55 Search Results for "Parter, Merav"


Document
Near Optimal Dual Fault Tolerant Distance Oracle

Authors: Dipan Dey and Manoj Gupta

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We present a dual fault-tolerant distance oracle for undirected and unweighted graphs. Given a set F of two edges, as well as a source node s and a destination node t, our oracle returns the length of the shortest path from s to t that avoids F in O(1) time with a high probability. The space complexity of our oracle is Õ(n²) , making it nearly optimal in terms of both space and query time. Prior to our work, Pettie and Duan [SODA 2009] designed a dual fault-tolerant distance oracle that required Õ(n²) space and O(log n) query time. In addition to improving the query time, our oracle is much simpler than the previous approach.

Cite as

Dipan Dey and Manoj Gupta. Near Optimal Dual Fault Tolerant Distance Oracle. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 45:1-45:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dey_et_al:LIPIcs.ESA.2024.45,
  author =	{Dey, Dipan and Gupta, Manoj},
  title =	{{Near Optimal Dual Fault Tolerant Distance Oracle}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{45:1--45:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.45},
  URN =		{urn:nbn:de:0030-drops-211164},
  doi =		{10.4230/LIPIcs.ESA.2024.45},
  annote =	{Keywords: Distance Sensitive Oracle, Dual Fault Distance Oracle}
}
Document
A Nearly Linear Time Construction of Approximate Single-Source Distance Sensitivity Oracles

Authors: Kaito Harada, Naoki Kitamura, Taisuke Izumi, and Toshimitsu Masuzawa

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
An α-approximate vertex fault-tolerant distance sensitivity oracle (α-VSDO) for a weighted input graph G = (V, E, w) and a source vertex s ∈ V is the data structure answering an α-approximate distance from s to t in G-x for any given query (x, t) ∈ V × V. It is a data structure version of the so-called single-source replacement path problem (SSRP). In this paper, we present a new nearly linear-time algorithm of constructing a (1 + ε)-VSDO for any directed input graph with polynomially bounded integer edge weights. More precisely, the presented oracle attains Õ(m log (nW)/ ε + n log² (nW)/ε²) construction time, Õ(n log (nW) / ε) size, and Õ(1/ε) query time, where n is the number of vertices, m is the number of edges, and W is the maximum edge weight. These bounds are all optimal up to polylogarithmic factors. To the best of our knowledge, this is the first non-trivial algorithm for SSRP/VSDO beating Õ(mn) computation time for directed graphs with general edge weight functions, and also the first nearly linear-time construction breaking approximation factor 3. Such a construction has been unknown even for undirected and unweighted graphs. In addition, our result implies that the known conditional lower bounds for the exact SSRP computation does not apply to the case of approximation.

Cite as

Kaito Harada, Naoki Kitamura, Taisuke Izumi, and Toshimitsu Masuzawa. A Nearly Linear Time Construction of Approximate Single-Source Distance Sensitivity Oracles. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 65:1-65:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{harada_et_al:LIPIcs.ESA.2024.65,
  author =	{Harada, Kaito and Kitamura, Naoki and Izumi, Taisuke and Masuzawa, Toshimitsu},
  title =	{{A Nearly Linear Time Construction of Approximate Single-Source Distance Sensitivity Oracles}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{65:1--65:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.65},
  URN =		{urn:nbn:de:0030-drops-211367},
  doi =		{10.4230/LIPIcs.ESA.2024.65},
  annote =	{Keywords: data structure, distance sensitivity oracle, replacement path problem, graph algorithm}
}
Document
Shortest Path Separators in Unit Disk Graphs

Authors: Elfarouk Harb, Zhengcheng Huang, and Da Wei Zheng

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We introduce a new balanced separator theorem for unit-disk graphs involving two shortest paths combined with the 1-hop neighbours of those paths and two other vertices. This answers an open problem of Yan, Xiang and Dragan [CGTA '12] and improves their result that requires removing the 3-hop neighbourhood of two shortest paths. Our proof uses very different ideas, including Delaunay triangulations and a generalization of the celebrated balanced separator theorem of Lipton and Tarjan [J. Appl. Math. '79] to systems of non-intersecting paths.

Cite as

Elfarouk Harb, Zhengcheng Huang, and Da Wei Zheng. Shortest Path Separators in Unit Disk Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 66:1-66:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{harb_et_al:LIPIcs.ESA.2024.66,
  author =	{Harb, Elfarouk and Huang, Zhengcheng and Zheng, Da Wei},
  title =	{{Shortest Path Separators in Unit Disk Graphs}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{66:1--66:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.66},
  URN =		{urn:nbn:de:0030-drops-211375},
  doi =		{10.4230/LIPIcs.ESA.2024.66},
  annote =	{Keywords: Balanced shortest path separators, unit disk graphs, crossings}
}
Document
Connectivity Oracles for Predictable Vertex Failures

Authors: Bingbing Hu, Evangelos Kosinas, and Adam Polak

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
The problem of designing connectivity oracles supporting vertex failures is one of the basic data structures problems for undirected graphs. It is already well understood: previous works [Duan-Pettie STOC'10; Long-Saranurak FOCS'22] achieve query time linear in the number of failed vertices, and it is conditionally optimal as long as we require preprocessing time polynomial in the size of the graph and update time polynomial in the number of failed vertices. We revisit this problem in the paradigm of algorithms with predictions: we ask if the query time can be improved if the set of failed vertices can be predicted beforehand up to a small number of errors. More specifically, we design a data structure that, given a graph G = (V,E) and a set of vertices predicted to fail D̂ ⊆ V of size d = |D̂|, preprocesses it in time Õ(d|E|) and then can receive an update given as the symmetric difference between the predicted and the actual set of failed vertices D̂△D = (D̂ ⧵ D) ∪ (D ⧵ D̂) of size η = |D̂△D|, process it in time Õ(η⁴), and after that answer connectivity queries in G ⧵ D in time O(η). Viewed from another perspective, our data structure provides an improvement over the state of the art for the fully dynamic subgraph connectivity problem in the sensitivity setting [Henzinger-Neumann ESA'16]. We argue that the preprocessing time and query time of our data structure are conditionally optimal under standard fine-grained complexity assumptions.

Cite as

Bingbing Hu, Evangelos Kosinas, and Adam Polak. Connectivity Oracles for Predictable Vertex Failures. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 72:1-72:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hu_et_al:LIPIcs.ESA.2024.72,
  author =	{Hu, Bingbing and Kosinas, Evangelos and Polak, Adam},
  title =	{{Connectivity Oracles for Predictable Vertex Failures}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{72:1--72:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.72},
  URN =		{urn:nbn:de:0030-drops-211437},
  doi =		{10.4230/LIPIcs.ESA.2024.72},
  annote =	{Keywords: Data structures, graph connectivity, algorithms with predictions}
}
Document
Giving Some Slack: Shortcuts and Transitive Closure Compressions

Authors: Shimon Kogan and Merav Parter

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We consider the fundamental problems of reachability shortcuts and compression schemes of the transitive closure (TC) of n-vertex directed acyclic graphs (DAGs) G when we are allowed to neglect the distance (or reachability) constraints for an ε fraction of the pairs in the transitive closure of G, denoted by TC(G). Shortcuts with Slack. For a directed graph G = (V,E), a d-reachability shortcut is a set of edges H ⊆ TC(G), whose addition decreases the directed diameter of G to be at most d. We introduce the notion of shortcuts with slack which provide the desired distance bound d for all but a small fraction ε of the vertex pairs in TC(G). For ε ∈ (0,1), a (d,ε)-shortcut H ⊆ TC(G) is a subset of edges with the property that dist_{G ∪ H}(u,v) ≤ d for at least (1-ε) fraction of the (u,v) pairs in TC(G). Our constructions hold for any DAG G and their size bounds are parameterized by the width of the graph G defined by the smallest number of directed paths in G that cover all vertices in G. - For every ε ∈ (0,1] and integer d ≥ 5, every n-vertex DAG G of width {ω} admits a (d,ε)-shortcut of size Õ({ω}²/(ε d)+n). A more delicate construction yields a (3,ε)-shortcut of size Õ({ω}²/(ε d)+n/ε), hence of linear size for {ω} ≤ √n. We show that without a slack (i.e., for ε = 0), graphs with {ω} ≤ √n cannot be shortcut to diameter below n^{1/6} using a linear number of shortcut edges. - There exists an n-vertex DAG G for which any (3,ε = 1/2^{√{log ω}})-shortcut set has Ω({ω}²/2^{√{log ω}}+n) edges. Hence, for d = Õ(1), our constructions are almost optimal. Approximate TC Representations. A key application of our shortcut’s constructions is a (1-ε)-approximate all-successors data structure which given a vertex v, reports a list containing (1-ε) fraction of the successors of v in the graph. We present a Õ({ω}²/ε+n)-space data structure with a near linear (in the output size) query time. Using connections to Error Correcting Codes, we also present a near-matching space lower bound of Ω({ω}²+n) bits (regardless of the query time) for constant ε. This improves upon the state-of-the-art space bounds of O({ω} ⋅ n) for ε = 0 by the prior work of Jagadish [ACM Trans. Database Syst., 1990].

Cite as

Shimon Kogan and Merav Parter. Giving Some Slack: Shortcuts and Transitive Closure Compressions. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 79:1-79:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kogan_et_al:LIPIcs.ESA.2024.79,
  author =	{Kogan, Shimon and Parter, Merav},
  title =	{{Giving Some Slack: Shortcuts and Transitive Closure Compressions}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{79:1--79:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.79},
  URN =		{urn:nbn:de:0030-drops-211509},
  doi =		{10.4230/LIPIcs.ESA.2024.79},
  annote =	{Keywords: Reachability Shortcuts, Width, DAG}
}
Document
The Algorithmic Power of the Greene-Kleitman Theorem

Authors: Shimon Kogan and Merav Parter

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
For a given n-vertex DAG G = (V,E) with transitive-closure TC(G), a chain is a directed path in TC(G) and an antichain is an independent set in TC(G). The maximum k-antichain problem asks for computing the maximum k-colorable subgraph of the transitive closure. The related maximum h-chains problem asks for computing h disjoint chains (i.e., cliques in TC(G)) of largest total lengths. The celebrated Greene-Kleitman (GK) theorem [J. of Comb. Theory, 1976] demonstrates the (combinatorial) connections between these two problems. In this work we translate the combinatorial properties implied by the GK theorem into time-efficient covering algorithms. In contrast to prior results, our algorithms are applied directly on G, and do not require the precomputation of its transitive closure. Let α_k(G) be the maximum number of vertices that can be covered by k antichains. We show: - For every n-vertex m-edge DAG G = (V,E), one can compute at most (2k-1) disjoint antichains that cover α_k(G) vertices in time m^{1+o(1)} (hence, independent in k). This extends the recent m^{1+o(1)}-time Maximum-Antichain algorithm (where k = 1) by [Cáceres et al., SODA 2022] to any value of k. - For every n-vertex m-edge Partially-Ordered-Set (poset) P = (V,E), one can compute (1+ε)k disjoint antichains that cover α_k(P) vertices in time O(√m⋅ α_k(P)⋅ n^{o(1)}/ε), hence at most n^{2+o(1)}/ε. This improves over the exact solution of O(n³) time of [Gavril, Networks 1987] at the cost of producing (1+ε)k antichains instead of exactly k. The heart of our approach is a linear-time greedy-like algorithm that translates suitable chain collections 𝒞 into an parallel set of antichains 𝒜, in which |C_j ∩ A_i| = 1 for every C_j ∈ 𝒞 and A_i ∈ 𝒜. The correctness of this approach is underlined by the GK theorem.

Cite as

Shimon Kogan and Merav Parter. The Algorithmic Power of the Greene-Kleitman Theorem. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 80:1-80:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kogan_et_al:LIPIcs.ESA.2024.80,
  author =	{Kogan, Shimon and Parter, Merav},
  title =	{{The Algorithmic Power of the Greene-Kleitman Theorem}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{80:1--80:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.80},
  URN =		{urn:nbn:de:0030-drops-211512},
  doi =		{10.4230/LIPIcs.ESA.2024.80},
  annote =	{Keywords: Chains, Antichains, DAG}
}
Document
Locally Computing Edge Orientations

Authors: Slobodan Mitrović, Ronitt Rubinfeld, and Mihir Singhal

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We consider the question of orienting the edges in a graph G such that every vertex has bounded out-degree. For graphs of arboricity α, there is an orientation in which every vertex has out-degree at most α and, moreover, the best possible maximum out-degree of an orientation is at least α - 1. We are thus interested in algorithms that can achieve a maximum out-degree of close to α. A widely studied approach for this problem in the distributed algorithms setting is a "peeling algorithm" that provides an orientation with maximum out-degree α(2+ε) in a logarithmic number of iterations. We consider this problem in the local computation algorithm (LCA) model, which quickly answers queries of the form "What is the orientation of edge (u,v)?" by probing the input graph. When the peeling algorithm is executed in the LCA setting by applying standard techniques, e.g., the Parnas-Ron paradigm, it requires Ω(n) probes per query on an n-vertex graph. In the case where G has unbounded degree, we show that any LCA that orients its edges to yield maximum out-degree r must use Ω(√ n/r) probes to G per query in the worst case, even if G is known to be a forest (that is, α = 1). We also show several algorithms with sublinear probe complexity when G has unbounded degree. When G is a tree such that the maximum degree Δ of G is bounded, we demonstrate an algorithm that uses Δ n^{1-log_Δ r + o(1)} probes to G per query. To obtain this result, we develop an edge-coloring approach that ultimately yields a graph-shattering-like result. We also use this shattering-like approach to demonstrate an LCA which 4-colors any tree using sublinear probes per query.

Cite as

Slobodan Mitrović, Ronitt Rubinfeld, and Mihir Singhal. Locally Computing Edge Orientations. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 89:1-89:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mitrovic_et_al:LIPIcs.ESA.2024.89,
  author =	{Mitrovi\'{c}, Slobodan and Rubinfeld, Ronitt and Singhal, Mihir},
  title =	{{Locally Computing Edge Orientations}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{89:1--89:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.89},
  URN =		{urn:nbn:de:0030-drops-211603},
  doi =		{10.4230/LIPIcs.ESA.2024.89},
  annote =	{Keywords: local computation algorithms, edge orientation, tree coloring}
}
Document
APPROX
Asynchronous Majority Dynamics on Binomial Random Graphs

Authors: Divyarthi Mohan and Paweł Prałat

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We study information aggregation in networks when agents interact to learn a binary state of the world. Initially each agent privately observes an independent signal which is correct with probability 1/2+δ for some δ > 0. At each round, a node is selected uniformly at random to update their public opinion to match the majority of their neighbours (breaking ties in favour of their initial private signal). Our main result shows that for sparse and connected binomial random graphs G(n,p) the process stabilizes in a correct consensus in 𝒪(nlog² n/log log n) steps with high probability. In fact, when log n/n ≪ p = o(1) the process terminates at time T^ = (1+o(1))nlog n, where T^ is the first time when all nodes have been selected at least once. However, in dense binomial random graphs with p = Ω(1), there is an information cascade where the process terminates in the incorrect consensus with probability bounded away from zero.

Cite as

Divyarthi Mohan and Paweł Prałat. Asynchronous Majority Dynamics on Binomial Random Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 5:1-5:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mohan_et_al:LIPIcs.APPROX/RANDOM.2024.5,
  author =	{Mohan, Divyarthi and Pra{\l}at, Pawe{\l}},
  title =	{{Asynchronous Majority Dynamics on Binomial Random Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{5:1--5:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.5},
  URN =		{urn:nbn:de:0030-drops-209985},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.5},
  annote =	{Keywords: Opinion dynamics, Social learning, Stochastic processes, Random Graphs, Consensus}
}
Document
RANDOM
Stochastic Distance in Property Testing

Authors: Uri Meir, Gregory Schwartzman, and Yuichi Yoshida

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We introduce a novel concept termed "stochastic distance" for property testing. Diverging from the traditional definition of distance, where a distance t implies that there exist t edges that can be added to ensure a graph possesses a certain property (such as k-edge-connectivity), our new notion implies that there is a high probability that adding t random edges will endow the graph with the desired property. While formulating testers based on this new distance proves challenging in a sequential environment, it is much easier in a distributed setting. Taking k-edge-connectivity as a case study, we design ultra-fast testing algorithms in the CONGEST model. Our introduction of stochastic distance offers a more natural fit for the distributed setting, providing a promising avenue for future research in emerging models of computation.

Cite as

Uri Meir, Gregory Schwartzman, and Yuichi Yoshida. Stochastic Distance in Property Testing. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 57:1-57:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{meir_et_al:LIPIcs.APPROX/RANDOM.2024.57,
  author =	{Meir, Uri and Schwartzman, Gregory and Yoshida, Yuichi},
  title =	{{Stochastic Distance in Property Testing}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{57:1--57:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.57},
  URN =		{urn:nbn:de:0030-drops-210506},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.57},
  annote =	{Keywords: Connectivity, k-edge connectivity}
}
Document
RANDOM
Nearly Optimal Local Algorithms for Constructing Sparse Spanners of Clusterable Graphs

Authors: Reut Levi, Moti Medina, and Omer Tubul

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
In this paper, we study the problem of locally constructing a sparse spanning subgraph (LSSG), introduced by Levi, Ron, and Rubinfeld (ALGO'20). In this problem, the goal is to locally decide for each e ∈ E if it is in G' where G' is a connected subgraph of G (determined only by G and the randomness of the algorithm). We provide an LSSG that receives as a parameter a lower bound, ϕ, on the conductance of G whose query complexity is Õ(√n/ϕ²). This is almost optimal when ϕ is a constant since Ω(√n) queries are necessary even when G is an expander. Furthermore, this improves the state of the art of Õ(n^{2/3}) queries for ϕ = Ω(1/n^{1/12}). We then extend our result for (k, ϕ_in, ϕ_out)-clusterable graphs and provide an algorithm whose query complexity is Õ(√n + ϕ_out n) for constant k and ϕ_in. This bound is almost optimal when ϕ_out = O(1/√n).

Cite as

Reut Levi, Moti Medina, and Omer Tubul. Nearly Optimal Local Algorithms for Constructing Sparse Spanners of Clusterable Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 60:1-60:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{levi_et_al:LIPIcs.APPROX/RANDOM.2024.60,
  author =	{Levi, Reut and Medina, Moti and Tubul, Omer},
  title =	{{Nearly Optimal Local Algorithms for Constructing Sparse Spanners of Clusterable Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{60:1--60:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.60},
  URN =		{urn:nbn:de:0030-drops-210537},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.60},
  annote =	{Keywords: Locally Computable Algorithms, Sublinear algorithms, Spanning Subgraphs, Clusterbale Graphs}
}
Document
Algorithms and Complexity for Path Covers of Temporal DAGs

Authors: Dibyayan Chakraborty, Antoine Dailly, Florent Foucaud, and Ralf Klasing

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
A path cover of a digraph is a collection of paths collectively containing its vertex set. A path cover with minimum cardinality for a directed acyclic graph can be found in polynomial time [Fulkerson, AMS'56; Cáceres et al., SODA'22]. Moreover, Dilworth’s celebrated theorem on chain coverings of partially ordered sets equivalently states that the minimum size of a path cover of a DAG is equal to the maximum size of a set of mutually unreachable vertices. In this paper, we examine how far these classic results can be extended to a dynamic setting. A temporal digraph has an arc set that changes over discrete time-steps; if the underlying digraph is acyclic, then it is a temporal DAG. A temporal path is a directed path in the underlying digraph, such that the time-steps of arcs are strictly increasing along the path. Two temporal paths are temporally disjoint if they do not occupy any vertex at the same time. A temporal path cover is a collection 𝒞 of temporal paths that covers all vertices, and 𝒞 is temporally disjoint if all its temporal paths are pairwise temporally disjoint. We study the computational complexities of the problems of finding a minimum-size temporal (disjoint) path cover (denoted as Temporal Path Cover and Temporally Disjoint Path Cover). On the negative side, we show that both Temporal Path Cover and Temporally Disjoint Path Cover are NP-hard even when the underlying DAG is planar, bipartite, subcubic, and there are only two arc-disjoint time-steps. Moreover, Temporally Disjoint Path Cover remains NP-hard even on temporal oriented trees. We also observe that natural temporal analogues of Dilworth’s theorem on these classes of temporal DAGs do not hold. In contrast, we show that Temporal Path Cover is polynomial-time solvable on temporal oriented trees by a reduction to Clique Cover for (static undirected) weakly chordal graphs (a subclass of perfect graphs for which Clique Cover admits an efficient algorithm). This highlights an interesting algorithmic difference between the two problems. Although it is NP-hard on temporal oriented trees, Temporally Disjoint Path Cover becomes polynomial-time solvable on temporal oriented lines and temporal rooted directed trees. Motivated by the hardness result on trees, we show that, in contrast, Temporal Path Cover admits an XP time algorithm with respect to parameter t_max + tw, where t_max is the maximum time-step and tw is the treewidth of the underlying static undirected graph; moreover, Temporally Disjoint Path Cover admits an FPT algorithm with respect to the same parameterization.

Cite as

Dibyayan Chakraborty, Antoine Dailly, Florent Foucaud, and Ralf Klasing. Algorithms and Complexity for Path Covers of Temporal DAGs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 38:1-38:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chakraborty_et_al:LIPIcs.MFCS.2024.38,
  author =	{Chakraborty, Dibyayan and Dailly, Antoine and Foucaud, Florent and Klasing, Ralf},
  title =	{{Algorithms and Complexity for Path Covers of Temporal DAGs}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{38:1--38:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.38},
  URN =		{urn:nbn:de:0030-drops-205940},
  doi =		{10.4230/LIPIcs.MFCS.2024.38},
  annote =	{Keywords: Temporal Graphs, Dilworth’s Theorem, DAGs, Path Cover, Temporally Disjoint Paths, Algorithms, Oriented Trees, Treewidth}
}
Document
Local Certification of Geometric Graph Classes

Authors: Oscar Defrain, Louis Esperet, Aurélie Lagoutte, Pat Morin, and Jean-Florent Raymond

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
The goal of local certification is to locally convince the vertices of a graph G that G satisfies a given property. A prover assigns short certificates to the vertices of the graph, then the vertices are allowed to check their certificates and the certificates of their neighbors, and based only on this local view and their own unique identifier, they must decide whether G satisfies the given property. If the graph indeed satisfies the property, all vertices must accept the instance, and otherwise at least one vertex must reject the instance (for any possible assignment of certificates). The goal is to minimize the size of the certificates. In this paper we study the local certification of geometric and topological graph classes. While it is known that in n-vertex graphs, planarity can be certified locally with certificates of size O(log n), we show that several closely related graph classes require certificates of size Ω(n). This includes penny graphs, unit-distance graphs, (induced) subgraphs of the square grid, 1-planar graphs, and unit-square graphs. These bounds are tight up to a constant factor and give the first known examples of hereditary (and even monotone) graph classes for which the certificates must have linear size. For unit-disk graphs we obtain a lower bound of Ω(n^{1-δ}) for any δ > 0 on the size of the certificates, and an upper bound of O(n log n). The lower bounds are obtained by proving rigidity properties of the considered graphs, which might be of independent interest.

Cite as

Oscar Defrain, Louis Esperet, Aurélie Lagoutte, Pat Morin, and Jean-Florent Raymond. Local Certification of Geometric Graph Classes. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 48:1-48:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{defrain_et_al:LIPIcs.MFCS.2024.48,
  author =	{Defrain, Oscar and Esperet, Louis and Lagoutte, Aur\'{e}lie and Morin, Pat and Raymond, Jean-Florent},
  title =	{{Local Certification of Geometric Graph Classes}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{48:1--48:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.48},
  URN =		{urn:nbn:de:0030-drops-206042},
  doi =		{10.4230/LIPIcs.MFCS.2024.48},
  annote =	{Keywords: Local certification, proof labeling schemes, geometric intersection graphs}
}
Document
Practical Minimum Path Cover

Authors: Manuel Cáceres, Brendan Mumey, Santeri Toivonen, and Alexandru I. Tomescu

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Computing a minimum path cover (MPC) of a directed acyclic graph (DAG) is a fundamental problem with a myriad of applications, including reachability. Although it is known how to solve the problem by a simple reduction to minimum flow, recent theoretical advances exploit this idea to obtain algorithms parameterized by the number of paths of an MPC, known as the width. These results obtain fast [Mäkinen et al., TALG 2019] and even linear time [Cáceres et al., SODA 2022] algorithms in the small-width regime. In this paper, we present the first publicly available high-performance implementation of state-of-the-art MPC algorithms, including the parameterized approaches. Our experiments on random DAGs show that parameterized algorithms are orders-of-magnitude faster on dense graphs. Additionally, we present new fast pre-processing heuristics based on transitive edge sparsification. We show that our heuristics improve MPC-solvers by orders of magnitude.

Cite as

Manuel Cáceres, Brendan Mumey, Santeri Toivonen, and Alexandru I. Tomescu. Practical Minimum Path Cover. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 3:1-3:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{caceres_et_al:LIPIcs.SEA.2024.3,
  author =	{C\'{a}ceres, Manuel and Mumey, Brendan and Toivonen, Santeri and Tomescu, Alexandru I.},
  title =	{{Practical Minimum Path Cover}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{3:1--3:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.3},
  URN =		{urn:nbn:de:0030-drops-203687},
  doi =		{10.4230/LIPIcs.SEA.2024.3},
  annote =	{Keywords: minimum path cover, directed acyclic graph, maximum flow, parameterized algorithms, edge sparsification, algorithm engineering}
}
Document
Track A: Algorithms, Complexity and Games
Fully-Scalable MPC Algorithms for Clustering in High Dimension

Authors: Artur Czumaj, Guichen Gao, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Pavel Veselý

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We design new parallel algorithms for clustering in high-dimensional Euclidean spaces. These algorithms run in the Massively Parallel Computation (MPC) model, and are fully scalable, meaning that the local memory in each machine may be n^σ for arbitrarily small fixed σ > 0. Importantly, the local memory may be substantially smaller than the number of clusters k, yet all our algorithms are fast, i.e., run in O(1) rounds. We first devise a fast MPC algorithm for O(1)-approximation of uniform Facility Location. This is the first fully-scalable MPC algorithm that achieves O(1)-approximation for any clustering problem in general geometric setting; previous algorithms only provide poly(log n)-approximation or apply to restricted inputs, like low dimension or small number of clusters k; e.g. [Bhaskara and Wijewardena, ICML'18; Cohen-Addad et al., NeurIPS'21; Cohen-Addad et al., ICML'22]. We then build on this Facility Location result and devise a fast MPC algorithm that achieves O(1)-bicriteria approximation for k-Median and for k-Means, namely, it computes (1+ε)k clusters of cost within O(1/ε²)-factor of the optimum for k clusters. A primary technical tool that we introduce, and may be of independent interest, is a new MPC primitive for geometric aggregation, namely, computing for every data point a statistic of its approximate neighborhood, for statistics like range counting and nearest-neighbor search. Our implementation of this primitive works in high dimension, and is based on consistent hashing (aka sparse partition), a technique that was recently used for streaming algorithms [Czumaj et al., FOCS'22].

Cite as

Artur Czumaj, Guichen Gao, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Pavel Veselý. Fully-Scalable MPC Algorithms for Clustering in High Dimension. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 50:1-50:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{czumaj_et_al:LIPIcs.ICALP.2024.50,
  author =	{Czumaj, Artur and Gao, Guichen and Jiang, Shaofeng H.-C. and Krauthgamer, Robert and Vesel\'{y}, Pavel},
  title =	{{Fully-Scalable MPC Algorithms for Clustering in High Dimension}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{50:1--50:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.50},
  URN =		{urn:nbn:de:0030-drops-201938},
  doi =		{10.4230/LIPIcs.ICALP.2024.50},
  annote =	{Keywords: Massively parallel computing, high dimension, facility location, k-median, k-means}
}
Document
Track A: Algorithms, Complexity and Games
The Discrepancy of Shortest Paths

Authors: Greg Bodwin, Chengyuan Deng, Jie Gao, Gary Hoppenworth, Jalaj Upadhyay, and Chen Wang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
The hereditary discrepancy of a set system is a quantitative measure of the pseudorandom properties of the system. Roughly speaking, hereditary discrepancy measures how well one can 2-color the elements of the system so that each set contains approximately the same number of elements of each color. Hereditary discrepancy has numerous applications in computational geometry, communication complexity and derandomization. More recently, the hereditary discrepancy of the set system of shortest paths has found applications in differential privacy [Chen et al. SODA 23]. The contribution of this paper is to improve the upper and lower bounds on the hereditary discrepancy of set systems of unique shortest paths in graphs. In particular, we show that any system of unique shortest paths in an undirected weighted graph has hereditary discrepancy O(n^{1/4}), and we construct lower bound examples demonstrating that this bound is tight up to polylog n factors. Our lower bounds hold even for planar graphs and bipartite graphs, and improve a previous lower bound of Ω(n^{1/6}) obtained by applying the trace bound of Chazelle and Lvov [SoCG'00] to a classical point-line system of Erdős. As applications, we improve the lower bound on the additive error for differentially-private all pairs shortest distances from Ω(n^{1/6}) [Chen et al. SODA 23] to Ω̃(n^{1/4}), and we improve the lower bound on additive error for the differentially-private all sets range queries problem to Ω̃(n^{1/4}), which is tight up to polylog n factors [Deng et al. WADS 23].

Cite as

Greg Bodwin, Chengyuan Deng, Jie Gao, Gary Hoppenworth, Jalaj Upadhyay, and Chen Wang. The Discrepancy of Shortest Paths. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 27:1-27:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bodwin_et_al:LIPIcs.ICALP.2024.27,
  author =	{Bodwin, Greg and Deng, Chengyuan and Gao, Jie and Hoppenworth, Gary and Upadhyay, Jalaj and Wang, Chen},
  title =	{{The Discrepancy of Shortest Paths}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{27:1--27:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.27},
  URN =		{urn:nbn:de:0030-drops-201705},
  doi =		{10.4230/LIPIcs.ICALP.2024.27},
  annote =	{Keywords: Discrepancy, hereditary discrepancy, shortest paths, differential privacy}
}
  • Refine by Author
  • 33 Parter, Merav
  • 8 Hitron, Yael
  • 5 Bodwin, Greg
  • 5 Kogan, Shimon
  • 4 Musco, Cameron
  • Show More...

  • Refine by Classification
  • 12 Theory of computation → Graph algorithms analysis
  • 9 Theory of computation → Design and analysis of algorithms
  • 9 Theory of computation → Distributed algorithms
  • 7 Networks → Network algorithms
  • 5 Theory of computation → Shortest paths
  • Show More...

  • Refine by Keyword
  • 4 Distributed Graph Algorithms
  • 3 CONGEST
  • 3 Distance Preservers
  • 3 Spanners
  • 2 Coloring
  • Show More...

  • Refine by Type
  • 55 document

  • Refine by Publication Year
  • 24 2024
  • 7 2020
  • 6 2017
  • 5 2022
  • 4 2018
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail