Document

**Published in:** LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)

In One-of-a-Set TSP, also known as the Generalised TSP, the input is a collection 𝒫 : = {P_1, ..., P_r} of sets in a metric space and the goal is to compute a minimum-length tour that visits one element from each set.
In the Euclidean variant of this problem, each P_i is a set of points in ℝ^d that is contained in a given hypercube H_i. We investigate how the complexity of Euclidean One-of-a-Set TSP depends on λ, the ply of the set ℋ := {H_1, ..., H_r} of hypercubes (The ply is the smallest λ such that every point in ℝ^d is in at most λ of the hypercubes). Furthermore, we show that the problem can be solved in 2^O(λ^{1/d} n^{1-1/d}) time, where n : = ∑_{i=1}^r |P_i| is the total number of points. Finally, we show that the problem cannot be solved in 2^o(n) time when λ = Θ(n), unless the Exponential Time Hypothesis (ETH) fails.
In Rectilinear One-of-a-Cube TSP, the input is a set ℋ of hypercubes in ℝ^d and the goal is to compute a minimum-length rectilinear tour that visits every hypercube. We show that the problem can be solved in 2^O(λ^{1/d} n^{1-1/d} log n) time, where n is the number of hypercubes.

Henk Alkema and Mark de Berg. Geometric TSP on Sets. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 6:1-6:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{alkema_et_al:LIPIcs.ISAAC.2023.6, author = {Alkema, Henk and de Berg, Mark}, title = {{Geometric TSP on Sets}}, booktitle = {34th International Symposium on Algorithms and Computation (ISAAC 2023)}, pages = {6:1--6:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-289-1}, ISSN = {1868-8969}, year = {2023}, volume = {283}, editor = {Iwata, Satoru and Kakimura, Naonori}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.6}, URN = {urn:nbn:de:0030-drops-193083}, doi = {10.4230/LIPIcs.ISAAC.2023.6}, annote = {Keywords: Euclidean TSP, TSP on Sets, Rectilinear TSP, TSP on Neighbourhoods} }

Document

**Published in:** LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)

We study various clustering problems for a set D of n points in a polygonal domain P under the geodesic distance. We start by studying the discrete k-median problem for D in P. We develop an exact algorithm which runs in time poly(n,m) + n^O(√k), where m is the complexity of the domain. Subsequently, we show that our approach can also be applied to solve the k-center problem with z outliers in the same running time. Next, we turn our attention to approximation algorithms. In particular, we study the k-center problem in a simple polygon and show how to obtain a (1+ε)-approximation algorithm which runs in time 2^{O((k log(k))/ε)} (n log(m) + m). To obtain this, we demonstrate that a previous approach by Bădoiu et al. [Bâdoiu et al., 2002; Bâdoiu and Clarkson, 2003] that works in ℝ^d, carries over to the setting of simple polygons. Finally, we study the 1-center problem in a simple polygon in the presence of z outliers. We show that a coreset C of size O(z) exists, such that the 1-center of C is a 3-approximation of the 1-center of D, when z outliers are allowed. This result is actually more general and carries over to any metric space, which to the best of our knowledge was not known so far. By extending this approach, we show that for the 1-center problem under the Euclidean metric in ℝ², there exists an ε-coreset of size O(z/ε).

Mark de Berg, Leyla Biabani, Morteza Monemizadeh, and Leonidas Theocharous. Clustering in Polygonal Domains. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 23:1-23:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.ISAAC.2023.23, author = {de Berg, Mark and Biabani, Leyla and Monemizadeh, Morteza and Theocharous, Leonidas}, title = {{Clustering in Polygonal Domains}}, booktitle = {34th International Symposium on Algorithms and Computation (ISAAC 2023)}, pages = {23:1--23:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-289-1}, ISSN = {1868-8969}, year = {2023}, volume = {283}, editor = {Iwata, Satoru and Kakimura, Naonori}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.23}, URN = {urn:nbn:de:0030-drops-193252}, doi = {10.4230/LIPIcs.ISAAC.2023.23}, annote = {Keywords: clustering, geodesic distance, coreset, outliers} }

Document

**Published in:** LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)

Recently, many studies have been devoted to finding diverse solutions in classical combinatorial problems, such as Vertex Cover (Baste et al., IJCAI'20), Matching (Fomin et al., ISAAC'20) and Spanning Tree (Hanaka et al., AAAI'21). Finding diverse solutions is important in settings where the user is not able to specify all criteria of the desired solution. Motivated by an application in the field of system identification, we initiate the algorithmic study of k-Diverse Minimum s-t Cuts which, given a directed graph G = (V, E), two specified vertices s,t ∈ V, and an integer k > 0, asks for a collection of k minimum s-t cuts in G that has maximum diversity. We investigate the complexity of the problem for two diversity measures for a collection of cuts: (i) the sum of all pairwise Hamming distances, and (ii) the cardinality of the union of cuts in the collection. We prove that k-Diverse Minimum s-t Cuts can be solved in strongly polynomial time for both diversity measures via submodular function minimization. We obtain this result by establishing a connection between ordered collections of minimum s-t cuts and the theory of distributive lattices. When restricted to finding only collections of mutually disjoint solutions, we provide a more practical algorithm that finds a maximum set of pairwise disjoint minimum s-t cuts. For graphs with small minimum s-t cut, it runs in the time of a single max-flow computation. These results stand in contrast to the problem of finding k diverse global minimum cuts - which is known to be NP-hard even for the disjoint case (Hanaka et al., AAAI'23) - and partially answer a long-standing open question of Wagner (Networks 1990) about improving the complexity of finding disjoint collections of minimum s-t cuts.

Mark de Berg, Andrés López Martínez, and Frits Spieksma. Finding Diverse Minimum s-t Cuts. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 24:1-24:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.ISAAC.2023.24, author = {de Berg, Mark and L\'{o}pez Mart{\'\i}nez, Andr\'{e}s and Spieksma, Frits}, title = {{Finding Diverse Minimum s-t Cuts}}, booktitle = {34th International Symposium on Algorithms and Computation (ISAAC 2023)}, pages = {24:1--24:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-289-1}, ISSN = {1868-8969}, year = {2023}, volume = {283}, editor = {Iwata, Satoru and Kakimura, Naonori}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.24}, URN = {urn:nbn:de:0030-drops-193267}, doi = {10.4230/LIPIcs.ISAAC.2023.24}, annote = {Keywords: S-T MinCut, Diversity, Lattice Theory, Submodular Function Minimization} }

Document

APPROX

**Published in:** LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)

We study Dominating Set and Independent Set for dynamic graphs in the vertex-arrival model. We say that a dynamic algorithm for one of these problems is k-stable when it makes at most k changes to its output independent set or dominating set upon the arrival of each vertex. We study trade-offs between the stability parameter k of the algorithm and the approximation ratio it achieves. We obtain the following results.
- We show that there is a constant ε^* > 0 such that any dynamic (1+ε^*)-approximation algorithm for Dominating Set has stability parameter Ω(n), even for bipartite graphs of maximum degree 4.
- We present algorithms with very small stability parameters for Dominating Set in the setting where the arrival degree of each vertex is upper bounded by d. In particular, we give a 1-stable (d+1)²-approximation, and a 3-stable (9d/2)-approximation algorithm.
- We show that there is a constant ε^* > 0 such that any dynamic (1+ε^*)-approximation algorithm for Independent Set has stability parameter Ω(n), even for bipartite graphs of maximum degree 3.
- Finally, we present a 2-stable O(d)-approximation algorithm for Independent Set, in the setting where the average degree of the graph is upper bounded by some constant d at all times.

Mark de Berg, Arpan Sadhukhan, and Frits Spieksma. Stable Approximation Algorithms for Dominating Set and Independent Set. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 27:1-27:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.APPROX/RANDOM.2023.27, author = {de Berg, Mark and Sadhukhan, Arpan and Spieksma, Frits}, title = {{Stable Approximation Algorithms for Dominating Set and Independent Set}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)}, pages = {27:1--27:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-296-9}, ISSN = {1868-8969}, year = {2023}, volume = {275}, editor = {Megow, Nicole and Smith, Adam}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.27}, URN = {urn:nbn:de:0030-drops-188527}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2023.27}, annote = {Keywords: Dynamic algorithms, approximation algorithms, stability, dominating set, independent set} }

Document

**Published in:** LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)

We study the Traveling Salesman Problem inside a simple polygon. In this problem, which we call tsp in a simple polygon, we wish to compute a shortest tour that visits a given set S of n sites inside a simple polygon P with m edges while staying inside the polygon. This natural problem has, to the best of our knowledge, not been studied so far from a theoretical perspective. It can be solved exactly in poly(n,m) + 2^O(√nlog n) time, using an algorithm by Marx, Pilipczuk, and Pilipczuk (FOCS 2018) for subset tsp as a subroutine. We present a much simpler algorithm that solves tsp in a simple polygon directly and that has the same running time.

Henk Alkema, Mark de Berg, Morteza Monemizadeh, and Leonidas Theocharous. TSP in a Simple Polygon. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 5:1-5:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{alkema_et_al:LIPIcs.ESA.2022.5, author = {Alkema, Henk and de Berg, Mark and Monemizadeh, Morteza and Theocharous, Leonidas}, title = {{TSP in a Simple Polygon}}, booktitle = {30th Annual European Symposium on Algorithms (ESA 2022)}, pages = {5:1--5:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-247-1}, ISSN = {1868-8969}, year = {2022}, volume = {244}, editor = {Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.5}, URN = {urn:nbn:de:0030-drops-169434}, doi = {10.4230/LIPIcs.ESA.2022.5}, annote = {Keywords: Traveling Salesman Problem, Subexponential algorithms, TSP with obstacles} }

Document

**Published in:** LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)

A polygon C is an intersecting polygon for a set O of objects in ℝ² if C intersects each object in O, where the polygon includes its interior. We study the problem of computing the minimum-perimeter intersecting polygon and the minimum-area convex intersecting polygon for a given set O of objects. We present an FPTAS for both problems for the case where O is a set of possibly intersecting convex polygons in the plane of total complexity n.
Furthermore, we present an exact polynomial-time algorithm for the minimum-perimeter intersecting polygon for the case where O is a set of n possibly intersecting segments in the plane. So far, polynomial-time exact algorithms were only known for the minimum perimeter intersecting polygon of lines or of disjoint segments.

Antonios Antoniadis, Mark de Berg, Sándor Kisfaludi-Bak, and Antonis Skarlatos. Computing Smallest Convex Intersecting Polygons. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 9:1-9:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{antoniadis_et_al:LIPIcs.ESA.2022.9, author = {Antoniadis, Antonios and de Berg, Mark and Kisfaludi-Bak, S\'{a}ndor and Skarlatos, Antonis}, title = {{Computing Smallest Convex Intersecting Polygons}}, booktitle = {30th Annual European Symposium on Algorithms (ESA 2022)}, pages = {9:1--9:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-247-1}, ISSN = {1868-8969}, year = {2022}, volume = {244}, editor = {Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.9}, URN = {urn:nbn:de:0030-drops-169470}, doi = {10.4230/LIPIcs.ESA.2022.9}, annote = {Keywords: convex hull, imprecise points, computational geometry} }

Document

**Published in:** LIPIcs, Volume 227, 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)

Let P be a set of points in ℝ^d (or some other metric space), where each point p ∈ P has an associated transmission range, denoted ρ(p). The range assignment ρ induces a directed communication graph G_{ρ}(P) on P, which contains an edge (p,q) iff |pq| ⩽ ρ(p). In the broadcast range-assignment problem, the goal is to assign the ranges such that G_{ρ}(P) contains an arborescence rooted at a designated root node and the cost ∑_{p ∈ P} ρ(p)² of the assignment is minimized.
We study the dynamic version of this problem. In particular, we study trade-offs between the stability of the solution - the number of ranges that are modified when a point is inserted into or deleted from P - and its approximation ratio. To this end we introduce the concept of k-stable algorithms, which are algorithms that modify the range of at most k points when they update the solution. We also introduce the concept of a stable approximation scheme, or SAS for short. A SAS is an update algorithm alg that, for any given fixed parameter ε > 0, is k(ε)-stable and that maintains a solution with approximation ratio 1+ε, where the stability parameter k(ε) only depends on ε and not on the size of P. We study such trade-offs in three settings.
- For the problem in ℝ¹, we present a SAS with k(ε) = O(1/ε). Furthermore, we prove that this is tight in the worst case: any SAS for the problem must have k(ε) = Ω(1/ε). We also present algorithms with very small stability parameters: a 1-stable (6+2√5)-approximation algorithm - this algorithm can only handle insertions - a (trivial) 2-stable 2-approximation algorithm, and a 3-stable 1.97-approximation algorithm.
- For the problem in 𝕊¹ (that is, when the underlying space is a circle) we prove that no SAS exists. This is in spite of the fact that, for the static problem in 𝕊¹, we prove that an optimal solution can always be obtained by cutting the circle at an appropriate point and solving the resulting problem in ℝ¹.
- For the problem in ℝ², we also prove that no SAS exists, and we present a O(1)-stable O(1)-approximation algorithm. Most results generalize to when the range-assignment cost is ∑_{p ∈ P} ρ(p)^{α}, for some constant α > 1. All omitted theorems and proofs are available in the full version of the paper [Mark de Berg et al., 2021].

Mark de Berg, Arpan Sadhukhan, and Frits Spieksma. Stable Approximation Algorithms for the Dynamic Broadcast Range-Assignment Problem. In 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 227, pp. 15:1-15:21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.SWAT.2022.15, author = {de Berg, Mark and Sadhukhan, Arpan and Spieksma, Frits}, title = {{Stable Approximation Algorithms for the Dynamic Broadcast Range-Assignment Problem}}, booktitle = {18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)}, pages = {15:1--15:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-236-5}, ISSN = {1868-8969}, year = {2022}, volume = {227}, editor = {Czumaj, Artur and Xin, Qin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2022.15}, URN = {urn:nbn:de:0030-drops-161756}, doi = {10.4230/LIPIcs.SWAT.2022.15}, annote = {Keywords: Computational geometry, online algorithms, broadcast range assignment, stable approximation schemes} }

Document

**Published in:** LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)

We consider the following surveillance problem: Given a set P of n sites in a metric space and a set R of k robots with the same maximum speed, compute a patrol schedule of minimum latency for the robots. Here a patrol schedule specifies for each robot an infinite sequence of sites to visit (in the given order) and the latency L of a schedule is the maximum latency of any site, where the latency of a site s is the supremum of the lengths of the time intervals between consecutive visits to s.
When k = 1 the problem is equivalent to the travelling salesman problem (TSP) and thus it is NP-hard. For k ≥ 2 (which is the version we are interested in) the problem becomes even more challenging; for example, it is not even clear if the decision version of the problem is decidable, in particular in the Euclidean case.
We have two main results. We consider cyclic solutions in which the set of sites must be partitioned into 𝓁 groups, for some 𝓁 ≤ k, and each group is assigned a subset of the robots that move along the travelling salesman tour of the group at equal distance from each other. Our first main result is that approximating the optimal latency of the class of cyclic solutions can be reduced to approximating the optimal travelling salesman tour on some input, with only a 1+ε factor loss in the approximation factor and an O((k/ε) ^k) factor loss in the runtime, for any ε > 0. Our second main result shows that an optimal cyclic solution is a 2(1-1/k)-approximation of the overall optimal solution. Note that for k = 2 this implies that an optimal cyclic solution is optimal overall. We conjecture that this is true for k ≥ 3 as well.
The results have a number of consequences. For the Euclidean version of the problem, for instance, combining our results with known results on Euclidean TSP, yields a PTAS for approximating an optimal cyclic solution, and it yields a (2(1-1/k)+ε)-approximation of the optimal unrestricted (not necessarily cyclic) solution. If the conjecture mentioned above is true, then our algorithm is actually a PTAS for the general problem in the Euclidean setting. Similar results can be obtained by combining our results with other known TSP algorithms in non-Euclidean metrics.

Peyman Afshani, Mark de Berg, Kevin Buchin, Jie Gao, Maarten Löffler, Amir Nayyeri, Benjamin Raichel, Rik Sarkar, Haotian Wang, and Hao-Tsung Yang. On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 2:1-2:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{afshani_et_al:LIPIcs.SoCG.2022.2, author = {Afshani, Peyman and de Berg, Mark and Buchin, Kevin and Gao, Jie and L\"{o}ffler, Maarten and Nayyeri, Amir and Raichel, Benjamin and Sarkar, Rik and Wang, Haotian and Yang, Hao-Tsung}, title = {{On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem}}, booktitle = {38th International Symposium on Computational Geometry (SoCG 2022)}, pages = {2:1--2:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-227-3}, ISSN = {1868-8969}, year = {2022}, volume = {224}, editor = {Goaoc, Xavier and Kerber, Michael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.2}, URN = {urn:nbn:de:0030-drops-160109}, doi = {10.4230/LIPIcs.SoCG.2022.2}, annote = {Keywords: Approximation, Motion Planning, Scheduling} }

Document

**Published in:** LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)

We consider the unlabeled motion-planning problem of m unit-disc robots moving in a simple polygonal workspace of n edges. The goal is to find a motion plan that moves the robots to a given set of m target positions. For the unlabeled variant, it does not matter which robot reaches which target position as long as all target positions are occupied in the end.
If the workspace has narrow passages such that the robots cannot fit through them, then the free configuration space, representing all possible unobstructed positions of the robots, will consist of multiple connected components. Even if in each component of the free space the number of targets matches the number of start positions, the motion-planning problem does not always have a solution when the robots and their targets are positioned very densely. In this paper, we prove tight bounds on how much separation between start and target positions is necessary to always guarantee a solution. Moreover, we describe an algorithm that always finds a solution in time O(n log n + mn + m²) if the separation bounds are met. Specifically, we prove that the following separation is sufficient: any two start positions are at least distance 4 apart, any two target positions are at least distance 4 apart, and any pair of a start and a target positions is at least distance 3 apart. We further show that when the free space consists of a single connected component, the separation between start and target positions is not necessary.

Bahareh Banyassady, Mark de Berg, Karl Bringmann, Kevin Buchin, Henning Fernau, Dan Halperin, Irina Kostitsyna, Yoshio Okamoto, and Stijn Slot. Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 12:1-12:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{banyassady_et_al:LIPIcs.SoCG.2022.12, author = {Banyassady, Bahareh and de Berg, Mark and Bringmann, Karl and Buchin, Kevin and Fernau, Henning and Halperin, Dan and Kostitsyna, Irina and Okamoto, Yoshio and Slot, Stijn}, title = {{Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds}}, booktitle = {38th International Symposium on Computational Geometry (SoCG 2022)}, pages = {12:1--12:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-227-3}, ISSN = {1868-8969}, year = {2022}, volume = {224}, editor = {Goaoc, Xavier and Kerber, Michael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.12}, URN = {urn:nbn:de:0030-drops-160203}, doi = {10.4230/LIPIcs.SoCG.2022.12}, annote = {Keywords: motion planning, computational geometry, simple polygon} }

Document

**Published in:** LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)

We present subquadratic algorithms in the algebraic decision-tree model for several 3Sum-hard geometric problems, all of which can be reduced to the following question: Given two sets A, B, each consisting of n pairwise disjoint segments in the plane, and a set C of n triangles in the plane, we want to count, for each triangle Δ ∈ C, the number of intersection points between the segments of A and those of B that lie in Δ. The problems considered in this paper have been studied by Chan (2020), who gave algorithms that solve them, in the standard real-RAM model, in O((n²/log²n) log^O(1) log n) time. We present solutions in the algebraic decision-tree model whose cost is O(n^{60/31+ε}), for any ε > 0.
Our approach is based on a primal-dual range searching mechanism, which exploits the multi-level polynomial partitioning machinery recently developed by Agarwal, Aronov, Ezra, and Zahl (2020).
A key step in the procedure is a variant of point location in arrangements, say of lines in the plane, which is based solely on the order type of the lines, a "handicap" that turns out to be beneficial for speeding up our algorithm.

Boris Aronov, Mark de Berg, Jean Cardinal, Esther Ezra, John Iacono, and Micha Sharir. Subquadratic Algorithms for Some 3Sum-Hard Geometric Problems in the Algebraic Decision Tree Model. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 3:1-3:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{aronov_et_al:LIPIcs.ISAAC.2021.3, author = {Aronov, Boris and de Berg, Mark and Cardinal, Jean and Ezra, Esther and Iacono, John and Sharir, Micha}, title = {{Subquadratic Algorithms for Some 3Sum-Hard Geometric Problems in the Algebraic Decision Tree Model}}, booktitle = {32nd International Symposium on Algorithms and Computation (ISAAC 2021)}, pages = {3:1--3:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-214-3}, ISSN = {1868-8969}, year = {2021}, volume = {212}, editor = {Ahn, Hee-Kap and Sadakane, Kunihiko}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.3}, URN = {urn:nbn:de:0030-drops-154363}, doi = {10.4230/LIPIcs.ISAAC.2021.3}, annote = {Keywords: Computational geometry, Algebraic decision-tree model, Polynomial partitioning, Primal-dual range searching, Order types, Point location, Hierarchical partitions} }

Document

**Published in:** LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)

Let F be a set of n objects in the plane and let 𝒢^{×}(F) be its intersection graph. A balanced clique-based separator of 𝒢^{×}(F) is a set 𝒮 consisting of cliques whose removal partitions 𝒢^{×}(F) into components of size at most δ n, for some fixed constant δ < 1. The weight of a clique-based separator is defined as ∑_{C ∈ 𝒮}log (|C|+1). Recently De Berg et al. (SICOMP 2020) proved that if S consists of convex fat objects, then 𝒢^{×}(F) admits a balanced clique-based separator of weight O(√n). We extend this result in several directions, obtaining the following results.
- Map graphs admit a balanced clique-based separator of weight O(√n), which is tight in the worst case.
- Intersection graphs of pseudo-disks admit a balanced clique-based separator of weight O(n^{2/3} log n). If the pseudo-disks are polygonal and of total complexity O(n) then the weight of the separator improves to O(√n log n).
- Intersection graphs of geodesic disks inside a simple polygon admit a balanced clique-based separator of weight O(n^{2/3} log n).
- Visibility-restricted unit-disk graphs in a polygonal domain with r reflex vertices admit a balanced clique-based separator of weight O(√n + r log(n/r)), which is tight in the worst case. These results immediately imply sub-exponential algorithms for MAXIMUM INDEPENDENT SET (and, hence, VERTEX COVER), for FEEDBACK VERTEX SET, and for q-Coloring for constant q in these graph classes.

Mark de Berg, Sándor Kisfaludi-Bak, Morteza Monemizadeh, and Leonidas Theocharous. Clique-Based Separators for Geometric Intersection Graphs. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 22:1-22:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.ISAAC.2021.22, author = {de Berg, Mark and Kisfaludi-Bak, S\'{a}ndor and Monemizadeh, Morteza and Theocharous, Leonidas}, title = {{Clique-Based Separators for Geometric Intersection Graphs}}, booktitle = {32nd International Symposium on Algorithms and Computation (ISAAC 2021)}, pages = {22:1--22:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-214-3}, ISSN = {1868-8969}, year = {2021}, volume = {212}, editor = {Ahn, Hee-Kap and Sadakane, Kunihiko}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.22}, URN = {urn:nbn:de:0030-drops-154556}, doi = {10.4230/LIPIcs.ISAAC.2021.22}, annote = {Keywords: Computational geometry, intersection graphs, separator theorems} }

Document

**Published in:** LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)

We study the maximum-weight matching problem in the sliding-window model. In this model, we are given an adversarially ordered stream of edges of an underlying edge-weighted graph G(V,E), and a parameter L specifying the window size, and we want to maintain an approximation of the maximum-weight matching of the current graph G(t); here G(t) is defined as the subgraph of G consisting of the edges that arrived during the time interval [max(t-L,1),t], where t is the current time. The goal is to do this with Õ(n) space, where n is the number of vertices of G. We present a deterministic (3.5+ε)-approximation algorithm for this problem, thus significantly improving the (6+ε)-approximation algorithm due to Crouch and Stubbs [Michael S. Crouch and Daniel M. Stubbs, 2014].
We also present a generic machinery for approximating subadditve functions in the sliding-window model. A function f is called subadditive if for every disjoint substreams A, B of a stream S it holds that f(AB) ⩽ f(A) + f(B), where AB denotes the concatenation of A and B. We show that given an α-approximation algorithm for a subadditive function f in the insertion-only model we can maintain a (2α+ε)-approximation of f in the sliding-window model. This improves upon recent result Krauthgamer and Reitblat [Robert Krauthgamer and David Reitblat, 2019], who obtained a (2α²+ε)-approximation.

Leyla Biabani, Mark de Berg, and Morteza Monemizadeh. Maximum-Weight Matching in Sliding Windows and Beyond. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 73:1-73:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{biabani_et_al:LIPIcs.ISAAC.2021.73, author = {Biabani, Leyla and de Berg, Mark and Monemizadeh, Morteza}, title = {{Maximum-Weight Matching in Sliding Windows and Beyond}}, booktitle = {32nd International Symposium on Algorithms and Computation (ISAAC 2021)}, pages = {73:1--73:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-214-3}, ISSN = {1868-8969}, year = {2021}, volume = {212}, editor = {Ahn, Hee-Kap and Sadakane, Kunihiko}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.73}, URN = {urn:nbn:de:0030-drops-155061}, doi = {10.4230/LIPIcs.ISAAC.2021.73}, annote = {Keywords: maximum-weight matching, sliding-window model, approximation algorithm, and subadditve functions} }

Document

**Published in:** LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)

The k-center problem for a point set P asks for a collection of k congruent balls (that is, balls of equal radius) that together cover all the points in P and whose radius is minimized. The k-center problem with outliers is defined similarly, except that z of the points in P do need not to be covered, for a given parameter z. We study the k-center problem with outliers in data streams in the sliding-window model. In this model we are given a possibly infinite stream P = ⟨ p₁,p₂,p₃,…⟩ of points and a time window of length W, and we want to maintain a small sketch of the set P(t) of points currently in the window such that using the sketch we can approximately solve the problem on P(t).
We present the first algorithm for the k-center problem with outliers in the sliding-window model. The algorithm works for the case where the points come from a space of bounded doubling dimension and it maintains a set S(t) such that an optimal solution on S(t) gives a (1+ε)-approximate solution on P(t). The algorithm uses O((kz/ε^d)log σ) storage, where d is the doubling dimension of the underlying space and σ is the spread of the points in the stream. Algorithms providing a (1+ε)-approximation were not even known in the setting without outliers or in the insertion-only setting with outliers. We also present a lower bound showing that any algorithm that provides a (1+ε)-approximation must use Ω((kz/ε)log σ) storage.

Mark de Berg, Morteza Monemizadeh, and Yu Zhong. k-Center Clustering with Outliers in the Sliding-Window Model. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 13:1-13:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.ESA.2021.13, author = {de Berg, Mark and Monemizadeh, Morteza and Zhong, Yu}, title = {{k-Center Clustering with Outliers in the Sliding-Window Model}}, booktitle = {29th Annual European Symposium on Algorithms (ESA 2021)}, pages = {13:1--13:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-204-4}, ISSN = {1868-8969}, year = {2021}, volume = {204}, editor = {Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.13}, URN = {urn:nbn:de:0030-drops-145945}, doi = {10.4230/LIPIcs.ESA.2021.13}, annote = {Keywords: Streaming algorithms, k-center problem, sliding window, bounded doubling dimension} }

Document

**Published in:** LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)

A rectilinear Steiner tree for a set P of points in ℝ² is a tree that connects the points in P using horizontal and vertical line segments. The goal of {Minimum Rectilinear Steiner Tree} is to find a rectilinear Steiner tree with minimal total length. We investigate how the complexity of {Minimum Rectilinear Steiner Tree} for point sets P inside the strip (-∞,+∞)× [0,δ] depends on the strip width δ. We obtain two main results.
- We present an algorithm with running time n^O(√δ) for sparse point sets, that is, point sets where each 1×δ rectangle inside the strip contains O(1) points.
- For random point sets, where the points are chosen randomly inside a rectangle of height δ and expected width n, we present an algorithm that is fixed-parameter tractable with respect to δ and linear in n. It has an expected running time of 2^{O(δ √{δ})} n.

Henk Alkema and Mark de Berg. Rectilinear Steiner Trees in Narrow Strips. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 9:1-9:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{alkema_et_al:LIPIcs.SoCG.2021.9, author = {Alkema, Henk and de Berg, Mark}, title = {{Rectilinear Steiner Trees in Narrow Strips}}, booktitle = {37th International Symposium on Computational Geometry (SoCG 2021)}, pages = {9:1--9:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-184-9}, ISSN = {1868-8969}, year = {2021}, volume = {189}, editor = {Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.9}, URN = {urn:nbn:de:0030-drops-138081}, doi = {10.4230/LIPIcs.SoCG.2021.9}, annote = {Keywords: Computational geometry, fixed-parameter tractable algorithms} }

Document

**Published in:** LIPIcs, Volume 181, 31st International Symposium on Algorithms and Computation (ISAAC 2020)

Let P = {p₀,…,p_{n-1}} be a set of points in ℝ^d, modeling devices in a wireless network. A range assignment assigns a range r(p_i) to each point p_i ∈ P, thus inducing a directed communication graph 𝒢_r in which there is a directed edge (p_i,p_j) iff dist(p_i, p_j) ⩽ r(p_i), where dist(p_i,p_j) denotes the distance between p_i and p_j. The range-assignment problem is to assign the transmission ranges such that 𝒢_r has a certain desirable property, while minimizing the cost of the assignment; here the cost is given by ∑_{p_i ∈ P} r(p_i)^α, for some constant α > 1 called the distance-power gradient.
We introduce the online version of the range-assignment problem, where the points p_j arrive one by one, and the range assignment has to be updated at each arrival. Following the standard in online algorithms, resources given out cannot be taken away - in our case this means that the transmission ranges will never decrease. The property we want to maintain is that 𝒢_r has a broadcast tree rooted at the first point p₀. Our results include the following.
- We prove that already in ℝ¹, a 1-competitive algorithm does not exist. In particular, for distance-power gradient α = 2 any online algorithm has competitive ratio at least 1.57.
- For points in ℝ¹ and ℝ², we analyze two natural strategies for updating the range assignment upon the arrival of a new point p_j. The strategies do not change the assignment if p_j is already within range of an existing point, otherwise they increase the range of a single point, as follows: Nearest-Neighbor (NN) increases the range of NN(p_j), the nearest neighbor of p_j, to dist(p_j, NN(p_j)), and Cheapest Increase (CI) increases the range of the point p_i for which the resulting cost increase to be able to reach the new point p_j is minimal. We give lower and upper bounds on the competitive ratio of these strategies as a function of the distance-power gradient α. We also analyze the following variant of NN in ℝ² for α = 2: 2-Nearest-Neighbor (2-NN) increases the range of NN(p_j) to 2⋅ dist(p_j,NN(p_j)),
- We generalize the problem to points in arbitrary metric spaces, where we present an O(log n)-competitive algorithm.

Mark de Berg, Aleksandar Markovic, and Seeun William Umboh. The Online Broadcast Range-Assignment Problem. In 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 181, pp. 60:1-60:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.ISAAC.2020.60, author = {de Berg, Mark and Markovic, Aleksandar and Umboh, Seeun William}, title = {{The Online Broadcast Range-Assignment Problem}}, booktitle = {31st International Symposium on Algorithms and Computation (ISAAC 2020)}, pages = {60:1--60:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-173-3}, ISSN = {1868-8969}, year = {2020}, volume = {181}, editor = {Cao, Yixin and Cheng, Siu-Wing and Li, Minming}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2020.60}, URN = {urn:nbn:de:0030-drops-134042}, doi = {10.4230/LIPIcs.ISAAC.2020.60}, annote = {Keywords: Computational geometry, online algorithms, range assignment, broadcast} }

Document

**Published in:** LIPIcs, Volume 162, 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)

We study the problem of preclustering a set B of imprecise points in ℝ^d: we wish to cluster the regions specifying the potential locations of the points such that, no matter where the points are located within their regions, the resulting clustering approximates the optimal clustering for those locations. We consider k-center, k-median, and k-means clustering, and obtain the following results.
Let B:={b₁,…,b_n} be a collection of disjoint balls in ℝ^d, where each ball b_i specifies the possible locations of an input point p_i. A partition 𝒞 of B into subsets is called an (f(k),α)-preclustering (with respect to the specific k-clustering variant under consideration) if (i) 𝒞 consists of f(k) preclusters, and (ii) for any realization P of the points p_i inside their respective balls, the cost of the clustering on P induced by 𝒞 is at most α times the cost of an optimal k-clustering on P. We call f(k) the size of the preclustering and we call α its approximation ratio. We prove that, even in ℝ^1, one may need at least 3k-3 preclusters to obtain a bounded approximation ratio - this holds for the k-center, the k-median, and the k-means problem - and we present a (3k,1) preclustering for the k-center problem in ℝ^1. We also present various preclusterings for balls in ℝ^d with d⩾2, including a (3k,α)-preclustering with α≈13.9 for the k-center and the k-median problem, and α≈254.7 for the k-means problem.

Mohammad Ali Abam, Mark de Berg, Sina Farahzad, Mir Omid Haji Mirsadeghi, and Morteza Saghafian. Preclustering Algorithms for Imprecise Points. In 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 162, pp. 3:1-3:12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{abam_et_al:LIPIcs.SWAT.2020.3, author = {Abam, Mohammad Ali and de Berg, Mark and Farahzad, Sina and Mirsadeghi, Mir Omid Haji and Saghafian, Morteza}, title = {{Preclustering Algorithms for Imprecise Points}}, booktitle = {17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)}, pages = {3:1--3:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-150-4}, ISSN = {1868-8969}, year = {2020}, volume = {162}, editor = {Albers, Susanne}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2020.3}, URN = {urn:nbn:de:0030-drops-122503}, doi = {10.4230/LIPIcs.SWAT.2020.3}, annote = {Keywords: Geometric clustering, k-center, k-means, k-median, imprecise points, approximation algorithms} }

Document

**Published in:** LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)

We investigate how the complexity of {Euclidean TSP} for point sets P inside the strip (-∞,+∞)×[0,δ] depends on the strip width δ. We obtain two main results.
- For the case where the points have distinct integer x-coordinates, we prove that a shortest bitonic tour (which can be computed in O(n log²n) time using an existing algorithm) is guaranteed to be a shortest tour overall when δ ⩽ 2√2, a bound which is best possible.
- We present an algorithm that is fixed-parameter tractable with respect to δ. More precisely, our algorithm has running time 2^{O(√δ)} n² for sparse point sets, where each 1×δ rectangle inside the strip contains O(1) points. For random point sets, where the points are chosen uniformly at random from the rectangle [0,n]× [0,δ], it has an expected running time of 2^{O(√δ)} n² + O(n³).

Henk Alkema, Mark de Berg, and Sándor Kisfaludi-Bak. Euclidean TSP in Narrow Strips. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 4:1-4:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{alkema_et_al:LIPIcs.SoCG.2020.4, author = {Alkema, Henk and de Berg, Mark and Kisfaludi-Bak, S\'{a}ndor}, title = {{Euclidean TSP in Narrow Strips}}, booktitle = {36th International Symposium on Computational Geometry (SoCG 2020)}, pages = {4:1--4:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-143-6}, ISSN = {1868-8969}, year = {2020}, volume = {164}, editor = {Cabello, Sergio and Chen, Danny Z.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.4}, URN = {urn:nbn:de:0030-drops-121628}, doi = {10.4230/LIPIcs.SoCG.2020.4}, annote = {Keywords: Computational geometry, Euclidean TSP, bitonic TSP, fixed-parameter tractable algorithms} }

Document

**Published in:** LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)

Let V be a set of n points in ℝ^d, called voters. A point p ∈ ℝ^d is a plurality point for V when the following holds: for every q ∈ ℝ^d the number of voters closer to p than to q is at least the number of voters closer to q than to p. Thus, in a vote where each v ∈ V votes for the nearest proposal (and voters for which the proposals are at equal distance abstain), proposal p will not lose against any alternative proposal q. For most voter sets a plurality point does not exist. We therefore introduce the concept of β-plurality points, which are defined similarly to regular plurality points except that the distance of each voter to p (but not to q) is scaled by a factor β, for some constant 0<β⩽1. We investigate the existence and computation of β-plurality points, and obtain the following results.
- Define β^*_d := sup{β : any finite multiset V in ℝ^d admits a β-plurality point}. We prove that β^*₂ = √3/2, and that 1/√d ⩽ β^*_d ⩽ √3/2 for all d⩾3.
- Define β(V) := sup {β : V admits a β-plurality point}. We present an algorithm that, given a voter set V in {ℝ}^d, computes an (1-ε)⋅ β(V) plurality point in time O(n²/ε^(3d-2) ⋅ log(n/ε^(d-1)) ⋅ log²(1/ε)).

Boris Aronov, Mark de Berg, Joachim Gudmundsson, and Michael Horton. On β-Plurality Points in Spatial Voting Games. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 7:1-7:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{aronov_et_al:LIPIcs.SoCG.2020.7, author = {Aronov, Boris and de Berg, Mark and Gudmundsson, Joachim and Horton, Michael}, title = {{On \beta-Plurality Points in Spatial Voting Games}}, booktitle = {36th International Symposium on Computational Geometry (SoCG 2020)}, pages = {7:1--7:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-143-6}, ISSN = {1868-8969}, year = {2020}, volume = {164}, editor = {Cabello, Sergio and Chen, Danny Z.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.7}, URN = {urn:nbn:de:0030-drops-121651}, doi = {10.4230/LIPIcs.SoCG.2020.7}, annote = {Keywords: Computational geometry, Spatial voting theory, Plurality point, Computational social choice} }

Document

**Published in:** LIPIcs, Volume 149, 30th International Symposium on Algorithms and Computation (ISAAC 2019)

Let V be a multiset of n points in R^d, which we call voters, and let k >=slant 1 and l >=slant 1 be two given constants. We consider the following game, where two players P and Q compete over the voters in V: First, player P selects a set P of k points in R^d, and then player Q selects a set Q of l points in R^d. Player P wins a voter v in V iff dist(v,P) <=slant dist(v,Q), where dist(v,P) := min_{p in P} dist(v,p) and dist(v,Q) is defined similarly. Player P wins the game if he wins at least half the voters. The algorithmic problem we study is the following: given V, k, and l, how efficiently can we decide if player P has a winning strategy, that is, if P can select his k points such that he wins the game no matter where Q places her points.
Banik et al. devised a singly-exponential algorithm for the game in R^1, for the case k=l. We improve their result by presenting the first polynomial-time algorithm for the game in R^1. Our algorithm can handle arbitrary values of k and l. We also show that if d >= 2, deciding if player P has a winning strategy is Sigma_2^P-hard when k and l are part of the input. Finally, we prove that for any dimension d, the problem is contained in the complexity class exists for all R, and we give an algorithm that works in polynomial time for fixed k and l.

Mark de Berg, Sándor Kisfaludi-Bak, and Mehran Mehr. On One-Round Discrete Voronoi Games. In 30th International Symposium on Algorithms and Computation (ISAAC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 149, pp. 37:1-37:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.ISAAC.2019.37, author = {de Berg, Mark and Kisfaludi-Bak, S\'{a}ndor and Mehr, Mehran}, title = {{On One-Round Discrete Voronoi Games}}, booktitle = {30th International Symposium on Algorithms and Computation (ISAAC 2019)}, pages = {37:1--37:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-130-6}, ISSN = {1868-8969}, year = {2019}, volume = {149}, editor = {Lu, Pinyan and Zhang, Guochuan}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2019.37}, URN = {urn:nbn:de:0030-drops-115339}, doi = {10.4230/LIPIcs.ISAAC.2019.37}, annote = {Keywords: competitive facility location, plurality point} }

Document

**Published in:** LIPIcs, Volume 89, 12th International Symposium on Parameterized and Exact Computation (IPEC 2017)

We study the parameterized complexity of dominating sets in geometric intersection graphs. In one dimension, we investigate intersection graphs induced by translates of a fixed pattern Q that consists of a finite number of intervals and a finite number of isolated points. We prove that Dominating Set on such intersection graphs is polynomially solvable whenever Q contains at least one interval, and whenever Q contains no intervals and for any two point pairs in Q the distance ratio is rational. The remaining case where Q contains no intervals but does contain an irrational distance ratio is shown to be NP-complete and contained in FPT (when parameterized by the solution size). In two and higher dimensions, we prove that Dominating Set is contained in W[1] for intersection graphs of semi-algebraic sets with constant description complexity. This generalizes known results from the literature. Finally, we establish W[1]-hardness for a large class of intersection graphs.

Mark de Berg, Sándor Kisfaludi-Bak, and Gerhard Woeginger. The Dominating Set Problem in Geometric Intersection Graphs. In 12th International Symposium on Parameterized and Exact Computation (IPEC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 89, pp. 14:1-14:12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.IPEC.2017.14, author = {de Berg, Mark and Kisfaludi-Bak, S\'{a}ndor and Woeginger, Gerhard}, title = {{The Dominating Set Problem in Geometric Intersection Graphs}}, booktitle = {12th International Symposium on Parameterized and Exact Computation (IPEC 2017)}, pages = {14:1--14:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-051-4}, ISSN = {1868-8969}, year = {2018}, volume = {89}, editor = {Lokshtanov, Daniel and Nishimura, Naomi}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2017.14}, URN = {urn:nbn:de:0030-drops-85538}, doi = {10.4230/LIPIcs.IPEC.2017.14}, annote = {Keywords: dominating set, intersection graph, W-hierarchy} }

Document

**Published in:** LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)

Let C be the unit circle in R^2. We can view C as a plane graph whose vertices are all the points on C, and the distance between any two points on C is the length of the smaller arc between them. We consider a graph augmentation problem on C, where we want to place k >= 1 shortcuts on C such that the diameter of the resulting graph is minimized.
We analyze for each k with 1 <= k <= 7 what the optimal set of shortcuts is. Interestingly, the minimum diameter one can obtain is not a strictly decreasing function of k. For example, with seven shortcuts one cannot obtain a smaller diameter than with six shortcuts. Finally, we prove that the optimal diameter is 2 + Theta(1/k^(2/3)) for any k.

Sang Won Bae, Mark de Berg, Otfried Cheong, Joachim Gudmundsson, and Christos Levcopoulos. Shortcuts for the Circle. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 9:1-9:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{bae_et_al:LIPIcs.ISAAC.2017.9, author = {Bae, Sang Won and de Berg, Mark and Cheong, Otfried and Gudmundsson, Joachim and Levcopoulos, Christos}, title = {{Shortcuts for the Circle}}, booktitle = {28th International Symposium on Algorithms and Computation (ISAAC 2017)}, pages = {9:1--9:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-054-5}, ISSN = {1868-8969}, year = {2017}, volume = {92}, editor = {Okamoto, Yoshio and Tokuyama, Takeshi}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.9}, URN = {urn:nbn:de:0030-drops-82133}, doi = {10.4230/LIPIcs.ISAAC.2017.9}, annote = {Keywords: Computational geometry, graph augmentation problem, circle, shortcut, diameter} }

Document

**Published in:** LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)

We present a new algorithm for the widely used density-based clustering method DBScan. Our algorithm computes the DBScan-clustering in O(n log n) time in R^2, irrespective of the scale parameter \eps, but assuming the second parameter MinPts is set to a fixed constant, as is the case in practice.
We also present an O(n log n) randomized algorithm for HDBScan in the plane---HDBScans is a hierarchical version of DBScan introduced recently---and we show how to compute an approximate version of HDBScan in near-linear time in any fixed dimension.

Mark de Berg, Ade Gunawan, and Marcel Roeloffzen. Faster DBScan and HDBScan in Low-Dimensional Euclidean Spaces. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 25:1-25:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.ISAAC.2017.25, author = {de Berg, Mark and Gunawan, Ade and Roeloffzen, Marcel}, title = {{Faster DBScan and HDBScan in Low-Dimensional Euclidean Spaces}}, booktitle = {28th International Symposium on Algorithms and Computation (ISAAC 2017)}, pages = {25:1--25:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-054-5}, ISSN = {1868-8969}, year = {2017}, volume = {92}, editor = {Okamoto, Yoshio and Tokuyama, Takeshi}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.25}, URN = {urn:nbn:de:0030-drops-82102}, doi = {10.4230/LIPIcs.ISAAC.2017.25}, annote = {Keywords: Density-based clustering, hierarchical clustering} }

Document

**Published in:** LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)

We introduce the fully-dynamic conflict-free coloring problem for a set S of intervals in R^1 with respect to points, where the goal is to maintain a conflict-free coloring for S under insertions and deletions. A coloring is conflict-free if for each point p contained in some interval, p is contained in an interval whose color is not shared with any other interval containing p. We investigate trade-offs between the number of colors used and the number of intervals that are recolored upon insertion or deletion of an interval. Our results include:
- a lower bound on the number of recolorings as a function of the number of colors, which implies that with O(1) recolorings per update the worst-case number of colors is Omega(log n/log log n), and that any strategy using O(1/epsilon) colors needs Omega(epsilon n^epsilon) recolorings;
- a coloring strategy that uses O(log n) colors at the cost of O(log n) recolorings, and another strategy that uses O(1/epsilon) colors at the cost of O(n^epsilon/epsilon) recolorings;
- stronger upper and lower bounds for special cases.
We also consider the kinetic setting where the intervals move continuously (but there are no insertions or deletions); here we show how to maintain a coloring with only four colors at the cost of three recolorings per event and show this is tight.

Mark de Berg, Tim Leijsen, Aleksandar Markovic, André van Renssen, Marcel Roeloffzen, and Gerhard Woeginger. Fully-Dynamic and Kinetic Conflict-Free Coloring of Intervals with Respect to Points. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 26:1-26:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.ISAAC.2017.26, author = {de Berg, Mark and Leijsen, Tim and Markovic, Aleksandar and van Renssen, Andr\'{e} and Roeloffzen, Marcel and Woeginger, Gerhard}, title = {{Fully-Dynamic and Kinetic Conflict-Free Coloring of Intervals with Respect to Points}}, booktitle = {28th International Symposium on Algorithms and Computation (ISAAC 2017)}, pages = {26:1--26:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-054-5}, ISSN = {1868-8969}, year = {2017}, volume = {92}, editor = {Okamoto, Yoshio and Tokuyama, Takeshi}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.26}, URN = {urn:nbn:de:0030-drops-82683}, doi = {10.4230/LIPIcs.ISAAC.2017.26}, annote = {Keywords: Conflict-free colorings, Dynamic data structures, Kinetic data structures} }

Document

**Published in:** LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)

We study dynamic conflict-free colorings in the plane, where the goal is to maintain a conflict-free coloring (CF-coloring for short) under insertions and deletions.
- First we consider CF-colorings of a set S of unit squares with respect to points. Our method maintains a CF-coloring that uses O(log n) colors at any time, where n is the current number of squares in S, at the cost of only O(log n) recolorings per insertion or deletion We generalize the method to rectangles whose sides have lengths in the range [1, c], where c is a fixed constant. Here the number of used colors becomes O(log^2 n). The method also extends to arbitrary rectangles whose coordinates come from a fixed universe of size N, yielding O(log^2 N log^2 n) colors. The number of recolorings for both methods stays in O(log n).
- We then present a general framework to maintain a CF-coloring under insertions for sets of objects that admit a unimax coloring with a small number of colors in the static case. As an application we show how to maintain a CF-coloring with O(log^3 n) colors for disks (or other objects with linear union complexity) with respect to points at the cost of O(log n) recolorings per insertion. We extend the framework to the fully-dynamic case when the static unimax coloring admits weak deletions. As an application we show how to maintain a CF-coloring with O(sqrt(n) log^2 n) colors for points with respect to rectangles, at the cost of O(log n) recolorings per insertion and O(1) recolorings per deletion.
These are the first results on fully-dynamic CF-colorings in the plane, and the first results for semi-dynamic CF-colorings for non-congruent objects.

Mark de Berg and Aleksandar Markovic. Dynamic Conflict-Free Colorings in the Plane. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 27:1-27:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.ISAAC.2017.27, author = {de Berg, Mark and Markovic, Aleksandar}, title = {{Dynamic Conflict-Free Colorings in the Plane}}, booktitle = {28th International Symposium on Algorithms and Computation (ISAAC 2017)}, pages = {27:1--27:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-054-5}, ISSN = {1868-8969}, year = {2017}, volume = {92}, editor = {Okamoto, Yoshio and Tokuyama, Takeshi}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.27}, URN = {urn:nbn:de:0030-drops-82504}, doi = {10.4230/LIPIcs.ISAAC.2017.27}, annote = {Keywords: Conflict-free colorings, Dynamic data structures} }

Document

**Published in:** LIPIcs, Volume 77, 33rd International Symposium on Computational Geometry (SoCG 2017)

Let P be a set of n points in the plane. We consider the problem of partitioning P into two subsets P_1 and P_2 such that the sum of the perimeters of CH(P_1) and CH(P_2) is minimized, where CH(P_i) denotes the convex hull of P_i. The problem was first studied by Mitchell and Wynters in 1991 who gave an O(n^2) time algorithm. Despite considerable progress on related problems, no subquadratic time algorithm for this problem was found so far. We present an exact algorithm solving the problem in O(n log^4 n) time and a (1+e)-approximation algorithm running in O(n + 1/e^2 log^4(1/e)) time.

Mikkel Abrahamsen, Mark de Berg, Kevin Buchin, Mehran Mehr, and Ali D. Mehrabi. Minimum Perimeter-Sum Partitions in the Plane. In 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 77, pp. 4:1-4:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{abrahamsen_et_al:LIPIcs.SoCG.2017.4, author = {Abrahamsen, Mikkel and de Berg, Mark and Buchin, Kevin and Mehr, Mehran and Mehrabi, Ali D.}, title = {{Minimum Perimeter-Sum Partitions in the Plane}}, booktitle = {33rd International Symposium on Computational Geometry (SoCG 2017)}, pages = {4:1--4:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-038-5}, ISSN = {1868-8969}, year = {2017}, volume = {77}, editor = {Aronov, Boris and Katz, Matthew J.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2017.4}, URN = {urn:nbn:de:0030-drops-72048}, doi = {10.4230/LIPIcs.SoCG.2017.4}, annote = {Keywords: Computational geometry, clustering, minimum-perimeter partition, convex hull} }

Document

**Published in:** LIPIcs, Volume 77, 33rd International Symposium on Computational Geometry (SoCG 2017)

In a geometric k-clustering problem the goal is to partition a set of points in R^d into k subsets such that a certain cost function of the clustering is minimized. We present data structures for orthogonal range-clustering queries on a point set S: given a query box Q and an integer k > 2, compute an optimal k-clustering for the subset of S inside Q. We obtain the following results.
* We present a general method to compute a (1+epsilon)-approximation to a range-clustering query, where epsilon>0 is a parameter that can be specified as part of the query. Our method applies to a large class of clustering problems, including k-center clustering in any Lp-metric and a variant of k-center clustering where the goal is to minimize the sum (instead of maximum) of the cluster sizes.
* We extend our method to deal with capacitated k-clustering problems, where each of the clusters should not contain more than a given number of points.
* For the special cases of rectilinear k-center clustering in R^1, and in R^2 for k = 2 or 3, we present data structures that answer range-clustering queries exactly.

Mikkel Abrahamsen, Mark de Berg, Kevin Buchin, Mehran Mehr, and Ali D. Mehrabi. Range-Clustering Queries. In 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 77, pp. 5:1-5:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{abrahamsen_et_al:LIPIcs.SoCG.2017.5, author = {Abrahamsen, Mikkel and de Berg, Mark and Buchin, Kevin and Mehr, Mehran and Mehrabi, Ali D.}, title = {{Range-Clustering Queries}}, booktitle = {33rd International Symposium on Computational Geometry (SoCG 2017)}, pages = {5:1--5:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-038-5}, ISSN = {1868-8969}, year = {2017}, volume = {77}, editor = {Aronov, Boris and Katz, Matthew J.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2017.5}, URN = {urn:nbn:de:0030-drops-72147}, doi = {10.4230/LIPIcs.SoCG.2017.5}, annote = {Keywords: Geometric data structures, clustering, k-center problem} }

Document

**Published in:** LIPIcs, Volume 65, 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016)

Traditionally, reconfiguration problems ask the question whether a given solution of an optimization problem can be transformed to a target solution in a sequence of small steps that preserve feasibility of the intermediate solutions. In this paper, rather than asking this question from an algorithmic perspective, we analyze the combinatorial structure behind it. We consider the problem of reconfiguring one independent set into another, using two different processes: (1) exchanging exactly k vertices in each step, or (2) removing or adding one vertex in each step while ensuring the intermediate sets contain at most k fewer vertices than the initial solution. We are interested in determining the minimum value of k for which this reconfiguration is possible, and bound these threshold values in terms of several structural graph parameters. For hereditary graph classes we identify structures that cause the reconfiguration threshold to be large.

Mark de Berg, Bart M. P. Jansen, and Debankur Mukherjee. Independent-Set Reconfiguration Thresholds of Hereditary Graph Classes. In 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 65, pp. 34:1-34:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.FSTTCS.2016.34, author = {de Berg, Mark and Jansen, Bart M. P. and Mukherjee, Debankur}, title = {{Independent-Set Reconfiguration Thresholds of Hereditary Graph Classes}}, booktitle = {36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016)}, pages = {34:1--34:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-027-9}, ISSN = {1868-8969}, year = {2016}, volume = {65}, editor = {Lal, Akash and Akshay, S. and Saurabh, Saket and Sen, Sandeep}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2016.34}, URN = {urn:nbn:de:0030-drops-68694}, doi = {10.4230/LIPIcs.FSTTCS.2016.34}, annote = {Keywords: Reconfiguration, Independent set, Token Addition Removal, Token Sliding} }

Document

**Published in:** LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)

We analyze two classic variants of the Traveling Salesman Problem using the toolkit of fine-grained complexity.
Our first set of results is motivated by the Bitonic tsp problem: given a set of n points in the plane, compute a shortest tour consisting of two monotone chains. It is a classic dynamicprogramming exercise to solve this problem in O(n^2) time. While the near-quadratic dependency of similar dynamic programs for Longest Common Subsequence and Discrete Fréchet Distance has recently been proven to be essentially optimal under the Strong Exponential Time Hypothesis, we show that bitonic tours can be found in subquadratic time. More precisely, we present an algorithm that solves bitonic tsp in O(n*log^2(n)) time and its bottleneck version in O(n*log^3(n)) time. In the more general pyramidal tsp problem, the points to be visited are labeled 1, ..., n and the sequence of labels in the solution is required to have at most one local maximum. Our algorithms for the bitonic (bottleneck) tsp problem also work for the pyramidal tsp problem in the plane.
Our second set of results concerns the popular k-opt heuristic for tsp in the graph setting. More precisely, we study the k-opt decision problem, which asks whether a given tour can be improved by a k-opt move that replaces k edges in the tour by k new edges. A simple algorithm solves k-opt in O(n^k) time for fixed k. For 2-opt, this is easily seen to be optimal. For k = 3 we prove that an algorithm with a runtime of the form ~O(n^{3-epsilon}) exists if and only if All-Pairs Shortest Paths in weighted digraphs has such an algorithm. For general k-opt, it is known that a runtime of f(k)*n^{o(k/log(k))} would contradict the Exponential Time Hypothesis. The results for k = 2, 3 may suggest that the actual time complexity of k-opt is Theta(n^k). We show that this is not the case, by presenting an algorithm that finds the best k-move in O(n^{lfoor 2k/3 rfloor +1}) time for fixed k >= 3. This implies that 4-opt can be solved in O(n^3) time, matching the best-known algorithm for 3-opt. Finally, we show how to beat the quadratic barrier for k = 2 in two important settings, namely for points in the plane and when we want to solve 2-opt repeatedly

Mark de Berg, Kevin Buchin, Bart M. P. Jansen, and Gerhard Woeginger. Fine-Grained Complexity Analysis of Two Classic TSP Variants. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 5:1-5:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.ICALP.2016.5, author = {de Berg, Mark and Buchin, Kevin and Jansen, Bart M. P. and Woeginger, Gerhard}, title = {{Fine-Grained Complexity Analysis of Two Classic TSP Variants}}, booktitle = {43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)}, pages = {5:1--5:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-013-2}, ISSN = {1868-8969}, year = {2016}, volume = {55}, editor = {Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.5}, URN = {urn:nbn:de:0030-drops-62770}, doi = {10.4230/LIPIcs.ICALP.2016.5}, annote = {Keywords: Traveling salesman problem, fine-grained complexity, bitonic tours, k-opt} }

Document

**Published in:** LIPIcs, Volume 51, 32nd International Symposium on Computational Geometry (SoCG 2016)

Let V be a set of n points in R^d, which we call voters, where d is a fixed constant. A point p in R^d is preferred over another point p' in R^d by a voter v in V if dist(v,p) < dist(v,p'). A point p is called a plurality point if it is preferred by at least as many voters as any other point p'.
We present an algorithm that decides in O(n log n) time whether V admits a plurality point in the L_2 norm and, if so, finds the (unique) plurality point. We also give efficient algorithms to compute the smallest subset W of V such that V - W admits a plurality point, and to compute a so-called minimum-radius plurality ball.
Finally, we consider the problem in the personalized L_1 norm, where each point v in V has a preference vector <w_1(v), ...,w_d(v)> and the distance from v to any point p in R^d is given by sum_{i=1}^d w_i(v) cdot |x_i(v)-x_i(p)|. For this case we can compute in O(n^(d-1)) time the set of all plurality points of V. When all preference vectors are equal, the running time improves to O(n).

Mark de Berg, Joachim Gudmundsson, and Mehran Mehr. Faster Algorithms for Computing Plurality Points. In 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 51, pp. 32:1-32:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.SoCG.2016.32, author = {de Berg, Mark and Gudmundsson, Joachim and Mehr, Mehran}, title = {{Faster Algorithms for Computing Plurality Points}}, booktitle = {32nd International Symposium on Computational Geometry (SoCG 2016)}, pages = {32:1--32:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-009-5}, ISSN = {1868-8969}, year = {2016}, volume = {51}, editor = {Fekete, S\'{a}ndor and Lubiw, Anna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2016.32}, URN = {urn:nbn:de:0030-drops-59248}, doi = {10.4230/LIPIcs.SoCG.2016.32}, annote = {Keywords: computational geometry, computational social choice, voting theory, plurality points, Condorcet points} }

Document

**Published in:** Dagstuhl Seminar Proceedings, Volume 10491, Representation, Analysis and Visualization of Moving Objects (2011)

We discussed different problems that arise when aggregating trajectories: how to segment the input, whether to use original parts of the input trajectories, as opposed to an ``averaged'' path and how to simplify the aggregated structure. We give examples where these questions are not easily answered.

Mark de Berg, Jörg-Rüdiger Sack, Bettina Speckmann, Anne Driemel, Maike Buchin, Monika Sester, and Marc van Kreveld. 10491 Results of the break-out group: Aggregation. In Representation, Analysis and Visualization of Moving Objects. Dagstuhl Seminar Proceedings, Volume 10491, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2011)

Copy BibTex To Clipboard

@InProceedings{deberg_et_al:DagSemProc.10491.3, author = {de Berg, Mark and Sack, J\"{o}rg-R\"{u}diger and Speckmann, Bettina and Driemel, Anne and Buchin, Maike and Sester, Monika and van Kreveld, Marc}, title = {{10491 Results of the break-out group: Aggregation}}, booktitle = {Representation, Analysis and Visualization of Moving Objects}, series = {Dagstuhl Seminar Proceedings (DagSemProc)}, ISSN = {1862-4405}, year = {2011}, volume = {10491}, editor = {J\"{o}rg-R\"{u}diger Sack and Bettina Speckmann and Emiel Van Loon and Robert Weibel}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.10491.3}, URN = {urn:nbn:de:0030-drops-29878}, doi = {10.4230/DagSemProc.10491.3}, annote = {Keywords: Aggregation, Trajectories, Generalization, Map Generation} }

Document

**Published in:** Dagstuhl Seminar Proceedings, Volume 10491, Representation, Analysis and Visualization of Moving Objects (2011)

A classification of gull behaviour was produced by the group, led by domain
expert Emiel van Loon, who provided additional context including that gull trips
are typically composed of distinct segments, that gull trips are rarely single
purpose, and that there is very little diurnal pattern to activities. The
classification produced is not intended to be complete, or non overlapping.
Furthermore, the group considered how the attributes in the gulls dataset could be used in algorithms to automatically classify the dataset into distinct spatial
patterns, and associate this with gull behaviours.

Emiel van Loon, Jörg-Rüdiger Sack, Kevin Buchin, Maike Buchin, Mark de Berg, Marc van Kreveld, Joachim Gudmundsson, and David Mountain. 10491 Results of the break-out group: Gulls Data. In Representation, Analysis and Visualization of Moving Objects. Dagstuhl Seminar Proceedings, Volume 10491, pp. 1-4, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2011)

Copy BibTex To Clipboard

@InProceedings{vanloon_et_al:DagSemProc.10491.5, author = {van Loon, Emiel and Sack, J\"{o}rg-R\"{u}diger and Buchin, Kevin and Buchin, Maike and de Berg, Mark and van Kreveld, Marc and Gudmundsson, Joachim and Mountain, David}, title = {{10491 Results of the break-out group: Gulls Data}}, booktitle = {Representation, Analysis and Visualization of Moving Objects}, pages = {1--4}, series = {Dagstuhl Seminar Proceedings (DagSemProc)}, ISSN = {1862-4405}, year = {2011}, volume = {10491}, editor = {J\"{o}rg-R\"{u}diger Sack and Bettina Speckmann and Emiel Van Loon and Robert Weibel}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.10491.5}, URN = {urn:nbn:de:0030-drops-29912}, doi = {10.4230/DagSemProc.10491.5}, annote = {Keywords: Movement classification, Trajectory segmentation} }

Document

**Published in:** LIPIcs, Volume 5, 27th International Symposium on Theoretical Aspects of Computer Science (2010)

Let $P$ be a set of points in $\Reals^d$, and let $\alpha \ge 1$ be a real number. We define the distance between two points $p,q\in P$ as $|pq|^{\alpha}$, where $|pq|$ denotes the standard Euclidean distance between $p$ and $q$. We denote the traveling salesman problem under this distance function by \tsp($d,\alpha$). We design a 5-approximation algorithm for \tsp(2,2) and generalize this result to obtain an approximation factor of $3^{\alpha-1}+\sqrt{6}^{\,\alpha}\!/3$ for $d=2$ and all $\alpha\ge2$.
We also study the variant Rev-\tsp\ of the problem where the traveling salesman is allowed to revisit points. We present a polynomial-time approximation scheme for Rev-\tsp$(2,\alpha)$ with $\alpha\ge2$, and we show that Rev-\tsp$(d, \alpha)$ is \apx-hard if
$d\ge3$ and $\alpha>1$. The \apx-hardness proof carries over to \tsp$(d, \alpha)$ for the same parameter ranges.

Fred van Nijnatten, René Sitters, Gerhard J. Woeginger, Alexander Wolff, and Mark de Berg. The Traveling Salesman Problem under Squared Euclidean Distances. In 27th International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 5, pp. 239-250, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2010)

Copy BibTex To Clipboard

@InProceedings{vannijnatten_et_al:LIPIcs.STACS.2010.2458, author = {van Nijnatten, Fred and Sitters, Ren\'{e} and Woeginger, Gerhard J. and Wolff, Alexander and de Berg, Mark}, title = {{The Traveling Salesman Problem under Squared Euclidean Distances}}, booktitle = {27th International Symposium on Theoretical Aspects of Computer Science}, pages = {239--250}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-16-3}, ISSN = {1868-8969}, year = {2010}, volume = {5}, editor = {Marion, Jean-Yves and Schwentick, Thomas}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2010.2458}, URN = {urn:nbn:de:0030-drops-24580}, doi = {10.4230/LIPIcs.STACS.2010.2458}, annote = {Keywords: Geometric traveling salesman problem, power-assignment in wireless networks, distance-power gradient, NP-hard, APX-hard} }

Document

**Published in:** Dagstuhl Seminar Proceedings, Volume 8081, Data Structures (2008)

We propose a simple variant of kd-trees, called rank-based kd-trees, for sets of points in~$Reals^d$.
We show that a rank-based kd-tree, like an ordinary kd-tree, supports range search que-ries in~$O(n^{1-1/d}+k)$ time,
where~$k$ is the output size. The main advantage of rank-based kd-trees is that they can be efficiently kinetized:
the KDS processes~$O(n^2)$ events in the worst case, assuming that the points follow constant-degree algebraic trajectories,
each event can be handled in~$O(log n)$ time, and each point is involved in~$O(1)$ certificates.
We also propose a variant of longest-side kd-trees, called rank-based longest-side kd-trees (RBLS kd-trees, for short),
for sets of points in~$Reals^2$. RBLS kd-trees can be kinetized efficiently as well and like longest-side kd-trees,
RBLS kd-trees support nearest-neighbor, farthest-neighbor, and approximate range search queries in~$O((1/epsilon)log^2 n)$ time.
The KDS processes~$O(n^3log n)$ events in the worst case, assuming that the points follow constant-degree algebraic trajectories;
each event can be handled in~$O(log^2 n)$ time, and each point is involved in~$O(log n)$ certificates.

Mohammad Abam, Mark de Berg, and Bettina Speckmann. Kinetic kd-Trees and Longest-Side kd-Trees. In Data Structures. Dagstuhl Seminar Proceedings, Volume 8081, pp. 1-12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2008)

Copy BibTex To Clipboard

@InProceedings{abam_et_al:DagSemProc.08081.2, author = {Abam, Mohammad and de Berg, Mark and Speckmann, Bettina}, title = {{Kinetic kd-Trees and Longest-Side kd-Trees}}, booktitle = {Data Structures}, pages = {1--12}, series = {Dagstuhl Seminar Proceedings (DagSemProc)}, ISSN = {1862-4405}, year = {2008}, volume = {8081}, editor = {Lars Arge and Robert Sedgewick and Raimund Seidel}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.08081.2}, URN = {urn:nbn:de:0030-drops-15307}, doi = {10.4230/DagSemProc.08081.2}, annote = {Keywords: Kinetic data structures, kd-tree, longest-side kd-tree} }

Document

**Published in:** Dagstuhl Seminar Proceedings, Volume 4301, Cache-Oblivious and Cache-Aware Algorithms (2005)

The query efficiency of a data structure that stores a set of objects, can normally be assessed by analysing the number of objects, pointers etc. looked at when answering a query. However, if the data structure is too big to fit in main memory, data may need to be fetched from disk. In that case, the query efficiency is easily dominated by moving the disk head to the correct locations, rather than by reading the data itself.
To reduce the number of disk accesses, once can group the data into blocks, and strive to bound the number of different blocks accessed rather than the number of individual data objects read. An R-tree is a general-purpose data structur that stores a hierarchical grouping of geometric objects into blocks. Many heuristics have been designed to determine which objects should be grouped together, but none of these heuristics could give a guarantee on the resulting worst-case query time.
We present the Priority R-tree, or PR-tree, which is the first R-tree variant that always answers a window query by accessing $O((N/B)^{1-1/d} + T/B)$ blocks, where $N$ is the number of $d$-dimensional objects stored, $B$ is the number of objects per block, and $T$ is the number of objects whose bounding boxes intersect the query window. This is provably asymptotically optimal. Experiments show that the PR-tree performs similar to the best known heuristics on real-life and relatively nicely distributed data, but outperforms them significantly on more extreme data.

Lars Arge, Mark de Berg, Herman J. Haverkort, and Ke Yi. The Priority R-Tree: A Practically Efficient and Worst-Case-Optimal R-Tree. In Cache-Oblivious and Cache-Aware Algorithms. Dagstuhl Seminar Proceedings, Volume 4301, pp. 1-26, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2005)

Copy BibTex To Clipboard

@InProceedings{arge_et_al:DagSemProc.04301.3, author = {Arge, Lars and de Berg, Mark and Haverkort, Herman J. and Yi, Ke}, title = {{The Priority R-Tree: A Practically Efficient and Worst-Case-Optimal R-Tree}}, booktitle = {Cache-Oblivious and Cache-Aware Algorithms}, pages = {1--26}, series = {Dagstuhl Seminar Proceedings (DagSemProc)}, ISSN = {1862-4405}, year = {2005}, volume = {4301}, editor = {Lars Arge and Michael A. Bender and Erik Demaine and Charles Leiserson and Kurt Mehlhorn}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.04301.3}, URN = {urn:nbn:de:0030-drops-1554}, doi = {10.4230/DagSemProc.04301.3}, annote = {Keywords: R-Trees} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail