19 Search Results for "Pettie, Seth"


Document
Fraud Detection for Random Walks

Authors: Varsha Dani, Thomas P. Hayes, Seth Pettie, and Jared Saia

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
Traditional fraud detection is often based on finding statistical anomalies in data sets and transaction histories. A sophisticated fraudster, aware of the exact kinds of tests being deployed, might be difficult or impossible to catch. We are interested in paradigms for fraud detection that are provably robust against any adversary, no matter how sophisticated. In other words, the detection strategy should rely on signals in the data that are inherent in the goals the adversary is trying to achieve. Specifically, we consider a fraud detection game centered on a random walk on a graph. We assume this random walk is implemented by having a player at each vertex, who can be honest or not. In particular, when the random walk reaches a vertex owned by an honest player, it proceeds to a uniformly random neighbor at the next timestep. However, when the random walk reaches a dishonest player, it instead proceeds to an arbitrary neighbor chosen by an omniscient Adversary. The game is played between the Adversary and a Referee who sees the trajectory of the random walk. At any point during the random walk, if the Referee determines that a {specific} vertex is controlled by a dishonest player, the Referee accuses that player, and therefore wins the game. The Referee is allowed to make the occasional incorrect accusation, but must follow a policy that makes such mistakes with small probability of error. The goal of the adversary is to make the cover time large, ideally infinite, i.e., the walk should never reach at least one vertex. We consider the following basic question: how much can the omniscient Adversary delay the cover time without getting caught? Our main result is a tight upper bound on this delay factor. We also discuss possible applications of our results to settings such as Rotor Walks, Leader Election, and Sybil Defense.

Cite as

Varsha Dani, Thomas P. Hayes, Seth Pettie, and Jared Saia. Fraud Detection for Random Walks. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 36:1-36:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dani_et_al:LIPIcs.ITCS.2024.36,
  author =	{Dani, Varsha and Hayes, Thomas P. and Pettie, Seth and Saia, Jared},
  title =	{{Fraud Detection for Random Walks}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{36:1--36:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.36},
  URN =		{urn:nbn:de:0030-drops-195645},
  doi =		{10.4230/LIPIcs.ITCS.2024.36},
  annote =	{Keywords: Fraud detection, random processes, Markov chains}
}
Document
Cardinality Estimation Using Gumbel Distribution

Authors: Aleksander Łukasiewicz and Przemysław Uznański

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
Cardinality estimation is the task of approximating the number of distinct elements in a large dataset with possibly repeating elements. LogLog and HyperLogLog (c.f. Durand and Flajolet [ESA 2003], Flajolet et al. [Discrete Math Theor. 2007]) are small space sketching schemes for cardinality estimation, which have both strong theoretical guarantees of performance and are highly effective in practice. This makes them a highly popular solution with many implementations in big-data systems (e.g. Algebird, Apache DataSketches, BigQuery, Presto and Redis). However, despite having simple and elegant formulation, both the analysis of LogLog and HyperLogLog are extremely involved - spanning over tens of pages of analytic combinatorics and complex function analysis. We propose a modification to both LogLog and HyperLogLog that replaces discrete geometric distribution with the continuous Gumbel distribution. This leads to a very short, simple and elementary analysis of estimation guarantees, and smoother behavior of the estimator.

Cite as

Aleksander Łukasiewicz and Przemysław Uznański. Cardinality Estimation Using Gumbel Distribution. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 76:1-76:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{lukasiewicz_et_al:LIPIcs.ESA.2022.76,
  author =	{{\L}ukasiewicz, Aleksander and Uzna\'{n}ski, Przemys{\l}aw},
  title =	{{Cardinality Estimation Using Gumbel Distribution}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{76:1--76:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.76},
  URN =		{urn:nbn:de:0030-drops-170140},
  doi =		{10.4230/LIPIcs.ESA.2022.76},
  annote =	{Keywords: Streaming algorithms, Cardinality estimation, Sketching, Gumbel distribution}
}
Document
Wake up and Join Me! an Energy-Efficient Algorithm for Maximal Matching in Radio Networks

Authors: Varsha Dani, Aayush Gupta, Thomas P. Hayes, and Seth Pettie

Published in: LIPIcs, Volume 209, 35th International Symposium on Distributed Computing (DISC 2021)


Abstract
We consider networks of small, autonomous devices that communicate with each other wirelessly. Minimizing energy usage is an important consideration in designing algorithms for such networks, as battery life is a crucial and limited resource. Working in a model where both sending and listening for messages deplete energy, we consider the problem of finding a maximal matching of the nodes in a radio network of arbitrary and unknown topology. We present a distributed randomized algorithm that produces, with high probability, a maximal matching. The maximum energy cost per node is O(log² n), and the time complexity is O(Δ log n). Here n is any upper bound on the number of nodes, and Δ is any upper bound on the maximum degree; n and Δ are parameters of our algorithm that we assume are known a priori to all the processors. We note that there exist families of graphs for which our bounds on energy cost and time complexity are simultaneously optimal up to polylog factors, so any significant improvement would need additional assumptions about the network topology. We also consider the related problem of assigning, for each node in the network, a neighbor to back up its data in case of eventual node failure. Here, a key goal is to minimize the maximum load, defined as the number of nodes assigned to a single node. We present an efficient decentralized low-energy algorithm that finds a neighbor assignment whose maximum load is at most a polylog(n) factor bigger that the optimum.

Cite as

Varsha Dani, Aayush Gupta, Thomas P. Hayes, and Seth Pettie. Wake up and Join Me! an Energy-Efficient Algorithm for Maximal Matching in Radio Networks. In 35th International Symposium on Distributed Computing (DISC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 209, pp. 19:1-19:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{dani_et_al:LIPIcs.DISC.2021.19,
  author =	{Dani, Varsha and Gupta, Aayush and Hayes, Thomas P. and Pettie, Seth},
  title =	{{Wake up and Join Me! an Energy-Efficient Algorithm for Maximal Matching in Radio Networks}},
  booktitle =	{35th International Symposium on Distributed Computing (DISC 2021)},
  pages =	{19:1--19:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-210-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{209},
  editor =	{Gilbert, Seth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2021.19},
  URN =		{urn:nbn:de:0030-drops-148219},
  doi =		{10.4230/LIPIcs.DISC.2021.19},
  annote =	{Keywords: Distributed Algorithms, Energy-Aware Computation, Radio Networks, Maximal Matching, Sensor Networks}
}
Document
Brief Announcement
Brief Announcement: Memory Efficient Massively Parallel Algorithms for LCL Problems on Trees

Authors: Sebastian Brandt, Rustam Latypov, and Jara Uitto

Published in: LIPIcs, Volume 209, 35th International Symposium on Distributed Computing (DISC 2021)


Abstract
We establish scalable Massively Parallel Computation (MPC) algorithms for a family of fundamental graph problems on trees. We give a general method that, for a wide range of LCL problems, turns their message passing counterparts into exponentially faster algorithms in the sublinear MPC model. In particular, we show that any LCL on trees that has a deterministic complexity of O(n) in the LOCAL model can be sped up to O(log n) (high-complexity regime) in the sublinear MPC model and similarly n^{o(1)} to O(log log n) (intermediate-complexity regime). We emphasize, that we work on bounded degree trees and all of our algorithms work in the sublinear MPC model, where local memory is O(n^δ) for δ < 1 and global memory is O(m). For the high-complexity regime, one key ingredient is a novel pointer-chain technique and analysis that allows us to solve any solvable LCL on trees with a sublinear MPC algorithm with complexity O(log n). For the intermediate-complexity regime, we adapt the approach by Chang and Pettie [FOCS'17], who gave a canonical algorithm for solving LCL problems on trees in the LOCAL model. For the special case of 3-coloring trees, which is a natural LCL problem, we provide a conditional Ω(log log n) lower bound, implying that solving LCL problems on trees with deterministic LOCAL complexity n^{o(1)} requires Θ(log log n) deterministic time in the sublinear MPC model when using a natural family of component-stable algorithms.

Cite as

Sebastian Brandt, Rustam Latypov, and Jara Uitto. Brief Announcement: Memory Efficient Massively Parallel Algorithms for LCL Problems on Trees. In 35th International Symposium on Distributed Computing (DISC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 209, pp. 50:1-50:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{brandt_et_al:LIPIcs.DISC.2021.50,
  author =	{Brandt, Sebastian and Latypov, Rustam and Uitto, Jara},
  title =	{{Brief Announcement: Memory Efficient Massively Parallel Algorithms for LCL Problems on Trees}},
  booktitle =	{35th International Symposium on Distributed Computing (DISC 2021)},
  pages =	{50:1--50:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-210-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{209},
  editor =	{Gilbert, Seth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2021.50},
  URN =		{urn:nbn:de:0030-drops-148521},
  doi =		{10.4230/LIPIcs.DISC.2021.50},
  annote =	{Keywords: Distributed computing, Locally checkable labeling problems, Trees, Massively Parallel Computation, Sublinear memory, 3-coloring}
}
Document
Incremental SCC Maintenance in Sparse Graphs

Authors: Aaron Bernstein, Aditi Dudeja, and Seth Pettie

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
In the incremental cycle detection problem, edges are added to a directed graph (initially empty), and the algorithm has to report the presence of the first cycle, once it is formed. A closely related problem is the incremental topological sort problem, where edges are added to an acyclic graph, and the algorithm is required to maintain a valid topological ordering. Since these problems arise naturally in many applications such as scheduling tasks, pointer analysis, and circuit evaluation, they have been studied extensively in the last three decades. Motivated by the fact that in many of these applications, the presence of a cycle is not fatal, we study a generalization of these problems, incremental maintenance of strongly connected components (incremental SCC). Several incremental algorithms in the literature which do cycle detection and topological sort in directed acyclic graphs, such as those by [Michael A. Bender et al., 2016] and [Haeupler et al., 2012], also generalize to maintain strongly connected components and their topological sort in general directed graphs. The algorithms of [Haeupler et al., 2012] and [Michael A. Bender et al., 2016] have a total update time of O(m^{3/2}) and O(m⋅ min{m^{1/2},n^{2/3}}) respectively, and this is the state of the art for incremental SCC. But the most recent algorithms for incremental cycle detection and topological sort ([Bernstein and Chechik, 2018] and [Bhattacharya and Kulkarni, 2020]), which yield total (randomized) update time Õ(min{m^{4/3}, n²}), do not extend to incremental SCC. Thus, there is a gap between the best known algorithms for these two closely related problems. In this paper, we bridge this gap by extending the framework of [Bhattacharya and Kulkarni, 2020] to general directed graphs. More concretely, we give a Las Vegas algorithm for incremental SCCs with an expected total update time of Õ(m^{4/3}). A key ingredient in the algorithm of [Bhattacharya and Kulkarni, 2020] is a structural theorem (first introduced in [Bernstein and Chechik, 2018]) that bounds the number of "equivalent" vertices. Unfortunately, this theorem only applies to DAGs. We show a natural way to extend this structural theorem to general directed graphs, and along the way we develop a significantly simpler and more intuitive proof of this theorem.

Cite as

Aaron Bernstein, Aditi Dudeja, and Seth Pettie. Incremental SCC Maintenance in Sparse Graphs. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 14:1-14:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bernstein_et_al:LIPIcs.ESA.2021.14,
  author =	{Bernstein, Aaron and Dudeja, Aditi and Pettie, Seth},
  title =	{{Incremental SCC Maintenance in Sparse Graphs}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{14:1--14:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.14},
  URN =		{urn:nbn:de:0030-drops-145950},
  doi =		{10.4230/LIPIcs.ESA.2021.14},
  annote =	{Keywords: Directed Graphs, Strongly Connected Components, Dynamic Graph Algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Non-Mergeable Sketching for Cardinality Estimation

Authors: Seth Pettie, Dingyu Wang, and Longhui Yin

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
Cardinality estimation is perhaps the simplest non-trivial statistical problem that can be solved via sketching. Industrially-deployed sketches like HyperLogLog, MinHash, and PCSA are mergeable, which means that large data sets can be sketched in a distributed environment, and then merged into a single sketch of the whole data set. In the last decade a variety of sketches have been developed that are non-mergeable, but attractive for other reasons. They are simpler, their cardinality estimates are strictly unbiased, and they have substantially lower variance. We evaluate sketching schemes on a reasonably level playing field, in terms of their memory-variance product (MVP). E.g., a sketch that occupies 5m bits and whose relative variance is 2/m (standard error √{2/m}) has an MVP of 10. Our contributions are as follows. - Cohen [Edith Cohen, 2015] and Ting [Daniel Ting, 2014] independently discovered what we call the {Martingale transform} for converting a mergeable sketch into a non-mergeable sketch. We present a simpler way to analyze the limiting MVP of Martingale-type sketches. - Pettie and Wang proved that the Fishmonger sketch [Seth Pettie and Dingyu Wang, 2021] has the best MVP, H₀/I₀ ≈ 1.98, among a class of mergeable sketches called "linearizable" sketches. (H₀ and I₀ are precisely defined constants.) We prove that the Martingale transform is optimal in the non-mergeable world, and that Martingale Fishmonger in particular is optimal among linearizable sketches, with an MVP of H₀/2 ≈ 1.63. E.g., this is circumstantial evidence that to achieve 1% standard error, we cannot do better than a 2 kilobyte sketch. - Martingale Fishmonger is neither simple nor practical. We develop a new mergeable sketch called Curtain that strikes a nice balance between simplicity and efficiency, and prove that Martingale Curtain has limiting MVP≈ 2.31. It can be updated with O(1) memory accesses and it has lower empirical variance than Martingale LogLog, a practical non-mergeable version of HyperLogLog.

Cite as

Seth Pettie, Dingyu Wang, and Longhui Yin. Non-Mergeable Sketching for Cardinality Estimation. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 104:1-104:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{pettie_et_al:LIPIcs.ICALP.2021.104,
  author =	{Pettie, Seth and Wang, Dingyu and Yin, Longhui},
  title =	{{Non-Mergeable Sketching for Cardinality Estimation}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{104:1--104:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.104},
  URN =		{urn:nbn:de:0030-drops-141731},
  doi =		{10.4230/LIPIcs.ICALP.2021.104},
  annote =	{Keywords: Cardinality Estimation, Sketching}
}
Document
Track A: Algorithms, Complexity and Games
The Structure of Minimum Vertex Cuts

Authors: Seth Pettie and Longhui Yin

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
In this paper we continue a long line of work on representing the cut structure of graphs. We classify the types of minimum vertex cuts, and the possible relationships between multiple minimum vertex cuts. As a consequence of these investigations, we exhibit a simple O(κ n)-space data structure that can quickly answer pairwise (κ+1)-connectivity queries in a κ-connected graph. We also show how to compute the "closest" κ-cut to every vertex in near linear Õ(m+poly(κ)n) time.

Cite as

Seth Pettie and Longhui Yin. The Structure of Minimum Vertex Cuts. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 105:1-105:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{pettie_et_al:LIPIcs.ICALP.2021.105,
  author =	{Pettie, Seth and Yin, Longhui},
  title =	{{The Structure of Minimum Vertex Cuts}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{105:1--105:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.105},
  URN =		{urn:nbn:de:0030-drops-141746},
  doi =		{10.4230/LIPIcs.ICALP.2021.105},
  annote =	{Keywords: Graph theory, vertex connectivity, data structures}
}
Document
Efficient Gauss Elimination for Near-Quadratic Matrices with One Short Random Block per Row, with Applications

Authors: Martin Dietzfelbinger and Stefan Walzer

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
In this paper we identify a new class of sparse near-quadratic random Boolean matrices that have full row rank over F_2 = {0,1} with high probability and can be transformed into echelon form in almost linear time by a simple version of Gauss elimination. The random matrix with dimensions n(1-epsilon) x n is generated as follows: In each row, identify a block of length L = O((log n)/epsilon) at a random position. The entries outside the block are 0, the entries inside the block are given by fair coin tosses. Sorting the rows according to the positions of the blocks transforms the matrix into a kind of band matrix, on which, as it turns out, Gauss elimination works very efficiently with high probability. For the proof, the effects of Gauss elimination are interpreted as a ("coin-flipping") variant of Robin Hood hashing, whose behaviour can be captured in terms of a simple Markov model from queuing theory. Bounds for expected construction time and high success probability follow from results in this area. They readily extend to larger finite fields in place of F_2. By employing hashing, this matrix family leads to a new implementation of a retrieval data structure, which represents an arbitrary function f: S -> {0,1} for some set S of m = (1-epsilon)n keys. It requires m/(1-epsilon) bits of space, construction takes O(m/epsilon^2) expected time on a word RAM, while queries take O(1/epsilon) time and access only one contiguous segment of O((log m)/epsilon) bits in the representation (O(1/epsilon) consecutive words on a word RAM). The method is readily implemented and highly practical, and it is competitive with state-of-the-art methods. In a more theoretical variant, which works only for unrealistically large S, we can even achieve construction time O(m/epsilon) and query time O(1), accessing O(1) contiguous memory words for a query. By well-established methods the retrieval data structure leads to efficient constructions of (static) perfect hash functions and (static) Bloom filters with almost optimal space and very local storage access patterns for queries.

Cite as

Martin Dietzfelbinger and Stefan Walzer. Efficient Gauss Elimination for Near-Quadratic Matrices with One Short Random Block per Row, with Applications. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 39:1-39:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{dietzfelbinger_et_al:LIPIcs.ESA.2019.39,
  author =	{Dietzfelbinger, Martin and Walzer, Stefan},
  title =	{{Efficient Gauss Elimination for Near-Quadratic Matrices with One Short Random Block per Row, with Applications}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{39:1--39:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.39},
  URN =		{urn:nbn:de:0030-drops-111602},
  doi =		{10.4230/LIPIcs.ESA.2019.39},
  annote =	{Keywords: Random Band Matrix, Gauss Elimination, Retrieval, Hashing, Succinct Data Structure, Randomised Data Structure, Robin Hood Hashing, Bloom Filter}
}
Document
Simple Contention Resolution via Multiplicative Weight Updates

Authors: Yi-Jun Chang, Wenyu Jin, and Seth Pettie

Published in: OASIcs, Volume 69, 2nd Symposium on Simplicity in Algorithms (SOSA 2019)


Abstract
We consider the classic contention resolution problem, in which devices conspire to share some common resource, for which they each need temporary and exclusive access. To ground the discussion, suppose (identical) devices wake up at various times, and must send a single packet over a shared multiple-access channel. In each time step they may attempt to send their packet; they receive ternary feedback {0,1,2^+} from the channel, 0 indicating silence (no one attempted transmission), 1 indicating success (one device successfully transmitted), and 2^+ indicating noise. We prove that a simple strategy suffices to achieve a channel utilization rate of 1/e-O(epsilon), for any epsilon>0. In each step, device i attempts to send its packet with probability p_i, then applies a rudimentary multiplicative weight-type update to p_i. p_i <- { p_i * e^{epsilon} upon hearing silence (0), p_i upon hearing success (1), p_i * e^{-epsilon/(e-2)} upon hearing noise (2^+) }. This scheme works well even if the introduction of devices/packets is adversarial, and even if the adversary can jam time slots (make noise) at will. We prove that if the adversary jams J time slots, then this scheme will achieve channel utilization 1/e-epsilon, excluding O(J) wasted slots. Results similar to these (Bender, Fineman, Gilbert, Young, SODA 2016) were already achieved, but with a lower constant efficiency (less than 0.05) and a more complex algorithm.

Cite as

Yi-Jun Chang, Wenyu Jin, and Seth Pettie. Simple Contention Resolution via Multiplicative Weight Updates. In 2nd Symposium on Simplicity in Algorithms (SOSA 2019). Open Access Series in Informatics (OASIcs), Volume 69, pp. 16:1-16:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{chang_et_al:OASIcs.SOSA.2019.16,
  author =	{Chang, Yi-Jun and Jin, Wenyu and Pettie, Seth},
  title =	{{Simple Contention Resolution via Multiplicative Weight Updates}},
  booktitle =	{2nd Symposium on Simplicity in Algorithms (SOSA 2019)},
  pages =	{16:1--16:16},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-099-6},
  ISSN =	{2190-6807},
  year =	{2019},
  volume =	{69},
  editor =	{Fineman, Jeremy T. and Mitzenmacher, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SOSA.2019.16},
  URN =		{urn:nbn:de:0030-drops-100426},
  doi =		{10.4230/OASIcs.SOSA.2019.16},
  annote =	{Keywords: Contention resolution, multiplicative weight update method}
}
Document
Randomized (Delta+1)-Coloring in O(log* Delta) Congested Clique Rounds

Authors: Merav Parter and Hsin-Hao Su

Published in: LIPIcs, Volume 121, 32nd International Symposium on Distributed Computing (DISC 2018)


Abstract
(Delta+1)-vertex coloring is one of the most fundamental symmetry breaking graph problems, receiving tremendous amount of attention over the last decades. We consider the congested clique model where in each round, every pair of vertices can exchange O(log n) bits of information. In a recent breakthrough, Yi-Jun Chang, Wenzheng Li, and Seth Pettie [CLP-STOC'18] presented a randomized (Delta+1)-list coloring algorithm in the LOCAL model that works in O(log^*n+Det_{deg}(log log n)) rounds, where Det_{deg}(n') is the deterministic LOCAL complexity of (deg+1)-list coloring algorithm on n'-vertex graphs. Unfortunately, the CLP algorithm uses large messages and hence cannot be efficiently implemented in the congested clique model when the maximum degree Delta is large (in particular, when Delta=omega(sqrt{n})). Merav Parter [P-ICALP'18] recently provided a randomized (Delta+1)-coloring algorithm in O(log log Delta * log^* Delta) congested clique rounds based on a careful partitioning of the input graph into almost-independent subgraphs with maximum degree sqrt{n}. In this work, we significantly improve upon this result and present a randomized (Delta+1)-coloring algorithm with O(log^* Delta) rounds, with high probability. At the heart of our algorithm is an adaptation of the CLP algorithm for coloring a subgraph with o(n) vertices and maximum degree Omega(n^{5/8}) in O(log^* Delta) rounds. The approach is built upon a combination of techniques, this includes: the graph sparsification of [Parter-ICALP'18], and a palette sampling technique adopted to the CLP framework.

Cite as

Merav Parter and Hsin-Hao Su. Randomized (Delta+1)-Coloring in O(log* Delta) Congested Clique Rounds. In 32nd International Symposium on Distributed Computing (DISC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 121, pp. 39:1-39:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{parter_et_al:LIPIcs.DISC.2018.39,
  author =	{Parter, Merav and Su, Hsin-Hao},
  title =	{{Randomized (Delta+1)-Coloring in O(log* Delta) Congested Clique Rounds}},
  booktitle =	{32nd International Symposium on Distributed Computing (DISC 2018)},
  pages =	{39:1--39:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-092-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{121},
  editor =	{Schmid, Ulrich and Widder, Josef},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2018.39},
  URN =		{urn:nbn:de:0030-drops-98286},
  doi =		{10.4230/LIPIcs.DISC.2018.39},
  annote =	{Keywords: Distributed Graph Algorithms, Coloring, congested clique}
}
Document
Fine-grained Lower Bounds on Cops and Robbers

Authors: Sebastian Brandt, Seth Pettie, and Jara Uitto

Published in: LIPIcs, Volume 112, 26th Annual European Symposium on Algorithms (ESA 2018)


Abstract
Cops and Robbers is a classic pursuit-evasion game played between a group of g cops and one robber on an undirected N-vertex graph G. We prove that the complexity of deciding the winner in the game under optimal play requires Omega (N^{g-o(1)}) time on instances with O(N log^2 N) edges, conditioned on the Strong Exponential Time Hypothesis. Moreover, the problem of calculating the minimum number of cops needed to win the game is 2^{Omega (sqrt{N})}, conditioned on the weaker Exponential Time Hypothesis. Our conditional lower bound comes very close to a conditional upper bound: if Meyniel's conjecture holds then the cop number can be decided in 2^{O(sqrt{N}log N)} time. In recent years, the Strong Exponential Time Hypothesis has been used to obtain many lower bounds on classic combinatorial problems, such as graph diameter, LCS, EDIT-DISTANCE, and REGEXP matching. To our knowledge, these are the first conditional (S)ETH-hard lower bounds on a strategic game.

Cite as

Sebastian Brandt, Seth Pettie, and Jara Uitto. Fine-grained Lower Bounds on Cops and Robbers. In 26th Annual European Symposium on Algorithms (ESA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 112, pp. 9:1-9:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{brandt_et_al:LIPIcs.ESA.2018.9,
  author =	{Brandt, Sebastian and Pettie, Seth and Uitto, Jara},
  title =	{{Fine-grained Lower Bounds on Cops and Robbers}},
  booktitle =	{26th Annual European Symposium on Algorithms (ESA 2018)},
  pages =	{9:1--9:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-081-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{112},
  editor =	{Azar, Yossi and Bast, Hannah and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2018.9},
  URN =		{urn:nbn:de:0030-drops-94725},
  doi =		{10.4230/LIPIcs.ESA.2018.9},
  annote =	{Keywords: Cops and Robbers}
}
Document
Improved Bounds for Multipass Pairing Heaps and Path-Balanced Binary Search Trees

Authors: Dani Dorfman, Haim Kaplan, László Kozma, Seth Pettie, and Uri Zwick

Published in: LIPIcs, Volume 112, 26th Annual European Symposium on Algorithms (ESA 2018)


Abstract
We revisit multipass pairing heaps and path-balanced binary search trees (BSTs), two classical algorithms for data structure maintenance. The pairing heap is a simple and efficient "self-adjusting" heap, introduced in 1986 by Fredman, Sedgewick, Sleator, and Tarjan. In the multipass variant (one of the original pairing heap variants described by Fredman et al.) the minimum item is extracted via repeated pairing rounds in which neighboring siblings are linked. Path-balanced BSTs, proposed by Sleator (cf. Subramanian, 1996), are a natural alternative to Splay trees (Sleator and Tarjan, 1983). In a path-balanced BST, whenever an item is accessed, the search path leading to that item is re-arranged into a balanced tree. Despite their simplicity, both algorithms turned out to be difficult to analyse. Fredman et al. showed that operations in multipass pairing heaps take amortized O(log n * log log n / log log log n) time. For searching in path-balanced BSTs, Balasubramanian and Raman showed in 1995 the same amortized time bound of O(log n * log log n / log log log n), using a different argument. In this paper we show an explicit connection between the two algorithms and improve both bounds to O(log n * 2^{log^* n} * log^* n), respectively O(log n * 2^{log^* n} * (log^* n)^2), where log^* denotes the slowly growing iterated logarithm function. These are the first improvements in more than three, resp. two decades, approaching the information-theoretic lower bound of Omega(log n).

Cite as

Dani Dorfman, Haim Kaplan, László Kozma, Seth Pettie, and Uri Zwick. Improved Bounds for Multipass Pairing Heaps and Path-Balanced Binary Search Trees. In 26th Annual European Symposium on Algorithms (ESA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 112, pp. 24:1-24:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{dorfman_et_al:LIPIcs.ESA.2018.24,
  author =	{Dorfman, Dani and Kaplan, Haim and Kozma, L\'{a}szl\'{o} and Pettie, Seth and Zwick, Uri},
  title =	{{Improved Bounds for Multipass Pairing Heaps and Path-Balanced Binary Search Trees}},
  booktitle =	{26th Annual European Symposium on Algorithms (ESA 2018)},
  pages =	{24:1--24:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-081-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{112},
  editor =	{Azar, Yossi and Bast, Hannah and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2018.24},
  URN =		{urn:nbn:de:0030-drops-94879},
  doi =		{10.4230/LIPIcs.ESA.2018.24},
  annote =	{Keywords: data structure, priority queue, pairing heap, binary search tree}
}
Document
Lower Bounds on Sparse Spanners, Emulators, and Diameter-reducing shortcuts

Authors: Shang-En Huang and Seth Pettie

Published in: LIPIcs, Volume 101, 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018)


Abstract
We prove better lower bounds on additive spanners and emulators, which are lossy compression schemes for undirected graphs, as well as lower bounds on shortcut sets, which reduce the diameter of directed graphs. We show that any O(n)-size shortcut set cannot bring the diameter below Omega(n^{1/6}), and that any O(m)-size shortcut set cannot bring it below Omega(n^{1/11}). These improve Hesse's [Hesse, 2003] lower bound of Omega(n^{1/17}). By combining these constructions with Abboud and Bodwin's [Abboud and Bodwin, 2017] edge-splitting technique, we get additive stretch lower bounds of +Omega(n^{1/13}) for O(n)-size spanners and +Omega(n^{1/18}) for O(n)-size emulators. These improve Abboud and Bodwin's +Omega(n^{1/22}) lower bounds.

Cite as

Shang-En Huang and Seth Pettie. Lower Bounds on Sparse Spanners, Emulators, and Diameter-reducing shortcuts. In 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 101, pp. 26:1-26:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{huang_et_al:LIPIcs.SWAT.2018.26,
  author =	{Huang, Shang-En and Pettie, Seth},
  title =	{{Lower Bounds on Sparse Spanners, Emulators, and Diameter-reducing shortcuts}},
  booktitle =	{16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018)},
  pages =	{26:1--26:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-068-2},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{101},
  editor =	{Eppstein, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2018.26},
  URN =		{urn:nbn:de:0030-drops-88521},
  doi =		{10.4230/LIPIcs.SWAT.2018.26},
  annote =	{Keywords: additive spanners, emulators, shortcutting directed graphs}
}
Document
Simultaneously Load Balancing for Every p-norm, With Reassignments

Authors: Aaron Bernstein, Tsvi Kopelowitz, Seth Pettie, Ely Porat, and Clifford Stein

Published in: LIPIcs, Volume 67, 8th Innovations in Theoretical Computer Science Conference (ITCS 2017)


Abstract
This paper investigates the task of load balancing where the objective function is to minimize the p-norm of loads, for p\geq 1, in both static and incremental settings. We consider two closely related load balancing problems. In the bipartite matching problem we are given a bipartite graph G=(C\cup S, E) and the goal is to assign each client c\in C to a server s\in S so that the p-norm of assignment loads on S is minimized. In the graph orientation problem the goal is to orient (direct) the edges of a given undirected graph while minimizing the p-norm of the out-degrees. The graph orientation problem is a special case of the bipartite matching problem, but less complex, which leads to simpler algorithms. For the graph orientation problem we show that the celebrated Chiba-Nishizeki peeling algorithm provides a simple linear time load balancing scheme whose output is an orientation that is 2-competitive, in a p-norm sense, for all p\geq 1. For the bipartite matching problem we first provide an offline algorithm that computes an optimal assignment. We then extend this solution to the online bipartite matching problem with reassignments, where vertices from C arrive in an online fashion together with their corresponding edges, and we are allowed to reassign an amortized O(1) vertices from C each time a new vertex arrives. In this online scenario we show how to maintain a single assignment that is 8-competitive, in a p-norm sense, for all p\geq 1.

Cite as

Aaron Bernstein, Tsvi Kopelowitz, Seth Pettie, Ely Porat, and Clifford Stein. Simultaneously Load Balancing for Every p-norm, With Reassignments. In 8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 67, pp. 51:1-51:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{bernstein_et_al:LIPIcs.ITCS.2017.51,
  author =	{Bernstein, Aaron and Kopelowitz, Tsvi and Pettie, Seth and Porat, Ely and Stein, Clifford},
  title =	{{Simultaneously Load Balancing for Every p-norm, With Reassignments}},
  booktitle =	{8th Innovations in Theoretical Computer Science Conference (ITCS 2017)},
  pages =	{51:1--51:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-029-3},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{67},
  editor =	{Papadimitriou, Christos H.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2017.51},
  URN =		{urn:nbn:de:0030-drops-82009},
  doi =		{10.4230/LIPIcs.ITCS.2017.51},
  annote =	{Keywords: Online Matching, Graph Orientation, Minmizing the p-norm}
}
Document
Structure and Hardness in P (Dagstuhl Seminar 16451)

Authors: Moshe Lewenstein, Seth Pettie, and Virginia Vassilevska Williams

Published in: Dagstuhl Reports, Volume 6, Issue 11 (2017)


Abstract
This document contains description of the talks at the Dagstuhl seminar 16451 "Structure and Hardness in P". The main goal of the seminar was to bring together researchers from several disciplines and connect those who work on proving conditional lower bounds with those who or may benefit from it. This resulted in an extensive list of open problems which is also provided.

Cite as

Moshe Lewenstein, Seth Pettie, and Virginia Vassilevska Williams. Structure and Hardness in P (Dagstuhl Seminar 16451). In Dagstuhl Reports, Volume 6, Issue 11, pp. 1-34, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@Article{lewenstein_et_al:DagRep.6.11.1,
  author =	{Lewenstein, Moshe and Pettie, Seth and Vassilevska Williams, Virginia},
  title =	{{Structure and Hardness in P (Dagstuhl Seminar 16451)}},
  pages =	{1--34},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2017},
  volume =	{6},
  number =	{11},
  editor =	{Lewenstein, Moshe and Pettie, Seth and Vassilevska Williams, Virginia},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.6.11.1},
  URN =		{urn:nbn:de:0030-drops-70373},
  doi =		{10.4230/DagRep.6.11.1},
  annote =	{Keywords: Algorithmic equivalences, Classifying P, Hardness assumptions, Lower bounds}
}
  • Refine by Author
  • 15 Pettie, Seth
  • 3 Kopelowitz, Tsvi
  • 2 Bernstein, Aaron
  • 2 Brandt, Sebastian
  • 2 Dani, Varsha
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Data structures design and analysis
  • 2 Theory of computation → Distributed algorithms
  • 2 Theory of computation → Sketching and sampling
  • 1 Mathematics of computing → Graph theory
  • 1 Mathematics of computing → Paths and connectivity problems
  • Show More...

  • Refine by Keyword
  • 2 Sketching
  • 1 3-coloring
  • 1 3SUM
  • 1 Algorithmic equivalences
  • 1 Bloom Filter
  • Show More...

  • Refine by Type
  • 19 document

  • Refine by Publication Year
  • 5 2021
  • 4 2018
  • 2 2016
  • 2 2017
  • 2 2019
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail