with space Õ(|OPT|), and we show that any sliding window algorithm that computes a (2-ε)-approximation requires space Ω(L), for any ε > 0. 2) In the arbitrary-length case, we give a (11/3+ε)-approximation sliding window algorithm with space Õ(|OPT|), for any constant ε > 0, which constitutes our main result. We also show that space Ω(L) is needed for algorithms that compute a (2.5-ε)-approximation, for any ε > 0. Our main technical contribution is an improvement over the smooth histogram technique, which consists of running independent copies of a traditional streaming algorithm with different start times. By employing the one-pass 2-approximation streaming algorithm by Cabello and Pérez-Lantero [Theor. Comput. Sci. '17] for Interval Selection on arbitrary-length intervals as the underlying algorithm, the smooth histogram technique immediately yields a (4+ε)-approximation in this setting. Our improvement is obtained by forwarding the structure of the intervals identified in a run to the subsequent run, which constrains the shape of an optimal solution and allows us to target optimal intervals differently.

Cite as

Cezar-Mihail Alexandru and Christian Konrad. Interval Selection in Sliding Windows. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 8:1-8:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{alexandru_et_al:LIPIcs.ESA.2024.8,
  author =	{Alexandru, Cezar-Mihail and Konrad, Christian},
  title =	{{Interval Selection in Sliding Windows}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{8:1--8:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.8},
  URN =		{urn:nbn:de:0030-drops-210795},
  doi =		{10.4230/LIPIcs.ESA.2024.8},
  annote =	{Keywords: Sliding window algorithms, Streaming algorithms, Interval selection}
}
Document
Sparse Outerstring Graphs Have Logarithmic Treewidth

Authors: Shinwoo An, Eunjin Oh, and Jie Xue

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
An outerstring graph is the intersection graph of curves lying inside a disk with one endpoint on the boundary of the disk. We show that an outerstring graph with n vertices has treewidth O(αlog n), where α denotes the arboricity of the graph, with an almost matching lower bound of Ω(α log (n/α)). As a corollary, we show that a t-biclique-free outerstring graph has treewidth O(t(log t)log n). This leads to polynomial-time algorithms for most of the central NP-complete problems such as Independent Set, Vertex Cover, Dominating Set, Feedback Vertex Set, Coloring for sparse outerstring graphs. Also, we can obtain subexponential-time (exact, parameterized, and approximation) algorithms for various NP-complete problems such as Vertex Cover, Feedback Vertex Set and Cycle Packing for (not necessarily sparse) outerstring graphs.

Cite as

Shinwoo An, Eunjin Oh, and Jie Xue. Sparse Outerstring Graphs Have Logarithmic Treewidth. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 10:1-10:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{an_et_al:LIPIcs.ESA.2024.10,
  author =	{An, Shinwoo and Oh, Eunjin and Xue, Jie},
  title =	{{Sparse Outerstring Graphs Have Logarithmic Treewidth}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{10:1--10:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.10},
  URN =		{urn:nbn:de:0030-drops-210816},
  doi =		{10.4230/LIPIcs.ESA.2024.10},
  annote =	{Keywords: Outerstring graphs, geometric intersection graphs, treewidth}
}
Document
Better Diameter Algorithms for Bounded VC-Dimension Graphs and Geometric Intersection Graphs

Authors: Lech Duraj, Filip Konieczny, and Krzysztof Potępa

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We develop a framework for algorithms finding the diameter in graphs of bounded distance Vapnik-Chervonenkis dimension, in (parameterized) subquadratic time complexity. The class of bounded distance VC-dimension graphs is wide, including, e.g. all minor-free graphs. We build on the work of Ducoffe et al. [SODA'20, SIGCOMP'22], improving their technique. With our approach the algorithms become simpler and faster, working in 𝒪{(k ⋅ n^{1-1/d} ⋅ m ⋅ polylog(n))} time complexity for the graph on n vertices and m edges, where k is the diameter and d is the distance VC-dimension of the graph. Furthermore, it allows us to use the improved technique in more general setting. In particular, we use this framework for geometric intersection graphs, i.e. graphs where vertices are identical geometric objects on a plane and the adjacency is defined by intersection. Applying our approach for these graphs, we partially answer a question posed by Bringmann et al. [SoCG'22], finding an 𝒪{(n^{7/4} ⋅ polylog(n))} parameterized diameter algorithm for unit square intersection graph of size n, as well as a more general algorithm for convex polygon intersection graphs.

Cite as

Lech Duraj, Filip Konieczny, and Krzysztof Potępa. Better Diameter Algorithms for Bounded VC-Dimension Graphs and Geometric Intersection Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 51:1-51:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{duraj_et_al:LIPIcs.ESA.2024.51,
  author =	{Duraj, Lech and Konieczny, Filip and Pot\k{e}pa, Krzysztof},
  title =	{{Better Diameter Algorithms for Bounded VC-Dimension Graphs and Geometric Intersection Graphs}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{51:1--51:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.51},
  URN =		{urn:nbn:de:0030-drops-211229},
  doi =		{10.4230/LIPIcs.ESA.2024.51},
  annote =	{Keywords: Graph Diameter, Geometric Intersection Graphs, Vapnik-Chervonenkis Dimension}
}
Document
Random-Order Online Independent Set of Intervals and Hyperrectangles

Authors: Mohit Garg, Debajyoti Kar, and Arindam Khan

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In the Maximum Independent Set of Hyperrectangles problem, we are given a set of n (possibly overlapping) d-dimensional axis-aligned hyperrectangles, and the goal is to find a subset of non-overlapping hyperrectangles of maximum cardinality. For d = 1, this corresponds to the classical Interval Scheduling problem, where a simple greedy algorithm returns an optimal solution. In the offline setting, for d-dimensional hyperrectangles, polynomial time (log n)^{O(d)}-approximation algorithms are known [Chalermsook and Chuzhoy, 2009]. However, the problem becomes notably challenging in the online setting, where the input objects (hyperrectangles) appear one by one in an adversarial order, and on the arrival of an object, the algorithm needs to make an immediate and irrevocable decision whether or not to select the object while maintaining the feasibility. Even for interval scheduling, an Ω(n) lower bound is known on the competitive ratio. To circumvent these negative results, in this work, we study the online maximum independent set of axis-aligned hyperrectangles in the random-order arrival model, where the adversary specifies the set of input objects which then arrive in a uniformly random order. Starting from the prototypical secretary problem, the random-order model has received significant attention to study algorithms beyond the worst-case competitive analysis (see the survey by Gupta and Singla [Anupam Gupta and Sahil Singla, 2020]). Surprisingly, we show that the problem in the random-order model almost matches the best-known offline approximation guarantees, up to polylogarithmic factors. In particular, we give a simple (log n)^{O(d)}-competitive algorithm for d-dimensional hyperrectangles in this model, which runs in O_d̃(n) time. Our approach also yields (log n)^{O(d)}-competitive algorithms in the random-order model for more general objects such as d-dimensional fat objects and ellipsoids. Furthermore, all our competitiveness guarantees hold with high probability, and not just in expectation.

Cite as

Mohit Garg, Debajyoti Kar, and Arindam Khan. Random-Order Online Independent Set of Intervals and Hyperrectangles. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 58:1-58:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{garg_et_al:LIPIcs.ESA.2024.58,
  author =	{Garg, Mohit and Kar, Debajyoti and Khan, Arindam},
  title =	{{Random-Order Online Independent Set of Intervals and Hyperrectangles}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{58:1--58:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.58},
  URN =		{urn:nbn:de:0030-drops-211298},
  doi =		{10.4230/LIPIcs.ESA.2024.58},
  annote =	{Keywords: Online Algorithms, Random-Order Model, Maximum Independent Set of Rectangles, Hyperrectangles, Fat Objects, Interval Scheduling}
}
Document
Shortest Path Separators in Unit Disk Graphs

Authors: Elfarouk Harb, Zhengcheng Huang, and Da Wei Zheng

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We introduce a new balanced separator theorem for unit-disk graphs involving two shortest paths combined with the 1-hop neighbours of those paths and two other vertices. This answers an open problem of Yan, Xiang and Dragan [CGTA '12] and improves their result that requires removing the 3-hop neighbourhood of two shortest paths. Our proof uses very different ideas, including Delaunay triangulations and a generalization of the celebrated balanced separator theorem of Lipton and Tarjan [J. Appl. Math. '79] to systems of non-intersecting paths.

Cite as

Elfarouk Harb, Zhengcheng Huang, and Da Wei Zheng. Shortest Path Separators in Unit Disk Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 66:1-66:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{harb_et_al:LIPIcs.ESA.2024.66,
  author =	{Harb, Elfarouk and Huang, Zhengcheng and Zheng, Da Wei},
  title =	{{Shortest Path Separators in Unit Disk Graphs}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{66:1--66:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.66},
  URN =		{urn:nbn:de:0030-drops-211375},
  doi =		{10.4230/LIPIcs.ESA.2024.66},
  annote =	{Keywords: Balanced shortest path separators, unit disk graphs, crossings}
}
Document
Scalable Harmonious Simplification of Isolines

Authors: Steven van den Broek, Wouter Meulemans, Andreas Reimer, and Bettina Speckmann

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
Isolines visually characterize scalar fields by connecting all points of the same value by a closed curve at repeated intervals. They work only as a set which gives the viewer an indication of the shape of the underlying field. Hence, when simplifying isolines it is important that the correspondence - the harmony - between adjacent isolines is preserved whenever it is present. The majority of state-of-the-art simplification methods treat isolines independently; at best they avoid collisions between adjacent simplified isolines. A notable exception is the work by Van Goethem et al. (2021) who were the first to introduce the concept of harmony between adjacent isolines explicitly as an algorithmic design principle. They presented a proof-of-concept algorithm that harmoniously simplifies a sequence of polylines. However, the sets of isolines of scalar fields, most notably terrain, consist of closed curves which are nested in arbitrarily complex ways and not of an ordered sequence of polylines. In this paper we significantly extend the work by Van Goethem et al. (2021) to capture harmony in general sets of isolines. Our new simplification algorithm can handle sets of isolines describing arbitrary scalar fields and is more efficient, allowing us to harmoniously simplify terrain with hundreds of thousands of vertices. We experimentally compare our method to the results of Van Goethem et al. (2021) on bundles of isolines and to general simplification methods on isolines extracted from DEMs of Antartica. Our results indicate that our method efficiently preserves the harmony in the simplified maps, which are thereby less noisy, cartographically more meaningful, and easier to read.

Cite as

Steven van den Broek, Wouter Meulemans, Andreas Reimer, and Bettina Speckmann. Scalable Harmonious Simplification of Isolines. In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 8:1-8:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{vandenbroek_et_al:LIPIcs.COSIT.2024.8,
  author =	{van den Broek, Steven and Meulemans, Wouter and Reimer, Andreas and Speckmann, Bettina},
  title =	{{Scalable Harmonious Simplification of Isolines}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{8:1--8:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.8},
  URN =		{urn:nbn:de:0030-drops-208230},
  doi =		{10.4230/LIPIcs.COSIT.2024.8},
  annote =	{Keywords: Simplification, isolines, harmony}
}
Document
Faster Treewidth-Based Approximations for Wiener Index

Authors: Giovanna Kobus Conrado, Amir Kafshdar Goharshady, Pavel Hudec, Pingjiang Li, and Harshit Jitendra Motwani

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
The Wiener index of a graph G is the sum of distances between all pairs of its vertices. It is a widely-used graph property in chemistry, initially introduced to examine the link between boiling points and structural properties of alkanes, which later found notable applications in drug design. Thus, computing or approximating the Wiener index of molecular graphs, i.e. graphs in which every vertex models an atom of a molecule and every edge models a bond, is of significant interest to the computational chemistry community. In this work, we build upon the observation that molecular graphs are sparse and tree-like and focus on developing efficient algorithms parameterized by treewidth to approximate the Wiener index. We present a new randomized approximation algorithm using a combination of tree decompositions and centroid decompositions. Our algorithm approximates the Wiener index within any desired multiplicative factor (1 ± ε) in time O(n ⋅ log n ⋅ k³ + √n ⋅ k/ε²), where n is the number of vertices of the graph and k is the treewidth. This time bound is almost-linear in n. Finally, we provide experimental results over standard benchmark molecules from PubChem and the Protein Data Bank, showcasing the applicability and scalability of our approach on real-world chemical graphs and comparing it with previous methods.

Cite as

Giovanna Kobus Conrado, Amir Kafshdar Goharshady, Pavel Hudec, Pingjiang Li, and Harshit Jitendra Motwani. Faster Treewidth-Based Approximations for Wiener Index. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 6:1-6:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{conrado_et_al:LIPIcs.SEA.2024.6,
  author =	{Conrado, Giovanna Kobus and Goharshady, Amir Kafshdar and Hudec, Pavel and Li, Pingjiang and Motwani, Harshit Jitendra},
  title =	{{Faster Treewidth-Based Approximations for Wiener Index}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{6:1--6:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.6},
  URN =		{urn:nbn:de:0030-drops-203718},
  doi =		{10.4230/LIPIcs.SEA.2024.6},
  annote =	{Keywords: Computational Chemistry, Treewidth, Wiener Index}
}
Document
Semi-Algebraic Off-Line Range Searching and Biclique Partitions in the Plane

Authors: Pankaj K. Agarwal, Esther Ezra, and Micha Sharir

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
Let P be a set of m points in ℝ², let Σ be a set of n semi-algebraic sets of constant complexity in ℝ², let (S,+) be a semigroup, and let w: P → S be a weight function on the points of P. We describe a randomized algorithm for computing w(P∩σ) for every σ ∈ Σ in overall expected time O^*(m^{2s/(5s-4)}n^{(5s-6)/(5s-4)} + m^{2/3}n^{2/3} + m + n), where s > 0 is a constant that bounds the maximum complexity of the regions of Σ, and where the O^*(⋅) notation hides subpolynomial factors. For s ≥ 3, surprisingly, this bound is smaller than the best-known bound for answering m such queries in an on-line manner. The latter takes O^*(m^{s/(2s-1)}n^{(2s-2)/(2s-1)} + m + n) time. Let Φ: Σ × P → {0,1} be the Boolean predicate (of constant complexity) such that Φ(σ,p) = 1 if p ∈ σ and 0 otherwise, and let Σ_Φ P = {(σ,p) ∈ Σ× P ∣ Φ(σ,p) = 1}. Our algorithm actually computes a partition ℬ_Φ of Σ_Φ P into bipartite cliques (bicliques) of size (i.e., sum of the sizes of the vertex sets of its bicliques) O^*(m^{2s/(5s-4)}n^{(5s-6)/(5s-4)} + m^{2/3}n^{2/3} + m + n). It is straightforward to compute w(P∩σ) for all σ ∈ Σ from ℬ_Φ. Similarly, if η: Σ → S is a weight function on the regions of Σ, ∑_{σ ∈ Σ: p ∈ σ} η(σ), for every point p ∈ P, can be computed from ℬ_Φ in a straightforward manner. We also mention a few other applications of computing ℬ_Φ.

Cite as

Pankaj K. Agarwal, Esther Ezra, and Micha Sharir. Semi-Algebraic Off-Line Range Searching and Biclique Partitions in the Plane. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 4:1-4:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{agarwal_et_al:LIPIcs.SoCG.2024.4,
  author =	{Agarwal, Pankaj K. and Ezra, Esther and Sharir, Micha},
  title =	{{Semi-Algebraic Off-Line Range Searching and Biclique Partitions in the Plane}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{4:1--4:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.4},
  URN =		{urn:nbn:de:0030-drops-199497},
  doi =		{10.4230/LIPIcs.SoCG.2024.4},
  annote =	{Keywords: Range-searching, semi-algebraic sets, pseudo-lines, duality, geometric cuttings}
}
Document
Geometric Matching and Bottleneck Problems

Authors: Sergio Cabello, Siu-Wing Cheng, Otfried Cheong, and Christian Knauer

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
Let P be a set of at most n points and let R be a set of at most n geometric ranges, such as disks and rectangles, where each p ∈ P has an associated supply s_{p} > 0, and each r ∈ R has an associated demand d_r > 0. A (many-to-many) matching is a set 𝒜 of ordered triples (p,r,a_{pr}) ∈ P × R × ℝ_{> 0} such that p ∈ r and the a_{pr}’s satisfy the constraints given by the supplies and demands. We show how to compute a maximum matching, that is, a matching maximizing ∑_{(p,r,a_{pr}) ∈ 𝒜} a_{pr}. Using our techniques, we can also solve minimum bottleneck problems, such as computing a perfect matching between a set of n red points P and a set of n blue points Q that minimizes the length of the longest edge. For the L_∞-metric, we can do this in time O(n^{1+ε}) in any fixed dimension, for the L₂-metric in the plane in time O(n^{4/3 + ε}), for any ε > 0.

Cite as

Sergio Cabello, Siu-Wing Cheng, Otfried Cheong, and Christian Knauer. Geometric Matching and Bottleneck Problems. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 31:1-31:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cabello_et_al:LIPIcs.SoCG.2024.31,
  author =	{Cabello, Sergio and Cheng, Siu-Wing and Cheong, Otfried and Knauer, Christian},
  title =	{{Geometric Matching and Bottleneck Problems}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{31:1--31:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.31},
  URN =		{urn:nbn:de:0030-drops-199768},
  doi =		{10.4230/LIPIcs.SoCG.2024.31},
  annote =	{Keywords: Many-to-many matching, bipartite, planar, geometric, approximation}
}
  • Refine by Author
  • 13 Cabello, Sergio
  • 6 Fekete, Sándor P.
  • 4 Mulzer, Wolfgang
  • 4 Sharir, Micha
  • 3 Becker, Aaron T.
  • Show More...

  • Refine by Classification
  • 84 Theory of computation → Computational geometry
  • 15 Theory of computation → Design and analysis of algorithms
  • 7 Mathematics of computing → Algebraic topology
  • 6 Mathematics of computing → Combinatoric problems
  • 6 Mathematics of computing → Graph algorithms
  • Show More...

  • Refine by Keyword
  • 4 Delaunay triangulation
  • 4 Topological Data Analysis
  • 4 approximation
  • 4 approximation algorithms
  • 3 Computational geometry
  • Show More...

  • Refine by Type
  • 111 document
  • 1 volume

  • Refine by Publication Year
  • 90 2020
  • 15 2024
  • 2 2017
  • 1 2015
  • 1 2018
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail