84 Search Results for "Marx, Dániel"


Volume

LIPIcs, Volume 107

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)

ICALP 2018, July 9-13, 2018, Prague, Czech Republic

Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella

Document
CoaKG: A Contextualized Knowledge Graph Approach for Exploratory Search and Decision Making

Authors: Veronica dos Santos, Daniel Schwabe, Altigran Soares da Silva, and Sérgio Lifschitz

Published in: TGDK, Volume 3, Issue 1 (2025). Transactions on Graph Data and Knowledge, Volume 3, Issue 1


Abstract
In decision-making scenarios, an information need arises due to a knowledge gap when a decision-maker needs more knowledge to make a decision. Users may take the initiative to acquire knowledge to fill this gap through exploratory search approaches using Knowledge Graphs (KGs) as information sources, but their queries can be incomplete, inaccurate, and ambiguous. Although KGs have great potential for exploratory search, they are incomplete by nature. Besides, for both Crowd-sourced KGs and KGs constructed by integrating several different information sources of varying quality to be effectively consumed, there is a need for a Trust Layer. Our research aims to enrich and allow querying KGs to support context-aware exploration in decision-making scenarios. We propose a layered architecture for Context Augmented Knowledge Graphs-based Decision Support Systems with a Knowledge Layer that operates under a Dual Open World Assumption (DOWA). Under DOWA, the evaluation of the truthfulness of the information obtained from KGs depends on the context of its claims and the tasks carried out or intended (purpose). The Knowledge Layer comprises a Context Augmented KG (CoaKG) and a CoaKG Query Engine. The CoaKG contains contextual mappings to identify explicit context and rules to infer implicit context. The CoaKG Query Engine is designed as a query-answering approach that retrieves all contextualized answers from the CoaKG. A Proof of Concept (PoC) based on Wikidata was developed to evaluate the effectiveness of the Knowledge Layer.

Cite as

Veronica dos Santos, Daniel Schwabe, Altigran Soares da Silva, and Sérgio Lifschitz. CoaKG: A Contextualized Knowledge Graph Approach for Exploratory Search and Decision Making. In Transactions on Graph Data and Knowledge (TGDK), Volume 3, Issue 1, pp. 4:1-4:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{dossantos_et_al:TGDK.3.1.4,
  author =	{dos Santos, Veronica and Schwabe, Daniel and da Silva, Altigran Soares and Lifschitz, S\'{e}rgio},
  title =	{{CoaKG: A Contextualized Knowledge Graph Approach for Exploratory Search and Decision Making}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{4:1--4:27},
  ISSN =	{2942-7517},
  year =	{2025},
  volume =	{3},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.3.1.4},
  URN =		{urn:nbn:de:0030-drops-236685},
  doi =		{10.4230/TGDK.3.1.4},
  annote =	{Keywords: Knowledge Graphs, Context Search, Decision Support}
}
Document
Track A: Algorithms, Complexity and Games
Robust Contraction Decomposition for Minor-Free Graphs and Its Applications

Authors: Sayan Bandyapadhyay, William Lochet, Daniel Lokshtanov, Dániel Marx, Pranabendu Misra, Daniel Neuen, Saket Saurabh, Prafullkumar Tale, and Jie Xue

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We prove a robust contraction decomposition theorem for H-minor-free graphs, which states that given an H-minor-free graph G and an integer p, one can partition in polynomial time the vertices of G into p sets Z₁,… ,Z_p such that tw(G/(Z_i ⧵ Z')) = O(p + |Z'|) for all i ∈ [p] and Z' ⊆ Z_i. Here, tw(⋅) denotes the treewidth of a graph and G/(Z_i ⧵ Z') denotes the graph obtained from G by contracting all edges with both endpoints in Z_i ⧵ Z'. Our result generalizes earlier results by Klein [SICOMP 2008] and Demaine et al. [STOC 2011] based on partitioning E(G), and some recent theorems for planar graphs by Marx et al. [SODA 2022], for bounded-genus graphs (more generally, almost-embeddable graphs) by Bandyapadhyay et al. [SODA 2022], and for unit-disk graphs by Bandyapadhyay et al. [SoCG 2022]. The robust contraction decomposition theorem directly results in parameterized algorithms with running time 2^{Õ(√k)} ⋅ n^{O(1)} or n^{O(√k)} for every vertex/edge deletion problems on H-minor-free graphs that can be formulated as Permutation CSP Deletion or 2-Conn Permutation CSP Deletion. Consequently, we obtain the first subexponential-time parameterized algorithms for Subset Feedback Vertex Set, Subset Odd Cycle Transversal, Subset Group Feedback Vertex Set, 2-Conn Component Order Connectivity on H-minor-free graphs. For other problems which already have subexponential-time parameterized algorithms on H-minor-free graphs (e.g., Odd Cycle Transversal, Vertex Multiway Cut, Vertex Multicut, etc.), our theorem gives much simpler algorithms of the same running time.

Cite as

Sayan Bandyapadhyay, William Lochet, Daniel Lokshtanov, Dániel Marx, Pranabendu Misra, Daniel Neuen, Saket Saurabh, Prafullkumar Tale, and Jie Xue. Robust Contraction Decomposition for Minor-Free Graphs and Its Applications. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 17:1-17:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bandyapadhyay_et_al:LIPIcs.ICALP.2025.17,
  author =	{Bandyapadhyay, Sayan and Lochet, William and Lokshtanov, Daniel and Marx, D\'{a}niel and Misra, Pranabendu and Neuen, Daniel and Saurabh, Saket and Tale, Prafullkumar and Xue, Jie},
  title =	{{Robust Contraction Decomposition for Minor-Free Graphs and Its Applications}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{17:1--17:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.17},
  URN =		{urn:nbn:de:0030-drops-233948},
  doi =		{10.4230/LIPIcs.ICALP.2025.17},
  annote =	{Keywords: subexponential time algorithms, graph decomposition, planar graphs, minor-free graphs, graph contraction}
}
Document
New Tools in Parameterized Complexity: Paths, Cuts, and Decomposition (Dagstuhl Seminar 24411)

Authors: Fedor V. Fomin, Dániel Marx, Saket Saurabh, Roohani Sharma, and Madhumita Kundu

Published in: Dagstuhl Reports, Volume 14, Issue 10 (2025)


Abstract
The Dagstuhl Seminar concentrated on the development of new tools arising from the parameterized complexity of cuts, paths, and decompositions in graphs. The last 2 years were very exciting for the area, with a number of breakthroughs. In FOCS 2021, Korhonen introduced a new method for approximating tree decompositions in graphs. His method, which was deeply rooted in classical graph theory, appeared to be a very handy tool for decomposing graphs, and several STOC/FOCS papers developed this method in various settings. In parallel, a novel perspective on graph decompositions was proposed by Bonnet et al. in FOCS 2020. The new theory of twin-width had many exciting consequences, and we were still at the beginning of understanding the real impact of the new decompositions on graph algorithms. In a series of papers (SODA 2021, STOC 2022, SODA 2023), Kim et al. developed beautiful algorithmic methods for handling separators in (undirected, weighted, or directed) graphs by the addition of arcs. The new algorithmic tool was used to resolve a number of long-standing open problems in the area, and it also seemed to pave the road to many more new discoveries. Reis and Rothvoss (Arxiv 2023) announced a ((log n)^{O(n)}) time randomized algorithm to solve integer programs in n variables. This breakthrough had an impact on many problems in parameterized complexity, especially on problems concerning cuts in graphs. Finally, by employing algebraic methods (both new and old), significant progress was made on several problems related to paths, including the classical (k)-disjoint path problems. This seminar brought together people from the parameterized complexity community, specialists in cuts, flows, and connectivity, and those who had been at the forefront of these new developments. In doing so, it consolidated the results achieved in recent years, discussed future research directions, and further explored the potential applications of the methods and techniques described above.

Cite as

Fedor V. Fomin, Dániel Marx, Saket Saurabh, Roohani Sharma, and Madhumita Kundu. New Tools in Parameterized Complexity: Paths, Cuts, and Decomposition (Dagstuhl Seminar 24411). In Dagstuhl Reports, Volume 14, Issue 10, pp. 1-21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{fomin_et_al:DagRep.14.10.1,
  author =	{Fomin, Fedor V. and Marx, D\'{a}niel and Saurabh, Saket and Sharma, Roohani and Kundu, Madhumita},
  title =	{{New Tools in Parameterized Complexity: Paths, Cuts, and Decomposition (Dagstuhl Seminar 24411)}},
  pages =	{1--21},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2025},
  volume =	{14},
  number =	{10},
  editor =	{Fomin, Fedor V. and Marx, D\'{a}niel and Saurabh, Saket and Sharma, Roohani and Kundu, Madhumita},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.14.10.1},
  URN =		{urn:nbn:de:0030-drops-230258},
  doi =		{10.4230/DagRep.14.10.1},
  annote =	{Keywords: fixed-parameter tractability, intractability, parameterized complexity}
}
Document
Can You Link Up With Treewidth?

Authors: Radu Curticapean, Simon Döring, Daniel Neuen, and Jiaheng Wang

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
A central result by Marx [ToC '10] constructs k-vertex graphs H of maximum degree 3 such that n^o(k/log k) time algorithms for detecting colorful H-subgraphs would refute the Exponential-Time Hypothesis (ETH). This result is widely used to obtain almost-tight conditional lower bounds for parameterized problems under ETH. Our first contribution is a new and fully self-contained proof of this result that further simplifies a recent work by Karthik et al. [SOSA 2024]. In our proof, we introduce a novel graph parameter of independent interest, the linkage capacity γ(H), and show that detecting colorful H-subgraphs in time n^o(γ(H)) refutes ETH. Then, we use a simple construction of communication networks credited to Beneš to obtain k-vertex graphs of maximum degree 3 and linkage capacity Ω(k/log k), avoiding arguments involving expander graphs, which were required in previous papers. We also show that every graph H of treewidth t has linkage capacity Ω(t/log t), thus recovering a stronger result shown by Marx [ToC '10] with a simplified proof. Additionally, we obtain new tight lower bounds on the complexity of subgraph detection for certain types of patterns by analyzing their linkage capacity: We prove that almost all k-vertex graphs of polynomial average degree Ω(k^β) for β > 0 have linkage capacity Θ(k), which implies tight lower bounds for finding such patterns H. As an application of these results, we also obtain tight lower bounds for counting small induced subgraphs having a fixed property Φ, improving bounds from, e.g., [Roth et al., FOCS 2020].

Cite as

Radu Curticapean, Simon Döring, Daniel Neuen, and Jiaheng Wang. Can You Link Up With Treewidth?. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 28:1-28:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{curticapean_et_al:LIPIcs.STACS.2025.28,
  author =	{Curticapean, Radu and D\"{o}ring, Simon and Neuen, Daniel and Wang, Jiaheng},
  title =	{{Can You Link Up With Treewidth?}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{28:1--28:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.28},
  URN =		{urn:nbn:de:0030-drops-228534},
  doi =		{10.4230/LIPIcs.STACS.2025.28},
  annote =	{Keywords: subgraph isomorphism, constraint satisfaction problems, linkage capacity, exponential-time hypothesis, parameterized complexity, counting complexity}
}
Document
Independence and Domination on Bounded-Treewidth Graphs: Integer, Rational, and Irrational Distances

Authors: Tim A. Hartmann and Dániel Marx

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
The distance-d variants of Independent Set and Dominating Set problems have been extensively studied from different algorithmic viewpoints. In particular, the complexity of these problems are well understood on bounded-treewidth graphs [Katsikarelis, Lampis, and Paschos, Discret. Appl. Math 2022][Borradaile and Le, IPEC 2016]: given a tree decomposition of width t, the two problems can be solved in time d^t⋅ n^O(1) and (2d+1)^t⋅ n^O(1), respectively. Furthermore, assuming the Strong Exponential-Time Hypothesis (SETH), the base constants are best possible in these running times: they cannot be improved to d-ε and 2d+1-ε, respectively, for any ε > 0. We investigate continuous versions of these problems in a setting introduced by Megiddo and Tamir [SICOMP 1983], where every edge is modeled by a unit-length interval of points. In the δ-Dispersion problem, the task is to find a maximum number of points (possibly inside edges) that are pairwise at distance at least δ from each other. Similarly, in the δ-Covering problem, the task is to find a minimum number of points (possibly inside edges) such that every point of the graph (including those inside edges) is at distance at most δ from the selected point set. We provide a comprehensive understanding of these two problems on bounded-treewidth graphs. 1) Let δ = a/b with a and b being coprime. If a ≤ 2, then δ-Dispersion is polynomial-time solvable. For a ≥ 3, given a tree decomposition of width t, the problem can be solved in time (2a)^t⋅ n^O(1), and, assuming SETH, there is no (2a-ε)^t⋅n^{O(1)} time algorithm for any ε > 0. 2) Let δ = a/b with a and b being coprime. If a = 1, then δ-Covering is polynomial-time solvable. For a ≥ 2, given a tree decomposition of width t, the problem can be solved in time ((2+2(bod 2)) a)^t⋅ n^O(1), and, assuming SETH, there is no ((2+2(bod 2))a -ε)^t⋅n^O(1) time algorithm for any ε > 0. 3) For every fixed irrational number δ > 0 satisfying some mild computability condition, both δ-Dispersion and δ-Covering can be solved in time n^O(t) on graphs of treewidth t. We show a very explicitly defined irrational number δ = (4∑_{j=1}^∞ 2^{-2^j})^{-1} ≈ 0.790085 such that δ-Dispersion and δ/2-Covering are W[1]-hard parameterized by the treewidth t of the input graph, and, assuming ETH, cannot be solved in time f(t)⋅n^o(t). As a key step in obtaining these results, we extend earlier results on distance-d versions of Independent Set and Dominating Set: We determine the exact complexity of these problems in the special case when the input graph arises from some graph G' by subdividing every edge exactly b times.

Cite as

Tim A. Hartmann and Dániel Marx. Independence and Domination on Bounded-Treewidth Graphs: Integer, Rational, and Irrational Distances. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 44:1-44:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{hartmann_et_al:LIPIcs.STACS.2025.44,
  author =	{Hartmann, Tim A. and Marx, D\'{a}niel},
  title =	{{Independence and Domination on Bounded-Treewidth Graphs: Integer, Rational, and Irrational Distances}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{44:1--44:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.44},
  URN =		{urn:nbn:de:0030-drops-228700},
  doi =		{10.4230/LIPIcs.STACS.2025.44},
  annote =	{Keywords: Independence, Domination, Irrationals, Treewidth, SETH}
}
Document
Parameterised Distance to Local Irregularity

Authors: Foivos Fioravantes, Nikolaos Melissinos, and Theofilos Triommatis

Published in: LIPIcs, Volume 321, 19th International Symposium on Parameterized and Exact Computation (IPEC 2024)


Abstract
A graph G is locally irregular if no two of its adjacent vertices have the same degree. The authors of [Fioravantes et al. Complexity of finding maximum locally irregular induced subgraph. SWAT, 2022] introduced and provided some initial algorithmic results on the problem of finding a locally irregular induced subgraph of a given graph G of maximum order, or, equivalently, computing a subset S of V(G) of minimum order, whose deletion from G results in a locally irregular graph; S is called an optimal vertex-irregulator of G. In this work we provide an in-depth analysis of the parameterised complexity of computing an optimal vertex-irregulator of a given graph G. Moreover, we introduce and study a variation of this problem, where S is a subset of the edges of G; in this case, S is denoted as an optimal edge-irregulator of G. We prove that computing an optimal vertex-irregulator of a graph G is in FPT when parameterised by various structural parameters of G, while it is W[1]-hard when parameterised by the feedback vertex set number or the treedepth of G. Moreover, computing an optimal edge-irregulator of a graph G is in FPT when parameterised by the vertex integrity of G, while it is NP-hard even if G is a planar bipartite graph of maximum degree 6, and W[1]-hard when parameterised by the size of the solution, the feedback vertex set or the treedepth of G. Our results paint a comprehensive picture of the tractability of both problems studied here.

Cite as

Foivos Fioravantes, Nikolaos Melissinos, and Theofilos Triommatis. Parameterised Distance to Local Irregularity. In 19th International Symposium on Parameterized and Exact Computation (IPEC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 321, pp. 18:1-18:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{fioravantes_et_al:LIPIcs.IPEC.2024.18,
  author =	{Fioravantes, Foivos and Melissinos, Nikolaos and Triommatis, Theofilos},
  title =	{{Parameterised Distance to Local Irregularity}},
  booktitle =	{19th International Symposium on Parameterized and Exact Computation (IPEC 2024)},
  pages =	{18:1--18:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-353-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{321},
  editor =	{Bonnet, \'{E}douard and Rz\k{a}\.{z}ewski, Pawe{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2024.18},
  URN =		{urn:nbn:de:0030-drops-222440},
  doi =		{10.4230/LIPIcs.IPEC.2024.18},
  annote =	{Keywords: Locally irregular, largest induced subgraph, FPT, W-hardness}
}
Document
From Chinese Postman to Salesman and Beyond: Shortest Tour δ-Covering All Points on All Edges

Authors: Fabian Frei, Ahmed Ghazy, Tim A. Hartmann, Florian Hörsch, and Dániel Marx

Published in: LIPIcs, Volume 322, 35th International Symposium on Algorithms and Computation (ISAAC 2024)


Abstract
A well-studied continuous model of graphs, introduced by Dearing and Francis [Transportation Science, 1974], considers each edge as a continuous unit-length interval of points. For δ ≥ 0, we introduce the problem δ-Tour, where the objective is to find the shortest tour that comes within a distance of δ of every point on every edge. It can be observed that 0-Tour is essentially equivalent to the Chinese Postman Problem, which is solvable in polynomial time. In contrast, 1/2-Tour is essentially equivalent to the graphic Traveling Salesman Problem (TSP), which is NP-hard but admits a constant-factor approximation in polynomial time. We investigate δ-Tour for other values of δ, noting that the problem’s behavior and the insights required to understand it differ significantly across various δ regimes. On the one hand, we first examine the approximability of the problem for every fixed δ > 0: 1) For every fixed 0 < δ < 3/2, the problem δ-Tour admits a constant-factor approximation and is APX-hard, while for every fixed δ ≥ 3/2, the problem admits an O(log n)-approximation in polynomial time and has no polynomial-time o(log n)-approximation, unless P = NP. Our techniques also yield a new APX-hardness result for graphic TSP on cubic bipartite graphs. When parameterizing by the length of a shortest tour, it is relatively easy to show that 3/2 is the threshold of fixed-parameter tractability: 2) For every fixed 0 < δ < 3/2, the problem δ-Tour is fixed-parameter tractable (FPT) when parameterized by the length of a shortest tour, while it is W[2]-hard for every fixed δ ≥ 3/2. On the other hand, if δ is considered to be part of the input, then an interesting nontrivial phenomenon appears when δ is a constant fraction of the number of vertices: 3) If δ is part of the input, then the problem can be solved in time f(k)n^O(k), where k = ⌈n/δ⌉; however, assuming the Exponential-Time Hypothesis (ETH), there is no algorithm that solves the problem and runs in time f(k)n^o(k/log k).

Cite as

Fabian Frei, Ahmed Ghazy, Tim A. Hartmann, Florian Hörsch, and Dániel Marx. From Chinese Postman to Salesman and Beyond: Shortest Tour δ-Covering All Points on All Edges. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 31:1-31:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{frei_et_al:LIPIcs.ISAAC.2024.31,
  author =	{Frei, Fabian and Ghazy, Ahmed and Hartmann, Tim A. and H\"{o}rsch, Florian and Marx, D\'{a}niel},
  title =	{{From Chinese Postman to Salesman and Beyond: Shortest Tour \delta-Covering All Points on All Edges}},
  booktitle =	{35th International Symposium on Algorithms and Computation (ISAAC 2024)},
  pages =	{31:1--31:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-354-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{322},
  editor =	{Mestre, Juli\'{a}n and Wirth, Anthony},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2024.31},
  URN =		{urn:nbn:de:0030-drops-221582},
  doi =		{10.4230/LIPIcs.ISAAC.2024.31},
  annote =	{Keywords: Chinese Postman Problem, Traveling Salesman Problem, Continuous Graphs, Approximation Algorithms, Inapproximability, Parameterized Complexity}
}
Document
List Homomorphisms by Deleting Edges and Vertices: Tight Complexity Bounds for Bounded-Treewidth Graphs

Authors: Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
The goal of this paper is to investigate a family of optimization problems arising from list homomorphisms, and to understand what the best possible algorithms are if we restrict the problem to bounded-treewidth graphs. Given graphs G, H, and lists L(v) ⊆ V(H) for every v ∈ V(G), a list homomorphism from (G,L) to H is a function f:V(G) → V(H) that preserves the edges (i.e., uv ∈ E(G) implies f(u)f(v) ∈ E(H)) and respects the lists (i.e., f(v) ∈ L(v)). The graph H may have loops. For a fixed H, the input of the optimization problem LHomVD(H) is a graph G with lists L(v), and the task is to find a set X of vertices having minimum size such that (G-X,L) has a list homomorphism to H. We define analogously the edge-deletion variant LHomED(H), where we have to delete as few edges as possible from G to obtain a graph that has a list homomorphism. This expressive family of problems includes members that are essentially equivalent to fundamental problems such as Vertex Cover, Max Cut, Odd Cycle Transversal, and Edge/Vertex Multiway Cut. For both variants, we first characterize those graphs H that make the problem polynomial-time solvable and show that the problem is NP-hard for every other fixed H. Second, as our main result, we determine for every graph H for which the problem is NP-hard, the smallest possible constant c_H such that the problem can be solved in time c^t_H⋅ n^{𝒪(1)} if a tree decomposition of G having width t is given in the input. Let i(H) be the maximum size of a set of vertices in H that have pairwise incomparable neighborhoods. For the vertex-deletion variant LHomVD(H), we show that the smallest possible constant is i(H)+1 for every H: - Given a tree decomposition of width t of G, LHomVD(H) can be solved in time (i(H)+1)^t⋅ n^{𝒪(1)}. - For any ε > 0 and H, an (i(H)+1-ε)^t⋅ n^{𝒪(1)} algorithm would violate the Strong Exponential-Time Hypothesis (SETH). The situation is more complex for the edge-deletion version. For every H, one can solve LHomED(H) in time i(H)^t⋅ n^{𝒪(1)} if a tree decomposition of width t is given. However, the existence of a specific type of decomposition of H shows that there are graphs H where LHomED(H) can be solved significantly more efficiently and the best possible constant can be arbitrarily smaller than i(H). Nevertheless, we determine this best possible constant and (assuming the SETH) prove tight bounds for every fixed H.

Cite as

Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski. List Homomorphisms by Deleting Edges and Vertices: Tight Complexity Bounds for Bounded-Treewidth Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 39:1-39:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{canesmer_et_al:LIPIcs.ESA.2024.39,
  author =	{Can Esmer, Bar{\i}\c{s} and Focke, Jacob and Marx, D\'{a}niel and Rz\k{a}\.{z}ewski, Pawe{\l}},
  title =	{{List Homomorphisms by Deleting Edges and Vertices: Tight Complexity Bounds for Bounded-Treewidth Graphs}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{39:1--39:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.39},
  URN =		{urn:nbn:de:0030-drops-211103},
  doi =		{10.4230/LIPIcs.ESA.2024.39},
  annote =	{Keywords: Graph Homomorphism, List Homomorphism, Vertex Deletion, Edge Deletion, Multiway Cut, Parameterized Complexity, Tight Bounds, Treewidth, SETH}
}
Document
Hitting Meets Packing: How Hard Can It Be?

Authors: Jacob Focke, Fabian Frei, Shaohua Li, Dániel Marx, Philipp Schepper, Roohani Sharma, and Karol Węgrzycki

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We study a general family of problems that form a common generalization of classic hitting (also referred to as covering or transversal) and packing problems. An instance of 𝒳-HitPack asks: Can removing k (deletable) vertices of a graph G prevent us from packing 𝓁 vertex-disjoint objects of type 𝒳? This problem captures a spectrum of problems with standard hitting and packing on opposite ends. Our main motivating question is whether the combination 𝒳-HitPack can be significantly harder than these two base problems. Already for one particular choice of 𝒳, this question can be posed for many different complexity notions, leading to a large, so-far unexplored domain at the intersection of the areas of hitting and packing problems. At a high level, we present two case studies: (1) 𝒳 being all cycles, and (2) 𝒳 being all copies of a fixed graph H. In each, we explore the classical complexity as well as the parameterized complexity with the natural parameters k+𝓁 and treewidth. We observe that the combined problem can be drastically harder than the base problems: for cycles or for H being a connected graph on at least 3 vertices, the problem is Σ₂^𝖯-complete and requires double-exponential dependence on the treewidth of the graph (assuming the Exponential-Time Hypothesis). In contrast, the combined problem admits qualitatively similar running times as the base problems in some cases, although significant novel ideas are required. For 𝒳 being all cycles, we establish a 2^{poly(k+𝓁)}⋅ n^{𝒪(1)} algorithm using an involved branching method, for example. Also, for 𝒳 being all edges (i.e., H = K₂; this combines Vertex Cover and Maximum Matching) the problem can be solved in time 2^{poly(tw)}⋅ n^{𝒪(1)} on graphs of treewidth tw. The key step enabling this running time relies on a combinatorial bound obtained from an algebraic (linear delta-matroid) representation of possible matchings.

Cite as

Jacob Focke, Fabian Frei, Shaohua Li, Dániel Marx, Philipp Schepper, Roohani Sharma, and Karol Węgrzycki. Hitting Meets Packing: How Hard Can It Be?. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 55:1-55:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{focke_et_al:LIPIcs.ESA.2024.55,
  author =	{Focke, Jacob and Frei, Fabian and Li, Shaohua and Marx, D\'{a}niel and Schepper, Philipp and Sharma, Roohani and W\k{e}grzycki, Karol},
  title =	{{Hitting Meets Packing: How Hard Can It Be?}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{55:1--55:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.55},
  URN =		{urn:nbn:de:0030-drops-211261},
  doi =		{10.4230/LIPIcs.ESA.2024.55},
  annote =	{Keywords: Hitting, Packing, Covering, Parameterized Algorithms, Lower Bounds, Treewidth}
}
Document
Track A: Algorithms, Complexity and Games
Parameterized Approximation For Robust Clustering in Discrete Geometric Spaces

Authors: Fateme Abbasi, Sandip Banerjee, Jarosław Byrka, Parinya Chalermsook, Ameet Gadekar, Kamyar Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim Spoerhase

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the well-studied Robust (k,z)-Clustering problem, which generalizes the classic k-Median, k-Means, and k-Center problems and arises in the domains of robust optimization [Anthony, Goyal, Gupta, Nagarajan, Math. Oper. Res. 2010] and in algorithmic fairness [Abbasi, Bhaskara, Venkatasubramanian, 2021 & Ghadiri, Samadi, Vempala, 2022]. Given a constant z ≥ 1, the input to Robust (k,z)-Clustering is a set P of n points in a metric space (M,δ), a weight function w: P → ℝ_{≥ 0} and a positive integer k. Further, each point belongs to one (or more) of the m many different groups S_1,S_2,…,S_m ⊆ P. Our goal is to find a set X of k centers such that max_{i ∈ [m]} ∑_{p ∈ S_i} w(p) δ(p,X)^z is minimized. Complementing recent work on this problem, we give a comprehensive understanding of the parameterized approximability of the problem in geometric spaces where the parameter is the number k of centers. We prove the following results: [(i)] 1) For a universal constant η₀ > 0.0006, we devise a 3^z(1-η₀)-factor FPT approximation algorithm for Robust (k,z)-Clustering in discrete high-dimensional Euclidean spaces where the set of potential centers is finite. This shows that the lower bound of 3^z for general metrics [Goyal, Jaiswal, Inf. Proc. Letters, 2023] no longer holds when the metric has geometric structure. 2) We show that Robust (k,z)-Clustering in discrete Euclidean spaces is (√{3/2}- o(1))-hard to approximate for FPT algorithms, even if we consider the special case k-Center in logarithmic dimensions. This rules out a (1+ε)-approximation algorithm running in time f(k,ε)poly(m,n) (also called efficient parameterized approximation scheme or EPAS), giving a striking contrast with the recent EPAS for the continuous setting where centers can be placed anywhere in the space [Abbasi et al., FOCS'23]. 3) However, we obtain an EPAS for Robust (k,z)-Clustering in discrete Euclidean spaces when the dimension is sublogarithmic (for the discrete problem, earlier work [Abbasi et al., FOCS'23] provides an EPAS only in dimension o(log log n)). Our EPAS works also for metrics of sub-logarithmic doubling dimension.

Cite as

Fateme Abbasi, Sandip Banerjee, Jarosław Byrka, Parinya Chalermsook, Ameet Gadekar, Kamyar Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim Spoerhase. Parameterized Approximation For Robust Clustering in Discrete Geometric Spaces. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 6:1-6:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{abbasi_et_al:LIPIcs.ICALP.2024.6,
  author =	{Abbasi, Fateme and Banerjee, Sandip and Byrka, Jaros{\l}aw and Chalermsook, Parinya and Gadekar, Ameet and Khodamoradi, Kamyar and Marx, D\'{a}niel and Sharma, Roohani and Spoerhase, Joachim},
  title =	{{Parameterized Approximation For Robust Clustering in Discrete Geometric Spaces}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{6:1--6:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.6},
  URN =		{urn:nbn:de:0030-drops-201494},
  doi =		{10.4230/LIPIcs.ICALP.2024.6},
  annote =	{Keywords: Clustering, approximation algorithms, parameterized complexity}
}
Document
Track A: Algorithms, Complexity and Games
Fundamental Problems on Bounded-Treewidth Graphs: The Real Source of Hardness

Authors: Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
It is known for many algorithmic problems that if a tree decomposition of width t is given in the input, then the problem can be solved with exponential dependence on t. A line of research initiated by Lokshtanov, Marx, and Saurabh [SODA 2011] produced lower bounds showing that in many cases known algorithms already achieve the best possible exponential dependence on t, assuming the Strong Exponential-Time Hypothesis (SETH). The main message of this paper is showing that the same lower bounds can already be obtained in a much more restricted setting: informally, a graph consisting of a block of t vertices connected to components of constant size already has the same hardness as a general tree decomposition of width t. Formally, a (σ,δ)-hub is a set Q of vertices such that every component of Q has size at most σ and is adjacent to at most δ vertices of Q. We explore if the known tight lower bounds parameterized by the width of the given tree decomposition remain valid if we parameterize by the size of the given hub. - For every ε > 0, there are σ,δ > 0 such that Independent Set (equivalently Vertex Cover) cannot be solved in time (2-ε)^p⋅ n, even if a (σ, δ)-hub of size p is given in the input, assuming the SETH. This matches the earlier tight lower bounds parameterized by width of the tree decomposition. Similar tight bounds are obtained for Odd Cycle Transversal, Max Cut, q-Coloring, and edge/vertex deletions versions of q-Coloring. - For every ε > 0, there are σ,δ > 0 such that △-Partition cannot be solved in time (2-ε)^p ⋅ n, even if a (σ, δ)-hub of size p is given in the input, assuming the Set Cover Conjecture (SCC). In fact, we prove that this statement is equivalent to the SCC, thus it is unlikely that this could be proved assuming the SETH. - For Dominating Set, we can prove a non-tight lower bound ruling out (2-ε)^p ⋅ n^𝒪(1) algorithms, assuming either the SETH or the SCC, but this does not match the 3^p⋅ n^{𝒪(1)} upper bound. Thus our results reveal that, for many problems, the research on lower bounds on the dependence on tree width was never really about tree decompositions, but the real source of hardness comes from a much simpler structure. Additionally, we study if the same lower bounds can be obtained if σ and δ are fixed universal constants (not depending on ε). We show that lower bounds of this form are possible for Max Cut and the edge-deletion version of q-Coloring, under the Max 3-Sat Hypothesis (M3SH). However, no such lower bounds are possible for Independent Set, Odd Cycle Transversal, and the vertex-deletion version of q-Coloring: better than brute force algorithms are possible for every fixed (σ,δ).

Cite as

Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski. Fundamental Problems on Bounded-Treewidth Graphs: The Real Source of Hardness. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 34:1-34:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{canesmer_et_al:LIPIcs.ICALP.2024.34,
  author =	{Can Esmer, Bar{\i}\c{s} and Focke, Jacob and Marx, D\'{a}niel and Rz\k{a}\.{z}ewski, Pawe{\l}},
  title =	{{Fundamental Problems on Bounded-Treewidth Graphs: The Real Source of Hardness}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{34:1--34:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.34},
  URN =		{urn:nbn:de:0030-drops-201772},
  doi =		{10.4230/LIPIcs.ICALP.2024.34},
  annote =	{Keywords: Parameterized Complexity, Tight Bounds, Hub, Treewidth, Strong Exponential Time Hypothesis, Vertex Coloring, Vertex Deletion, Edge Deletion, Triangle Packing, Triangle Partition, Set Cover Hypothesis, Dominating Set}
}
Document
Track A: Algorithms, Complexity and Games
Subexponential Parameterized Directed Steiner Network Problems on Planar Graphs: A Complete Classification

Authors: Esther Galby, Sándor Kisfaludi-Bak, Dániel Marx, and Roohani Sharma

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In the Directed Steiner Network problem, the input is a directed graph G, a set T ⊆ V(G) of k terminals, and a demand graph D on T. The task is to find a subgraph H ⊆ G with the minimum number of edges such that for every (s,t) ∈ E(D), the solution H contains a directed s → t path. The goal of this paper is to investigate how the complexity of the problem depends on the demand pattern in planar graphs. Formally, if 𝒟 is a class of directed graphs, then the 𝒟-Steiner Network (𝒟-DSN) problem is the special case where the demand graph D is restricted to be from 𝒟. We give a complete characterization of the behavior of every 𝒟-DSN problem on planar graphs. We classify every class 𝒟 closed under transitive equivalence and identification of vertices into three cases: assuming ETH, either the problem is 1) solvable in time 2^O(k)⋅n^O(1), i.e., FPT parameterized by the number k of terminals, but not solvable in time 2^o(k)⋅n^O(1), 2) solvable in time f(k)⋅n^O(√k), but cannot be solved in time f(k)⋅n^o(√k), or 3) solvable in time f(k)⋅n^O(k), but cannot be solved in time f(k)⋅n^o(k). Our result is a far-reaching generalization and unification of earlier results on Directed Steiner Tree, Directed Steiner Network, and Strongly Connected Steiner Subgraph on planar graphs. As an important step of our lower bound proof, we discover a rare example of a genuinely planar problem (i.e., described by a planar graph and two sets of vertices) that cannot be solved in time f(k)⋅n^o(k): given two sets of terminals S and T with |S|+|T| = k, find a subgraph with minimum number of edges such that every vertex of T is reachable from every vertex of S.

Cite as

Esther Galby, Sándor Kisfaludi-Bak, Dániel Marx, and Roohani Sharma. Subexponential Parameterized Directed Steiner Network Problems on Planar Graphs: A Complete Classification. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 67:1-67:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{galby_et_al:LIPIcs.ICALP.2024.67,
  author =	{Galby, Esther and Kisfaludi-Bak, S\'{a}ndor and Marx, D\'{a}niel and Sharma, Roohani},
  title =	{{Subexponential Parameterized Directed Steiner Network Problems on Planar Graphs: A Complete Classification}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{67:1--67:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.67},
  URN =		{urn:nbn:de:0030-drops-202104},
  doi =		{10.4230/LIPIcs.ICALP.2024.67},
  annote =	{Keywords: Directed Steiner Network, Sub-exponential algorithm}
}
Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
Document
Multicut Problems in Embedded Graphs: The Dependency of Complexity on the Demand Pattern

Authors: Jacob Focke, Florian Hörsch, Shaohua Li, and Dániel Marx

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
The Multicut problem asks for a minimum cut separating certain pairs of vertices: formally, given a graph G and a demand graph H on a set T ⊆ V(G) of terminals, the task is to find a minimum-weight set C of edges of G such that whenever two vertices of T are adjacent in H, they are in different components of G⧵ C. Colin de Verdière [Algorithmica, 2017] showed that Multicut with t terminals on a graph G of genus g can be solved in time f(t,g) n^O(√{g²+gt+t}). Cohen-Addad et al. [JACM, 2021] proved a matching lower bound showing that the exponent of n is essentially best possible (for every fixed value of t and g), even in the special case of Multiway Cut, where the demand graph H is a complete graph. However, this lower bound tells us nothing about other special cases of Multicut such as Group 3-Terminal Cut (where three groups of terminals need to be separated from each other). We show that if the demand pattern is, in some sense, close to being a complete bipartite graph, then Multicut can be solved faster than f(t,g) n^{O(√{g²+gt+t})}, and furthermore this is the only property that allows such an improvement. Formally, for a class ℋ of graphs, Multicut(ℋ) is the special case where the demand graph H is in ℋ. For every fixed class ℋ (satisfying some mild closure property), fixed g, and fixed t, our main result gives tight upper and lower bounds on the exponent of n in algorithms solving Multicut(ℋ). In addition, we investigate a similar setting where, instead of parameterizing by the genus g of G, we parameterize by the minimum number k of edges of G that need to be deleted to obtain a planar graph. Interestingly, in this setting it makes a significant difference whether the graph G is weighted or unweighted: further nontrivial algorithmic techniques give substantial improvements in the unweighted case.

Cite as

Jacob Focke, Florian Hörsch, Shaohua Li, and Dániel Marx. Multicut Problems in Embedded Graphs: The Dependency of Complexity on the Demand Pattern. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 57:1-57:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{focke_et_al:LIPIcs.SoCG.2024.57,
  author =	{Focke, Jacob and H\"{o}rsch, Florian and Li, Shaohua and Marx, D\'{a}niel},
  title =	{{Multicut Problems in Embedded Graphs: The Dependency of Complexity on the Demand Pattern}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{57:1--57:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.57},
  URN =		{urn:nbn:de:0030-drops-200021},
  doi =		{10.4230/LIPIcs.SoCG.2024.57},
  annote =	{Keywords: MultiCut, Multiway Cut, Parameterized Complexity, Tight Bounds, Embedded Graph, Planar Graph, Genus, Surface, Exponential Time Hypothesis}
}
  • Refine by Author
  • 59 Marx, Dániel
  • 8 Saurabh, Saket
  • 8 Sharma, Roohani
  • 5 Lokshtanov, Daniel
  • 5 Neuen, Daniel
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 8 Treewidth
  • 7 Parameterized Complexity
  • 7 fixed-parameter tractability
  • 7 parameterized complexity
  • 6 treewidth
  • Show More...

  • Refine by Type
  • 83 document
  • 1 volume

  • Refine by Publication Year
  • 12 2018
  • 9 2016
  • 9 2024
  • 7 2019
  • 7 2022
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail