155 Search Results for "Marx, Dániel"


Volume

LIPIcs, Volume 107

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)

ICALP 2018, July 9-13, 2018, Prague, Czech Republic

Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella

Document
The Parameterized Complexity Of Extending Stack Layouts

Authors: Thomas Depian, Simon D. Fink, Robert Ganian, and Martin Nöllenburg

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
An 𝓁-page stack layout (also known as an 𝓁-page book embedding) of a graph is a linear order of the vertex set together with a partition of the edge set into 𝓁 stacks (or pages), such that the endpoints of no two edges on the same stack alternate. We study the problem of extending a given partial 𝓁-page stack layout into a complete one, which can be seen as a natural generalization of the classical NP-hard problem of computing a stack layout of an input graph from scratch. Given the inherent intractability of the problem, we focus on identifying tractable fragments through the refined lens of parameterized complexity analysis. Our results paint a detailed and surprisingly rich complexity-theoretic landscape of the problem which includes the identification of paraNP-hard, W[1]-hard and XP-tractable, as well as fixed-parameter tractable fragments of stack layout extension via a natural sequence of parameterizations.

Cite as

Thomas Depian, Simon D. Fink, Robert Ganian, and Martin Nöllenburg. The Parameterized Complexity Of Extending Stack Layouts. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 12:1-12:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{depian_et_al:LIPIcs.GD.2024.12,
  author =	{Depian, Thomas and Fink, Simon D. and Ganian, Robert and N\"{o}llenburg, Martin},
  title =	{{The Parameterized Complexity Of Extending Stack Layouts}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{12:1--12:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.12},
  URN =		{urn:nbn:de:0030-drops-212960},
  doi =		{10.4230/LIPIcs.GD.2024.12},
  annote =	{Keywords: Stack Layout, Drawing Extension, Parameterized Complexity, Book Embedding}
}
Document
The Price of Upwardness

Authors: Patrizio Angelini, Therese Biedl, Markus Chimani, Sabine Cornelsen, Giordano Da Lozzo, Seok-Hee Hong, Giuseppe Liotta, Maurizio Patrignani, Sergey Pupyrev, Ignaz Rutter, and Alexander Wolff

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
Not every directed acyclic graph (DAG) whose underlying undirected graph is planar admits an upward planar drawing. We are interested in pushing the notion of upward drawings beyond planarity by considering upward k-planar drawings of DAGs in which the edges are monotonically increasing in a common direction and every edge is crossed at most k times for some integer k ≥ 1. We show that the number of crossings per edge in a monotone drawing is in general unbounded for the class of bipartite outerplanar, cubic, or bounded pathwidth DAGs. However, it is at most two for outerpaths and it is at most quadratic in the bandwidth in general. From the computational point of view, we prove that upward-k-planarity testing is NP-complete already for k = 1 and even for restricted instances for which upward planarity testing is polynomial. On the positive side, we can decide in linear time whether a single-source DAG admits an upward 1-planar drawing in which all vertices are incident to the outer face.

Cite as

Patrizio Angelini, Therese Biedl, Markus Chimani, Sabine Cornelsen, Giordano Da Lozzo, Seok-Hee Hong, Giuseppe Liotta, Maurizio Patrignani, Sergey Pupyrev, Ignaz Rutter, and Alexander Wolff. The Price of Upwardness. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 13:1-13:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{angelini_et_al:LIPIcs.GD.2024.13,
  author =	{Angelini, Patrizio and Biedl, Therese and Chimani, Markus and Cornelsen, Sabine and Da Lozzo, Giordano and Hong, Seok-Hee and Liotta, Giuseppe and Patrignani, Maurizio and Pupyrev, Sergey and Rutter, Ignaz and Wolff, Alexander},
  title =	{{The Price of Upwardness}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{13:1--13:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.13},
  URN =		{urn:nbn:de:0030-drops-212977},
  doi =		{10.4230/LIPIcs.GD.2024.13},
  annote =	{Keywords: upward drawings, beyond planarity, upward k-planarity, upward outer-1-planarity}
}
Document
Upward Pointset Embeddings of Planar st-Graphs

Authors: Carlos Alegría, Susanna Caroppo, Giordano Da Lozzo, Marco D'Elia, Giuseppe Di Battista, Fabrizio Frati, Fabrizio Grosso, and Maurizio Patrignani

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
We study upward pointset embeddings (UPSEs) of planar st-graphs. Let G be a planar st-graph and let S ⊂ ℝ² be a pointset with |S| = |V(G)|. An UPSE of G on S is an upward planar straight-line drawing of G that maps the vertices of G to the points of S. We consider both the problem of testing the existence of an UPSE of G on S (UPSE Testing) and the problem of enumerating all UPSEs of G on S. We prove that UPSE Testing is NP-complete even for st-graphs that consist of a set of directed st-paths sharing only s and t. On the other hand, for n-vertex planar st-graphs whose maximum st-cutset has size k, we prove that it is possible to solve UPSE Testing in 𝒪(n^{4k}) time with 𝒪(n^{3k}) space, and to enumerate all UPSEs of G on S with 𝒪(n) worst-case delay, using 𝒪(k n^{4k} log n) space, after 𝒪(k n^{4k} log n) set-up time. Moreover, for an n-vertex st-graph whose underlying graph is a cycle, we provide a necessary and sufficient condition for the existence of an UPSE on a given poinset, which can be tested in 𝒪(n log n) time. Related to this result, we give an algorithm that, for a set S of n points, enumerates all the non-crossing monotone Hamiltonian cycles on S with 𝒪(n) worst-case delay, using 𝒪(n²) space, after 𝒪(n²) set-up time.

Cite as

Carlos Alegría, Susanna Caroppo, Giordano Da Lozzo, Marco D'Elia, Giuseppe Di Battista, Fabrizio Frati, Fabrizio Grosso, and Maurizio Patrignani. Upward Pointset Embeddings of Planar st-Graphs. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 24:1-24:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{alegria_et_al:LIPIcs.GD.2024.24,
  author =	{Alegr{\'\i}a, Carlos and Caroppo, Susanna and Da Lozzo, Giordano and D'Elia, Marco and Di Battista, Giuseppe and Frati, Fabrizio and Grosso, Fabrizio and Patrignani, Maurizio},
  title =	{{Upward Pointset Embeddings of Planar st-Graphs}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{24:1--24:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.24},
  URN =		{urn:nbn:de:0030-drops-213082},
  doi =		{10.4230/LIPIcs.GD.2024.24},
  annote =	{Keywords: Upward pointset embeddings, planar st-graphs, st-cutset, non-crossing monotone Hamiltonian cycles, graph drawing enumeration}
}
Document
On Connections Between k-Coloring and Euclidean k-Means

Authors: Enver Aman, Karthik C. S., and Sharath Punna

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In the Euclidean k-means problems we are given as input a set of n points in ℝ^d and the goal is to find a set of k points C ⊆ ℝ^d, so as to minimize the sum of the squared Euclidean distances from each point in P to its closest center in C. In this paper, we formally explore connections between the k-coloring problem on graphs and the Euclidean k-means problem. Our results are as follows: - For all k ≥ 3, we provide a simple reduction from the k-coloring problem on regular graphs to the Euclidean k-means problem. Moreover, our technique extends to enable a reduction from a structured max-cut problem (which may be considered as a partial 2-coloring problem) to the Euclidean 2-means problem. Thus, we have a simple and alternate proof of the NP-hardness of Euclidean 2-means problem. - In the other direction, we mimic the O(1.7297ⁿ) time algorithm of Williams [TCS'05] for the max-cut of problem on n vertices to obtain an algorithm for the Euclidean 2-means problem with the same runtime, improving on the naive exhaustive search running in 2ⁿ⋅ poly(n,d) time. - We prove similar results and connections as above for the Euclidean k-min-sum problem.

Cite as

Enver Aman, Karthik C. S., and Sharath Punna. On Connections Between k-Coloring and Euclidean k-Means. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{aman_et_al:LIPIcs.ESA.2024.9,
  author =	{Aman, Enver and Karthik C. S. and Punna, Sharath},
  title =	{{On Connections Between k-Coloring and Euclidean k-Means}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{9:1--9:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.9},
  URN =		{urn:nbn:de:0030-drops-210808},
  doi =		{10.4230/LIPIcs.ESA.2024.9},
  annote =	{Keywords: k-means, k-minsum, Euclidean space, fine-grained complexity}
}
Document
Sparse Outerstring Graphs Have Logarithmic Treewidth

Authors: Shinwoo An, Eunjin Oh, and Jie Xue

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
An outerstring graph is the intersection graph of curves lying inside a disk with one endpoint on the boundary of the disk. We show that an outerstring graph with n vertices has treewidth O(αlog n), where α denotes the arboricity of the graph, with an almost matching lower bound of Ω(α log (n/α)). As a corollary, we show that a t-biclique-free outerstring graph has treewidth O(t(log t)log n). This leads to polynomial-time algorithms for most of the central NP-complete problems such as Independent Set, Vertex Cover, Dominating Set, Feedback Vertex Set, Coloring for sparse outerstring graphs. Also, we can obtain subexponential-time (exact, parameterized, and approximation) algorithms for various NP-complete problems such as Vertex Cover, Feedback Vertex Set and Cycle Packing for (not necessarily sparse) outerstring graphs.

Cite as

Shinwoo An, Eunjin Oh, and Jie Xue. Sparse Outerstring Graphs Have Logarithmic Treewidth. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 10:1-10:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{an_et_al:LIPIcs.ESA.2024.10,
  author =	{An, Shinwoo and Oh, Eunjin and Xue, Jie},
  title =	{{Sparse Outerstring Graphs Have Logarithmic Treewidth}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{10:1--10:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.10},
  URN =		{urn:nbn:de:0030-drops-210816},
  doi =		{10.4230/LIPIcs.ESA.2024.10},
  annote =	{Keywords: Outerstring graphs, geometric intersection graphs, treewidth}
}
Document
Cuts in Graphs with Matroid Constraints

Authors: Aritra Banik, Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Satyabrata Jana, and Saket Saurabh

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Vertex (s, t)-Cut and Vertex Multiway Cut are two fundamental graph separation problems in algorithmic graph theory. We study matroidal generalizations of these problems, where in addition to the usual input, we are given a representation R ∈ 𝔽^{r × n} of a linear matroid ℳ = (V(G), ℐ) of rank r in the input, and the goal is to determine whether there exists a vertex subset S ⊆ V(G) that has the required cut properties, as well as is independent in the matroid ℳ. We refer to these problems as Independent Vertex (s, t){-cut}, and Independent Multiway Cut, respectively. We show that these problems are fixed-parameter tractable (FPT) when parameterized by the solution size (which can be assumed to be equal to the rank of the matroid ℳ). These results are obtained by exploiting the recent technique of flow augmentation [Kim et al. STOC '22], combined with a dynamic programming algorithm on flow-paths á la [Feige and Mahdian, STOC '06] that maintains a representative family of solutions w.r.t. the given matroid [Marx, TCS '06; Fomin et al., JACM]. As a corollary, we also obtain FPT algorithms for the independent version of Odd Cycle Transversal. Further, our results can be generalized to other variants of the problems, e.g., weighted versions, or edge-deletion versions.

Cite as

Aritra Banik, Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Satyabrata Jana, and Saket Saurabh. Cuts in Graphs with Matroid Constraints. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 17:1-17:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{banik_et_al:LIPIcs.ESA.2024.17,
  author =	{Banik, Aritra and Fomin, Fedor V. and Golovach, Petr A. and Inamdar, Tanmay and Jana, Satyabrata and Saurabh, Saket},
  title =	{{Cuts in Graphs with Matroid Constraints}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{17:1--17:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.17},
  URN =		{urn:nbn:de:0030-drops-210887},
  doi =		{10.4230/LIPIcs.ESA.2024.17},
  annote =	{Keywords: s-t-cut, multiway Cut, matroid, odd cycle transversal, feedback vertex set, fixed-parameter tractability}
}
Document
Separable Convex Mixed-Integer Optimization: Improved Algorithms and Lower Bounds

Authors: Cornelius Brand, Martin Koutecký, Alexandra Lassota, and Sebastian Ordyniak

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We provide several novel algorithms and lower bounds in central settings of mixed-integer (non-)linear optimization, shedding new light on classic results in the field. This includes an improvement on record running time bounds obtained from a slight extension of Lenstra’s 1983 algorithm [Math. Oper. Res. '83] to optimizing under few constraints with small coefficients. This is important for ubiquitous tasks like knapsack-, subset sum- or scheduling problems [Eisenbrand and Weismantel, SODA'18, Jansen and Rohwedder, ITCS'19]. Further, we extend our algorithm to an intermediate linear optimization problem when the matrix has many rows that exhibit 2-stage stochastic structure, which adds to a prominent line of recent results on this and similarly restricted cases [Jansen et al. ICALP'19, Cslovjecsek et al. SODA'21, Brand et al. AAAI'21, Klein, Reuter SODA'22, Cslovjecsek et al. SODA'24]. We also show that the generalization of two fundamental classes of structured constraints from these works (n-fold and 2-stage stochastic programs) to separable-convex mixed-integer optimization are harder than their mixed-integer, linear counterparts. This counters a widespread belief popularized initially by an influential paper of Hochbaum and Shanthikumar, namely that "convex separable optimization is not much harder than linear optimization" [J. ACM '90]. To obtain our algorithms, we employ the mixed Graver basis introduced by Hemmecke [Math. Prog. '03], and our work is the first to give bounds on the norm of its elements. Importantly, we use these bounds differently from how purely-integer Graver bounds are exploited in related approaches, and prove that, surprisingly, this cannot be avoided.

Cite as

Cornelius Brand, Martin Koutecký, Alexandra Lassota, and Sebastian Ordyniak. Separable Convex Mixed-Integer Optimization: Improved Algorithms and Lower Bounds. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 32:1-32:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{brand_et_al:LIPIcs.ESA.2024.32,
  author =	{Brand, Cornelius and Kouteck\'{y}, Martin and Lassota, Alexandra and Ordyniak, Sebastian},
  title =	{{Separable Convex Mixed-Integer Optimization: Improved Algorithms and Lower Bounds}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{32:1--32:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.32},
  URN =		{urn:nbn:de:0030-drops-211033},
  doi =		{10.4230/LIPIcs.ESA.2024.32},
  annote =	{Keywords: Mixed-Integer Programming, Separable Convex Optimization, Parameterized Algorithms, Parameterized Complexity}
}
Document
Bicriteria Approximation for Minimum Dilation Graph Augmentation

Authors: Kevin Buchin, Maike Buchin, Joachim Gudmundsson, and Sampson Wong

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Spanner constructions focus on the initial design of the network. However, networks tend to improve over time. In this paper, we focus on the improvement step. Given a graph and a budget k, which k edges do we add to the graph to minimise its dilation? Gudmundsson and Wong [TALG'22] provided the first positive result for this problem, but their approximation factor is linear in k. Our main result is a (2 √[r]{2} k^{1/r},2r)-bicriteria approximation that runs in O(n³ log n) time, for all r ≥ 1. In other words, if t^* is the minimum dilation after adding any k edges to a graph, then our algorithm adds O(k^{1+1/r}) edges to the graph to obtain a dilation of 2rt^*. Moreover, our analysis of the algorithm is tight under the Erdős girth conjecture.

Cite as

Kevin Buchin, Maike Buchin, Joachim Gudmundsson, and Sampson Wong. Bicriteria Approximation for Minimum Dilation Graph Augmentation. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 36:1-36:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{buchin_et_al:LIPIcs.ESA.2024.36,
  author =	{Buchin, Kevin and Buchin, Maike and Gudmundsson, Joachim and Wong, Sampson},
  title =	{{Bicriteria Approximation for Minimum Dilation Graph Augmentation}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{36:1--36:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.36},
  URN =		{urn:nbn:de:0030-drops-211079},
  doi =		{10.4230/LIPIcs.ESA.2024.36},
  annote =	{Keywords: Greedy spanner, Graph augmentation}
}
Document
List Homomorphisms by Deleting Edges and Vertices: Tight Complexity Bounds for Bounded-Treewidth Graphs

Authors: Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
The goal of this paper is to investigate a family of optimization problems arising from list homomorphisms, and to understand what the best possible algorithms are if we restrict the problem to bounded-treewidth graphs. Given graphs G, H, and lists L(v) ⊆ V(H) for every v ∈ V(G), a list homomorphism from (G,L) to H is a function f:V(G) → V(H) that preserves the edges (i.e., uv ∈ E(G) implies f(u)f(v) ∈ E(H)) and respects the lists (i.e., f(v) ∈ L(v)). The graph H may have loops. For a fixed H, the input of the optimization problem LHomVD(H) is a graph G with lists L(v), and the task is to find a set X of vertices having minimum size such that (G-X,L) has a list homomorphism to H. We define analogously the edge-deletion variant LHomED(H), where we have to delete as few edges as possible from G to obtain a graph that has a list homomorphism. This expressive family of problems includes members that are essentially equivalent to fundamental problems such as Vertex Cover, Max Cut, Odd Cycle Transversal, and Edge/Vertex Multiway Cut. For both variants, we first characterize those graphs H that make the problem polynomial-time solvable and show that the problem is NP-hard for every other fixed H. Second, as our main result, we determine for every graph H for which the problem is NP-hard, the smallest possible constant c_H such that the problem can be solved in time c^t_H⋅ n^{𝒪(1)} if a tree decomposition of G having width t is given in the input. Let i(H) be the maximum size of a set of vertices in H that have pairwise incomparable neighborhoods. For the vertex-deletion variant LHomVD(H), we show that the smallest possible constant is i(H)+1 for every H: - Given a tree decomposition of width t of G, LHomVD(H) can be solved in time (i(H)+1)^t⋅ n^{𝒪(1)}. - For any ε > 0 and H, an (i(H)+1-ε)^t⋅ n^{𝒪(1)} algorithm would violate the Strong Exponential-Time Hypothesis (SETH). The situation is more complex for the edge-deletion version. For every H, one can solve LHomED(H) in time i(H)^t⋅ n^{𝒪(1)} if a tree decomposition of width t is given. However, the existence of a specific type of decomposition of H shows that there are graphs H where LHomED(H) can be solved significantly more efficiently and the best possible constant can be arbitrarily smaller than i(H). Nevertheless, we determine this best possible constant and (assuming the SETH) prove tight bounds for every fixed H.

Cite as

Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski. List Homomorphisms by Deleting Edges and Vertices: Tight Complexity Bounds for Bounded-Treewidth Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 39:1-39:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{canesmer_et_al:LIPIcs.ESA.2024.39,
  author =	{Can Esmer, Bar{\i}\c{s} and Focke, Jacob and Marx, D\'{a}niel and Rz\k{a}\.{z}ewski, Pawe{\l}},
  title =	{{List Homomorphisms by Deleting Edges and Vertices: Tight Complexity Bounds for Bounded-Treewidth Graphs}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{39:1--39:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.39},
  URN =		{urn:nbn:de:0030-drops-211103},
  doi =		{10.4230/LIPIcs.ESA.2024.39},
  annote =	{Keywords: Graph Homomorphism, List Homomorphism, Vertex Deletion, Edge Deletion, Multiway Cut, Parameterized Complexity, Tight Bounds, Treewidth, SETH}
}
Document
From Directed Steiner Tree to Directed Polymatroid Steiner Tree in Planar Graphs

Authors: Chandra Chekuri, Rhea Jain, Shubhang Kulkarni, Da Wei Zheng, and Weihao Zhu

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In the Directed Steiner Tree (DST) problem the input is a directed edge-weighted graph G = (V,E), a root vertex r and a set S ⊆ V of k terminals. The goal is to find a min-cost subgraph that connects r to each of the terminals. DST admits an O(log² k/log log k)-approximation in quasi-polynomial time [Grandoni et al., 2022; Rohan Ghuge and Viswanath Nagarajan, 2022], and an O(k^{ε})-approximation for any fixed ε > 0 in polynomial-time [Alexander Zelikovsky, 1997; Moses Charikar et al., 1999]. Resolving the existence of a polynomial-time poly-logarithmic approximation is a major open problem in approximation algorithms. In a recent work, Friggstad and Mousavi [Zachary Friggstad and Ramin Mousavi, 2023] obtained a simple and elegant polynomial-time O(log k)-approximation for DST in planar digraphs via Thorup’s shortest path separator theorem [Thorup, 2004]. We build on their work and obtain several new results on DST and related problems. - We develop a tree embedding technique for rooted problems in planar digraphs via an interpretation of the recursion in [Zachary Friggstad and Ramin Mousavi, 2023]. Using this we obtain polynomial-time poly-logarithmic approximations for Group Steiner Tree [Naveen Garg et al., 2000], Covering Steiner Tree [Goran Konjevod et al., 2002] and the Polymatroid Steiner Tree [Gruia Călinescu and Alexander Zelikovsky, 2005] problems in planar digraphs. All these problems are hard to approximate to within a factor of Ω(log² n/log log n) even in trees [Eran Halperin and Robert Krauthgamer, 2003; Grandoni et al., 2022]. - We prove that the natural cut-based LP relaxation for DST has an integrality gap of O(log² k) in planar digraphs. This is in contrast to general graphs where the integrality gap of this LP is known to be Ω(√k) [Leonid Zosin and Samir Khuller, 2002] and Ω(n^{δ}) for some fixed δ > 0 [Shi Li and Bundit Laekhanukit, 2022]. - We combine the preceding results with density based arguments to obtain poly-logarithmic approximations for the multi-rooted versions of the problems in planar digraphs. For DST our result improves the O(R + log k) approximation of [Zachary Friggstad and Ramin Mousavi, 2023] when R = ω(log² k).

Cite as

Chandra Chekuri, Rhea Jain, Shubhang Kulkarni, Da Wei Zheng, and Weihao Zhu. From Directed Steiner Tree to Directed Polymatroid Steiner Tree in Planar Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 42:1-42:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chekuri_et_al:LIPIcs.ESA.2024.42,
  author =	{Chekuri, Chandra and Jain, Rhea and Kulkarni, Shubhang and Zheng, Da Wei and Zhu, Weihao},
  title =	{{From Directed Steiner Tree to Directed Polymatroid Steiner Tree in Planar Graphs}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{42:1--42:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.42},
  URN =		{urn:nbn:de:0030-drops-211134},
  doi =		{10.4230/LIPIcs.ESA.2024.42},
  annote =	{Keywords: Directed Planar Graphs, Submodular Functions, Steiner Tree, Network Design}
}
Document
Parameterized Approximation for Maximum Weight Independent Set of Rectangles and Segments

Authors: Jana Cslovjecsek, Michał Pilipczuk, and Karol Węgrzycki

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In the Maximum Weight Independent Set of Rectangles problem (MWISR) we are given a weighted set of n axis-parallel rectangles in the plane. The task is to find a subset of pairwise non-overlapping rectangles with the maximum possible total weight. This problem is NP-hard and the best-known polynomial-time approximation algorithm, due to Chalermsook and Walczak [SODA 2021], achieves approximation factor 𝒪(log log n). While in the unweighted setting, constant factor approximation algorithms are known, due to Mitchell [FOCS 2021] and to Gálvez et al. [SODA 2022], it remains open to extend these techniques to the weighted setting. In this paper, we consider MWISR through the lens of parameterized approximation. Grandoni, Kratsch and Wiese [ESA 2019] gave a (1-ε)-approximation algorithm running in k^{𝒪(k/ε⁸)} n^{𝒪(1/ε⁸)} time, where k is the number of rectangles in an optimum solution. Unfortunately, their algorithm works only in the unweighted setting and they left it as an open problem to give a parameterized approximation scheme in the weighted setting. We give a parameterized approximation algorithm for MWISR that given a parameter k ∈ ℕ, finds a set of non-overlapping rectangles of weight at least (1-ε) opt_k in 2^{𝒪(k log(k/ε))} n^{𝒪(1/ε)} time, where opt_k is the maximum weight of a solution of cardinality at most k. We also propose a parameterized approximation scheme with running time 2^{𝒪(k² log(k/ε))} n^{𝒪(1)} that finds a solution with cardinality at most k and total weight at least (1-ε)opt_k for the special case of axis-parallel segments.

Cite as

Jana Cslovjecsek, Michał Pilipczuk, and Karol Węgrzycki. Parameterized Approximation for Maximum Weight Independent Set of Rectangles and Segments. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 43:1-43:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cslovjecsek_et_al:LIPIcs.ESA.2024.43,
  author =	{Cslovjecsek, Jana and Pilipczuk, Micha{\l} and W\k{e}grzycki, Karol},
  title =	{{Parameterized Approximation for Maximum Weight Independent Set of Rectangles and Segments}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{43:1--43:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.43},
  URN =		{urn:nbn:de:0030-drops-211146},
  doi =		{10.4230/LIPIcs.ESA.2024.43},
  annote =	{Keywords: parameterized approximation, Maximum Weight Independent Set, rectangles, segments}
}
Document
Faster Min-Cost Flow and Approximate Tree Decomposition on Bounded Treewidth Graphs

Authors: Sally Dong and Guanghao Ye

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We present an algorithm for min-cost flow in graphs with n vertices and m edges, given a tree decomposition of width τ and size S, and polynomially bounded, integral edge capacities and costs, running in Õ(m√{τ} + S) time. This improves upon the previous fastest algorithm in this setting achieved by the bounded-treewidth linear program solver of [Gu and Song, 2022; Dong et al., 2024], which runs in Õ(m τ^{(ω+1)/2}) time, where ω ≈ 2.37 is the matrix multiplication exponent. Our approach leverages recent advances in structured linear program solvers and robust interior point methods (IPM). In general graphs where treewidth is trivially bounded by n, the algorithm runs in Õ(m √ n) time, which is the best-known result without using the Lee-Sidford barrier or 𝓁₁ IPM, demonstrating the surprising power of robust interior point methods. As a corollary, we obtain a Õ(tw³ ⋅ m) time algorithm to compute a tree decomposition of width O(tw⋅ log(n)), given a graph with m edges.

Cite as

Sally Dong and Guanghao Ye. Faster Min-Cost Flow and Approximate Tree Decomposition on Bounded Treewidth Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 49:1-49:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dong_et_al:LIPIcs.ESA.2024.49,
  author =	{Dong, Sally and Ye, Guanghao},
  title =	{{Faster Min-Cost Flow and Approximate Tree Decomposition on Bounded Treewidth Graphs}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{49:1--49:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.49},
  URN =		{urn:nbn:de:0030-drops-211207},
  doi =		{10.4230/LIPIcs.ESA.2024.49},
  annote =	{Keywords: Min-cost flow, tree decomposition, interior point method, bounded treewidth graphs}
}
Document
Better Diameter Algorithms for Bounded VC-Dimension Graphs and Geometric Intersection Graphs

Authors: Lech Duraj, Filip Konieczny, and Krzysztof Potępa

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We develop a framework for algorithms finding the diameter in graphs of bounded distance Vapnik-Chervonenkis dimension, in (parameterized) subquadratic time complexity. The class of bounded distance VC-dimension graphs is wide, including, e.g. all minor-free graphs. We build on the work of Ducoffe et al. [SODA'20, SIGCOMP'22], improving their technique. With our approach the algorithms become simpler and faster, working in 𝒪{(k ⋅ n^{1-1/d} ⋅ m ⋅ polylog(n))} time complexity for the graph on n vertices and m edges, where k is the diameter and d is the distance VC-dimension of the graph. Furthermore, it allows us to use the improved technique in more general setting. In particular, we use this framework for geometric intersection graphs, i.e. graphs where vertices are identical geometric objects on a plane and the adjacency is defined by intersection. Applying our approach for these graphs, we partially answer a question posed by Bringmann et al. [SoCG'22], finding an 𝒪{(n^{7/4} ⋅ polylog(n))} parameterized diameter algorithm for unit square intersection graph of size n, as well as a more general algorithm for convex polygon intersection graphs.

Cite as

Lech Duraj, Filip Konieczny, and Krzysztof Potępa. Better Diameter Algorithms for Bounded VC-Dimension Graphs and Geometric Intersection Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 51:1-51:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{duraj_et_al:LIPIcs.ESA.2024.51,
  author =	{Duraj, Lech and Konieczny, Filip and Pot\k{e}pa, Krzysztof},
  title =	{{Better Diameter Algorithms for Bounded VC-Dimension Graphs and Geometric Intersection Graphs}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{51:1--51:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.51},
  URN =		{urn:nbn:de:0030-drops-211229},
  doi =		{10.4230/LIPIcs.ESA.2024.51},
  annote =	{Keywords: Graph Diameter, Geometric Intersection Graphs, Vapnik-Chervonenkis Dimension}
}
Document
Hitting Meets Packing: How Hard Can It Be?

Authors: Jacob Focke, Fabian Frei, Shaohua Li, Dániel Marx, Philipp Schepper, Roohani Sharma, and Karol Węgrzycki

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We study a general family of problems that form a common generalization of classic hitting (also referred to as covering or transversal) and packing problems. An instance of 𝒳-HitPack asks: Can removing k (deletable) vertices of a graph G prevent us from packing 𝓁 vertex-disjoint objects of type 𝒳? This problem captures a spectrum of problems with standard hitting and packing on opposite ends. Our main motivating question is whether the combination 𝒳-HitPack can be significantly harder than these two base problems. Already for one particular choice of 𝒳, this question can be posed for many different complexity notions, leading to a large, so-far unexplored domain at the intersection of the areas of hitting and packing problems. At a high level, we present two case studies: (1) 𝒳 being all cycles, and (2) 𝒳 being all copies of a fixed graph H. In each, we explore the classical complexity as well as the parameterized complexity with the natural parameters k+𝓁 and treewidth. We observe that the combined problem can be drastically harder than the base problems: for cycles or for H being a connected graph on at least 3 vertices, the problem is Σ₂^𝖯-complete and requires double-exponential dependence on the treewidth of the graph (assuming the Exponential-Time Hypothesis). In contrast, the combined problem admits qualitatively similar running times as the base problems in some cases, although significant novel ideas are required. For 𝒳 being all cycles, we establish a 2^{poly(k+𝓁)}⋅ n^{𝒪(1)} algorithm using an involved branching method, for example. Also, for 𝒳 being all edges (i.e., H = K₂; this combines Vertex Cover and Maximum Matching) the problem can be solved in time 2^{poly(tw)}⋅ n^{𝒪(1)} on graphs of treewidth tw. The key step enabling this running time relies on a combinatorial bound obtained from an algebraic (linear delta-matroid) representation of possible matchings.

Cite as

Jacob Focke, Fabian Frei, Shaohua Li, Dániel Marx, Philipp Schepper, Roohani Sharma, and Karol Węgrzycki. Hitting Meets Packing: How Hard Can It Be?. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 55:1-55:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{focke_et_al:LIPIcs.ESA.2024.55,
  author =	{Focke, Jacob and Frei, Fabian and Li, Shaohua and Marx, D\'{a}niel and Schepper, Philipp and Sharma, Roohani and W\k{e}grzycki, Karol},
  title =	{{Hitting Meets Packing: How Hard Can It Be?}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{55:1--55:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.55},
  URN =		{urn:nbn:de:0030-drops-211261},
  doi =		{10.4230/LIPIcs.ESA.2024.55},
  annote =	{Keywords: Hitting, Packing, Covering, Parameterized Algorithms, Lower Bounds, Treewidth}
}
  • Refine by Author
  • 55 Marx, Dániel
  • 11 Saurabh, Saket
  • 7 Sharma, Roohani
  • 6 Golovach, Petr A.
  • 6 Lokshtanov, Daniel
  • Show More...

  • Refine by Classification
  • 39 Theory of computation → Parameterized complexity and exact algorithms
  • 21 Theory of computation → Fixed parameter tractability
  • 21 Theory of computation → Graph algorithms analysis
  • 17 Mathematics of computing → Graph algorithms
  • 11 Theory of computation → Design and analysis of algorithms
  • Show More...

  • Refine by Keyword
  • 12 parameterized complexity
  • 11 Parameterized Complexity
  • 11 fixed-parameter tractability
  • 9 Treewidth
  • 8 Parameterized complexity
  • Show More...

  • Refine by Type
  • 154 document
  • 1 volume

  • Refine by Publication Year
  • 85 2024
  • 12 2018
  • 9 2016
  • 7 2019
  • 7 2022
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail