134 Search Results for "Azar, Yossi"


Volume

LIPIcs, Volume 112

26th Annual European Symposium on Algorithms (ESA 2018)

ESA 2018, August 20-22, 2018, Helsinki, Finland

Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman

Document
Invited Talk
Securing Dynamic Data: A Primer on Differentially Private Data Structures (Invited Talk)

Authors: Monika Henzinger and Roodabeh Safavi

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We give an introduction into differential privacy in the dynamic setting, called the continual observation setting.

Cite as

Monika Henzinger and Roodabeh Safavi. Securing Dynamic Data: A Primer on Differentially Private Data Structures (Invited Talk). In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 2:1-2:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{henzinger_et_al:LIPIcs.ESA.2025.2,
  author =	{Henzinger, Monika and Safavi, Roodabeh},
  title =	{{Securing Dynamic Data: A Primer on Differentially Private Data Structures}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{2:1--2:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.2},
  URN =		{urn:nbn:de:0030-drops-244702},
  doi =		{10.4230/LIPIcs.ESA.2025.2},
  annote =	{Keywords: Differential privacy, continual observation}
}
Document
Beating Competitive Ratio 4 for Graphic Matroid Secretary

Authors: Kiarash Banihashem, MohammadTaghi Hajiaghayi, Dariusz R. Kowalski, Piotr Krysta, Danny Mittal, and Jan Olkowski

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
One of the classic problems in online decision-making is the secretary problem, where the goal is to hire the best secretary out of n rankable applicants or, in a natural extension, to maximize the probability of selecting the largest number from a sequence arriving in random order. Many works have considered generalizations of this problem where one can accept multiple values subject to a combinatorial constraint. The seminal work of Babaioff, Immorlica, Kempe, and Kleinberg (SODA'07, JACM'18) proposed the matroid secretary conjecture, suggesting that there exists an O(1)-competitive algorithm for the matroid constraint, and many works since have attempted to obtain algorithms for both general matroids and specific classes of matroids. The ultimate goal of these results is to obtain an e-competitive algorithm, and the strong matroid secretary conjecture states that this is possible for general matroids. One of the most important classes of matroids is the graphic matroid, where a set of edges in a graph is deemed independent if it contains no cycle. Given the rich combinatorial structure of graphs, obtaining algorithms for these matroids is often seen as a good first step towards solving the problem for general matroids. For matroid secretary, Babaioff et al. (SODA'07, JACM'18) first studied graphic matroid case and obtained a 16-competitive algorithm. Subsequent works have improved the competitive ratio, most recently to 4 by Soto, Turkieltaub, and Verdugo (SODA'18). In this paper, we break the 4-competitive barrier for the problem, obtaining a new algorithm with a competitive ratio of 3.95. For the special case of simple graphs (i.e., graphs that do not contain parallel edges) we further improve this to 3.77. Intuitively, solving the problem for simple graphs is easier as they do not contain cycles of length two. A natural question that arises is whether we can obtain a ratio arbitrarily close to e by assuming the graph has a large enough girth. We answer this question affirmatively, proving that one can obtain a competitive ratio arbitrarily close to e even for constant values of girth, providing further evidence for the strong matroid secretary conjecture. We further show that this bound is tight: for any constant g, one cannot obtain a competitive ratio better than e even if we assume that the input graph has girth at least g. To our knowledge, such a bound was not previously known even for simple graphs.

Cite as

Kiarash Banihashem, MohammadTaghi Hajiaghayi, Dariusz R. Kowalski, Piotr Krysta, Danny Mittal, and Jan Olkowski. Beating Competitive Ratio 4 for Graphic Matroid Secretary. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 52:1-52:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{banihashem_et_al:LIPIcs.ESA.2025.52,
  author =	{Banihashem, Kiarash and Hajiaghayi, MohammadTaghi and Kowalski, Dariusz R. and Krysta, Piotr and Mittal, Danny and Olkowski, Jan},
  title =	{{Beating Competitive Ratio 4 for Graphic Matroid Secretary}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{52:1--52:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.52},
  URN =		{urn:nbn:de:0030-drops-245205},
  doi =		{10.4230/LIPIcs.ESA.2025.52},
  annote =	{Keywords: online algorithms, graphic matroids, secretary problem}
}
Document
Online Hitting Sets for Disks of Bounded Radii

Authors: Minati De, Satyam Singh, and Csaba D. Tóth

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We present algorithms for the online minimum hitting set problem in geometric range spaces: Given a set P of n points in the plane and a sequence of geometric objects that arrive one-by-one, we need to maintain a hitting set at all times. For disks of radii in the interval [1,M], we present an O(log M log n)-competitive algorithm. This result generalizes from disks to positive homothets of any convex body in the plane with scaling factors in the interval [1,M]. As a main technical tool, we reduce the problem to the online hitting set problem for a finite subset of integer points and bottomless rectangles. Specifically, for a given N > 1, we present an O(log N)-competitive algorithm for the variant where P is a subset of an N× N section of the integer lattice, and the geometric objects are bottomless rectangles.

Cite as

Minati De, Satyam Singh, and Csaba D. Tóth. Online Hitting Sets for Disks of Bounded Radii. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 50:1-50:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{de_et_al:LIPIcs.ESA.2025.50,
  author =	{De, Minati and Singh, Satyam and T\'{o}th, Csaba D.},
  title =	{{Online Hitting Sets for Disks of Bounded Radii}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{50:1--50:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.50},
  URN =		{urn:nbn:de:0030-drops-245181},
  doi =		{10.4230/LIPIcs.ESA.2025.50},
  annote =	{Keywords: Geometric Hitting Set, Online Algorithm, Homothets, Disks}
}
Document
Fine-Grained Classification of Detecting Dominating Patterns

Authors: Jonathan Dransfeld, Marvin Künnemann, and Mirza Redzic

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We consider the following generalization of dominating sets: Let G be a host graph and P be a pattern graph P. A dominating P-pattern in G is a subset S of vertices in G that (1) forms a dominating set in G and (2) induces a subgraph isomorphic to P. The graph theory literature studies the properties of dominating P-patterns for various patterns P, including cliques, matchings, independent sets, cycles and paths. Previous work (Kunnemann, Redzic 2024) obtains algorithms and conditional lower bounds for detecting dominating P-patterns particularly for P being a k-clique, a k-independent set and a k-matching. Their results give conditionally tight lower bounds if k is sufficiently large (where the bound depends the matrix multiplication exponent ω). We ask: Can we obtain a classification of the fine-grained complexity for all patterns P? Indeed, we define a graph parameter ρ(P) such that if ω = 2, then (n^ρ(P) m^{(|V(P)|-ρ(P))/2})^{1±o(1)} is the optimal running time assuming the Orthogonal Vectors Hypothesis, for all patterns P except the triangle K₃. Here, the host graph G has n vertices and m = Θ(n^α) edges, where 1 ≤ α ≤ 2. The parameter ρ(P) is closely related (but sometimes different) to a parameter δ(P) = max_{S ⊆ V(P)} |S|-|N(S)| studied in (Alon 1981) to tightly quantify the maximum number of occurrences of induced subgraphs isomorphic to P. Our results stand in contrast to the lack of a full fine-grained classification of detecting an arbitrary (not necessarily dominating) induced P-pattern.

Cite as

Jonathan Dransfeld, Marvin Künnemann, and Mirza Redzic. Fine-Grained Classification of Detecting Dominating Patterns. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 98:1-98:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dransfeld_et_al:LIPIcs.ESA.2025.98,
  author =	{Dransfeld, Jonathan and K\"{u}nnemann, Marvin and Redzic, Mirza},
  title =	{{Fine-Grained Classification of Detecting Dominating Patterns}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{98:1--98:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.98},
  URN =		{urn:nbn:de:0030-drops-245679},
  doi =		{10.4230/LIPIcs.ESA.2025.98},
  annote =	{Keywords: fine-grained complexity theory, domination in graphs, subgraph isomorphism, classification theorem, parameterized algorithms}
}
Document
Counting Small Induced Subgraphs: Scorpions Are Easy but Not Trivial

Authors: Radu Curticapean, Simon Döring, and Daniel Neuen

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
In the parameterized problem #IndSub(Φ) for fixed graph properties Φ, given as input a graph G and an integer k, the task is to compute the number of induced k-vertex subgraphs satisfying Φ. Dörfler et al. [Algorithmica 2022] and Roth et al. [SICOMP 2024] conjectured that #IndSub(Φ) is #W[1]-hard for all non-meager properties Φ, i.e., properties that are nontrivial for infinitely many k. This conjecture has been confirmed for several restricted types of properties, including all hereditary properties [STOC 2022] and all edge-monotone properties [STOC 2024]. We refute this conjecture by showing that induced k-vertex graphs that are scorpions can be counted in time O(n⁴) for all k. Scorpions were introduced more than 50 years ago in the context of the evasiveness conjecture. A simple variant of this construction results in graph properties that achieve arbitrary intermediate complexity assuming ETH. Moreover, we formulate an updated conjecture on the complexity of #IndSub(Φ) that correctly captures the complexity status of scorpions and related constructions.

Cite as

Radu Curticapean, Simon Döring, and Daniel Neuen. Counting Small Induced Subgraphs: Scorpions Are Easy but Not Trivial. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 96:1-96:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{curticapean_et_al:LIPIcs.ESA.2025.96,
  author =	{Curticapean, Radu and D\"{o}ring, Simon and Neuen, Daniel},
  title =	{{Counting Small Induced Subgraphs: Scorpions Are Easy but Not Trivial}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{96:1--96:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.96},
  URN =		{urn:nbn:de:0030-drops-245651},
  doi =		{10.4230/LIPIcs.ESA.2025.96},
  annote =	{Keywords: induced subgraphs, counting complexity, parameterized complexity, scorpions}
}
Document
Improved Parallel Derandomization via Finite Automata with Applications

Authors: Jeff Giliberti and David G. Harris

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A central approach to algorithmic derandomization is the construction of small-support probability distributions that "fool” randomized algorithms, often enabling efficient parallel (NC) implementations. An abstraction of this idea is fooling polynomial-space statistical tests computed via finite automata [Sivakumar STOC'02]; this encompasses a wide range of properties including k-wise independence and sums of random variables. We present new parallel algorithms to fool finite-state automata, with significantly reduced processor complexity. Briefly, our approach is to iteratively sparsify distributions using a work-efficient lattice rounding routine and maintain accuracy by tracking an aggregate weighted error that is determined by the Lipschitz value of the statistical tests being fooled. We illustrate with improved applications to the Gale-Berlekamp Switching Game and to approximate MAX-CUT via SDP rounding. These involve further several optimizations, such as the truncation of the state space of the automata and FFT-based convolutions to compute transition probabilities efficiently.

Cite as

Jeff Giliberti and David G. Harris. Improved Parallel Derandomization via Finite Automata with Applications. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 70:1-70:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{giliberti_et_al:LIPIcs.ESA.2025.70,
  author =	{Giliberti, Jeff and Harris, David G.},
  title =	{{Improved Parallel Derandomization via Finite Automata with Applications}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{70:1--70:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.70},
  URN =		{urn:nbn:de:0030-drops-245381},
  doi =		{10.4230/LIPIcs.ESA.2025.70},
  annote =	{Keywords: Parallel Algorithms, Derandomization, MAX-CUT, Gale-Berlekamp Switching Game}
}
Document
A 3.3904-Competitive Online Algorithm for List Update with Uniform Costs

Authors: Mateusz Basiak, Marcin Bienkowski, Martin Böhm, Marek Chrobak, Łukasz Jeż, Jiří Sgall, and Agnieszka Tatarczuk

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We consider the List Update problem where the cost of each swap is assumed to be 1. This is in contrast to the "standard" model, in which an algorithm is allowed to swap the requested item with previous items for free. We construct an online algorithm Full-Or-Partial-Move (FPM), whose competitive ratio is at most 3.3904, improving over the previous best known bound of 4.

Cite as

Mateusz Basiak, Marcin Bienkowski, Martin Böhm, Marek Chrobak, Łukasz Jeż, Jiří Sgall, and Agnieszka Tatarczuk. A 3.3904-Competitive Online Algorithm for List Update with Uniform Costs. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 76:1-76:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{basiak_et_al:LIPIcs.ESA.2025.76,
  author =	{Basiak, Mateusz and Bienkowski, Marcin and B\"{o}hm, Martin and Chrobak, Marek and Je\.{z}, {\L}ukasz and Sgall, Ji\v{r}{\'\i} and Tatarczuk, Agnieszka},
  title =	{{A 3.3904-Competitive Online Algorithm for List Update with Uniform Costs}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{76:1--76:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.76},
  URN =		{urn:nbn:de:0030-drops-245442},
  doi =		{10.4230/LIPIcs.ESA.2025.76},
  annote =	{Keywords: List update, work functions, amortized analysis, online algorithms, competitive analysis}
}
Document
Constructing Long Paths in Graph Streams

Authors: Christian Konrad and Chhaya Trehan

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
In the graph stream model of computation, an algorithm processes the edges of an n-vertex input graph in one or more sequential passes while using a memory that is sublinear in the input size. The streaming model poses significant challenges for algorithmically constructing long paths. Many known algorithms that are tasked with extending an existing path as a subroutine require an entire pass over the input to add a single additional edge. This raises a fundamental question: Are multiple passes inherently necessary to construct paths of non-trivial lengths, or can a single pass suffice? To address this question, we systematically study the Longest Path problem in the one-pass streaming model. In this problem, given a desired approximation factor α, the objective is to compute a path of length at least lp(G)/α, where lp(G) is the length of a longest path in the input graph G. We study the problem in the insertion-only and the insertion-deletion streaming models, and we give algorithms as well as space lower bounds for both undirected and directed graphs. Our results are: 1) We show that for undirected graphs, in both the insertion-only and the insertion-deletion models, there are semi-streaming algorithms, i.e., algorithms that use space O(n poly log n), that compute a path of length at least d/3 with high probability, where d is the average degree of the input graph. These algorithms can also yield an α-approximation to Longest Path using space Õ(n²/α). 2) Next, we show that such a result cannot be achieved for directed graphs, even in the insertion-only model. We show that computing a (n^{1-o(1)})-approximation to Longest Path in directed graphs in the insertion-only model requires space Ω(n²). This result is in line with recent results that demonstrate that processing directed graphs is often significantly harder than undirected graphs in the streaming model. 3) We further complement our results with two additional lower bounds. First, we show that semi-streaming space is insufficient for small constant factor approximations to Longest Path for undirected graphs in the insertion-only model. Last, in undirected graphs in the insertion-deletion model, we show that computing an α-approximation requires space Ω(n²/α³).

Cite as

Christian Konrad and Chhaya Trehan. Constructing Long Paths in Graph Streams. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 22:1-22:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{konrad_et_al:LIPIcs.ESA.2025.22,
  author =	{Konrad, Christian and Trehan, Chhaya},
  title =	{{Constructing Long Paths in Graph Streams}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{22:1--22:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.22},
  URN =		{urn:nbn:de:0030-drops-244902},
  doi =		{10.4230/LIPIcs.ESA.2025.22},
  annote =	{Keywords: Longest Path Problem, Streaming Algorithms, One-way Two-party Communication Complexity}
}
Document
Faster Exponential Algorithms for Cut Problems via Geometric Data Structures

Authors: László Kozma and Junqi Tan

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
For many hard computational problems, simple algorithms that run in time 2ⁿ ⋅ n^O(1) arise, say, from enumerating all subsets of a size-n set. Finding (exponentially) faster algorithms is a natural goal that has driven much of the field of exact exponential algorithms (e.g., see Fomin and Kratsch, 2010). In this paper we obtain algorithms with running time O(1.9999977ⁿ) on input graphs with n vertices, for the following well-studied problems: - d-Cut: find a proper cut in which no vertex has more than d neighbors on the other side of the cut; - Internal Partition: find a proper cut in which every vertex has at least as many neighbors on its side of the cut as on the other side; and - (α,β)-Domination: given intervals α,β ⊆ [0,n], find a subset S of the vertices, so that for every vertex v ∈ S the number of neighbors of v in S is from α and for every vertex v ∉ S, the number of neighbors of v in S is from β. Our algorithms are exceedingly simple, combining the split and list technique (Horowitz and Sahni, 1974; Williams, 2005) with a tool from computational geometry: orthogonal range searching in the moderate dimensional regime (Chan, 2017). Our technique is applicable to the decision, optimization and counting versions of these problems and easily extends to various generalizations with more fine-grained, vertex-specific constraints, as well as to directed, balanced, and other variants. Algorithms with running times of the form cⁿ, for c < 2, were known for the first problem only for constant d, and for the third problem for certain special cases of α and β; for the second problem we are not aware of such results.

Cite as

László Kozma and Junqi Tan. Faster Exponential Algorithms for Cut Problems via Geometric Data Structures. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 110:1-110:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kozma_et_al:LIPIcs.ESA.2025.110,
  author =	{Kozma, L\'{a}szl\'{o} and Tan, Junqi},
  title =	{{Faster Exponential Algorithms for Cut Problems via Geometric Data Structures}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{110:1--110:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.110},
  URN =		{urn:nbn:de:0030-drops-245796},
  doi =		{10.4230/LIPIcs.ESA.2025.110},
  annote =	{Keywords: graph algorithms, cuts, exponential time, data structures}
}
Document
Hardness of Median and Center in the Ulam Metric

Authors: Nick Fischer, Elazar Goldenberg, Mursalin Habib, and Karthik C. S.

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The classical rank aggregation problem seeks to combine a set X of n permutations into a single representative "consensus" permutation. In this paper, we investigate two fundamental rank aggregation tasks under the well-studied Ulam metric: computing a median permutation (which minimizes the sum of Ulam distances to X) and computing a center permutation (which minimizes the maximum Ulam distance to X) in two settings. - Continuous Setting: In the continuous setting, the median/center is allowed to be any permutation. It is known that computing a center in the Ulam metric is NP-hard and we add to this by showing that computing a median is NP-hard as well via a simple reduction from the Max-Cut problem. While this result may not be unexpected, it had remained elusive until now and confirms a speculation by Chakraborty, Das, and Krauthgamer [SODA '21]. - Discrete Setting: In the discrete setting, the median/center must be a permutation from the input set. We fully resolve the fine-grained complexity of the discrete median and discrete center problems under the Ulam metric, proving that the naive Õ(n² L)-time algorithm (where L is the length of the permutation) is conditionally optimal. This resolves an open problem raised by Abboud, Bateni, Cohen-Addad, Karthik C. S., and Seddighin [APPROX '23]. Our reductions are inspired by the known fine-grained lower bounds for similarity measures, but we face and overcome several new highly technical challenges.

Cite as

Nick Fischer, Elazar Goldenberg, Mursalin Habib, and Karthik C. S.. Hardness of Median and Center in the Ulam Metric. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 111:1-111:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{fischer_et_al:LIPIcs.ESA.2025.111,
  author =	{Fischer, Nick and Goldenberg, Elazar and Habib, Mursalin and Karthik C. S.},
  title =	{{Hardness of Median and Center in the Ulam Metric}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{111:1--111:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.111},
  URN =		{urn:nbn:de:0030-drops-245809},
  doi =		{10.4230/LIPIcs.ESA.2025.111},
  annote =	{Keywords: Ulam distance, median, center, rank aggregation, fine-grained complexity}
}
Document
Optimal Antimatroid Sorting

Authors: Benjamin Aram Berendsohn

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The classical comparison-based sorting problem asks us to find the underlying total ordering of a given set of elements, where we can only access the elements via comparisons. In this paper, we study a restricted version, where, as a hint, a set T of possible total orderings is given, usually in some compressed form. Recently, an algorithm called topological heapsort with optimal running time was found for case where T is the set of topological orderings of a given directed acyclic graph, or, equivalently, T is the set of linear extensions of a partial ordering [Haeupler et al. 2024]. We show that a simple generalization of topological heapsort is applicable to a much broader class of restricted sorting problems, where T corresponds to a given antimatroid. As a consequence, we obtain optimal algorithms for the following restricted sorting problems, where the allowed total orders are … - … restricted by a given set of monotone precedence formulas; - … the perfect elimination orders of a given chordal graph; or - … the possible vertex search orders of a given connected rooted graph.

Cite as

Benjamin Aram Berendsohn. Optimal Antimatroid Sorting. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 104:1-104:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{berendsohn:LIPIcs.ESA.2025.104,
  author =	{Berendsohn, Benjamin Aram},
  title =	{{Optimal Antimatroid Sorting}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{104:1--104:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.104},
  URN =		{urn:nbn:de:0030-drops-245735},
  doi =		{10.4230/LIPIcs.ESA.2025.104},
  annote =	{Keywords: sorting, working-set heap, greedy, antimatroid}
}
Document
Tight Bounds for Some Classical Problems Parameterized by Cutwidth

Authors: Narek Bojikian, Vera Chekan, and Stefan Kratsch

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Cutwidth is a widely studied parameter and it quantifies how well a graph can be decomposed along small edge-cuts. It complements pathwidth, which captures decomposition by small vertex separators, and it is well-known that cutwidth upper-bounds pathwidth. The SETH-tight parameterized complexity of problems on graphs of bounded pathwidth (and treewidth) has been actively studied over the past decade while for cutwidth the complexity of many classical problems remained open. For Hamiltonian Cycle, it is known that a (2+√2)^{pw} n^𝒪(1) algorithm is optimal for pathwidth under SETH [Cygan et al. JACM 2018]. Van Geffen et al. [J. Graph Algorithms Appl. 2020] and Bojikian et al. [STACS 2023] asked which running time is optimal for this problem parameterized by cutwidth. We answer this question with (1+√2)^{ctw} n^𝒪(1) by providing matching upper and lower bounds. Second, as our main technical contribution, we close the gap left by van Heck [2018] for Partition Into Triangles (and Triangle Packing) by improving both upper and lower bound and getting a tight bound of ∛{3}^{ctw} n^𝒪(1), which to our knowledge exhibits the only known tight non-integral basis apart from Hamiltonian Cycle [Cygan et al. JACM 2018] and C₄-Hitting Set [SODA 2025]. We show that the cuts inducing a disjoint union of paths of length three (unions of so-called Z-cuts) lie at the core of the complexity of the problem - usually lower-bound constructions use simpler cuts inducing either a matching or a disjoint union of bicliques. Finally, we determine the optimal running times for Max Cut (2^{ctw} n^𝒪(1)) and Induced Matching (3^{ctw} n^𝒪(1)) by providing matching lower bounds for the existing algorithms - the latter result also answers an open question for treewidth by Chaudhary and Zehavi [WG 2023].

Cite as

Narek Bojikian, Vera Chekan, and Stefan Kratsch. Tight Bounds for Some Classical Problems Parameterized by Cutwidth. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 13:1-13:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bojikian_et_al:LIPIcs.ESA.2025.13,
  author =	{Bojikian, Narek and Chekan, Vera and Kratsch, Stefan},
  title =	{{Tight Bounds for Some Classical Problems Parameterized by Cutwidth}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{13:1--13:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.13},
  URN =		{urn:nbn:de:0030-drops-244815},
  doi =		{10.4230/LIPIcs.ESA.2025.13},
  annote =	{Keywords: Parameterized complexity, cutwidth, Hamiltonian cycle, triangle packing, max cut, induced matching}
}
Document
Going Beyond Surfaces in Diameter Approximation

Authors: Michał Włodarczyk

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Calculating the diameter of an undirected graph requires quadratic running time under the Strong Exponential Time Hypothesis and this barrier works even against any approximation better than 3/2. For planar graphs with positive edge weights, there are known (1+ε)-approximation algorithms with running time poly(1/ε, log n)⋅ n. However, these algorithms rely on shortest path separators and this technique falls short to yield efficient algorithms beyond graphs of bounded genus. In this work we depart from embedding-based arguments and obtain diameter approximations relying on VC set systems and the local treewidth property. We present two orthogonal extensions of the planar case by giving (1+ε)-approximation algorithms with the following running times: - 𝒪_h((1/ε)^𝒪(h) ⋅ nlog² n)-time algorithm for graphs excluding an apex graph of size h as a minor, - 𝒪_d((1/ε)^𝒪(d) ⋅ nlog² n)-time algorithm for the class of d-apex graphs. As a stepping stone, we obtain efficient (1+ε)-approximate distance oracles for graphs excluding an apex graph of size h as a minor. Our oracle has preprocessing time 𝒪_h((1/ε)⁸⋅ nlog nlog W) and query time 𝒪_h((1/ε)²⋅log n log W), where W is the metric stretch. Such oracles have been so far only known for bounded genus graphs. All our algorithms are deterministic.

Cite as

Michał Włodarczyk. Going Beyond Surfaces in Diameter Approximation. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 39:1-39:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{wlodarczyk:LIPIcs.ESA.2025.39,
  author =	{W{\l}odarczyk, Micha{\l}},
  title =	{{Going Beyond Surfaces in Diameter Approximation}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{39:1--39:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.39},
  URN =		{urn:nbn:de:0030-drops-245076},
  doi =		{10.4230/LIPIcs.ESA.2025.39},
  annote =	{Keywords: diameter, approximation, distance oracles, graph minors, treewidth}
}
Document
(Multivariate) k-SUM as Barrier to Succinct Computation

Authors: Geri Gokaj, Marvin Künnemann, Sabine Storandt, and Carina Truschel

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
How does the time complexity of a problem change when the input is given succinctly rather than explicitly? We study this question for several geometric problems defined on a set X of N points in ℤ^d. As succinct representation, we choose a sumset (or Minkowski sum) representation: Instead of receiving X explicitly, we are given sets A,B of n points that define X as A+B = {a+b∣ a ∈ A,b ∈ B}. We investigate the fine-grained complexity of this succinct version for several Õ(N)-time computable geometric primitives. Remarkably, we can tie their complexity tightly to the complexity of corresponding k-SUM problems. Specifically, we introduce as All-ints 3-SUM(n,n,k) the following multivariate, multi-output variant of 3-SUM: given sets A,B of size n and set C of size k, determine for all c ∈ C whether there are a ∈ A and b ∈ B with a+b = c. We obtain the following results: 1) Succinct closest L_∞-pair requires time N^{1-o(1)} under the 3-SUM hypothesis, while succinct furthest L_∞-pair can be solved in time Õ(n). 2) Succinct bichromatic closest L_∞-Pair requires time N^{1-o(1)} iff the 4-SUM hypothesis holds. 3) The following problems are fine-grained equivalent to All-ints 3-SUM(n,n,k): succinct skyline computation in 2D with output size k and succinct batched orthogonal range search with k given ranges. This establishes conditionally tight Õ(min{nk, N})-time algorithms for these problems. We obtain further connections with All-ints 3-SUM(n,n,k) for succinctly computing independent sets in unit interval graphs. Thus, (Multivariate) k-SUM problems precisely capture the barrier for enabling sumset-succinct computation for various geometric primitives.

Cite as

Geri Gokaj, Marvin Künnemann, Sabine Storandt, and Carina Truschel. (Multivariate) k-SUM as Barrier to Succinct Computation. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 42:1-42:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gokaj_et_al:LIPIcs.ESA.2025.42,
  author =	{Gokaj, Geri and K\"{u}nnemann, Marvin and Storandt, Sabine and Truschel, Carina},
  title =	{{(Multivariate) k-SUM as Barrier to Succinct Computation}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{42:1--42:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.42},
  URN =		{urn:nbn:de:0030-drops-245101},
  doi =		{10.4230/LIPIcs.ESA.2025.42},
  annote =	{Keywords: Fine-grained complexity theory, sumsets, additive combinatorics, succinct inputs, computational geometry}
}
  • Refine by Type
  • 133 Document/PDF
  • 46 Document/HTML
  • 1 Volume

  • Refine by Publication Year
  • 48 2025
  • 1 2024
  • 1 2023
  • 2 2022
  • 1 2020
  • Show More...

  • Refine by Author
  • 11 Azar, Yossi
  • 4 Fischer, Nick
  • 4 Henzinger, Monika
  • 4 Künnemann, Marvin
  • 4 Touitou, Noam
  • Show More...

  • Refine by Series/Journal
  • 131 LIPIcs
  • 2 DagSemProc

  • Refine by Classification
  • 21 Theory of computation → Online algorithms
  • 13 Theory of computation → Graph algorithms analysis
  • 12 Theory of computation → Design and analysis of algorithms
  • 11 Theory of computation → Computational geometry
  • 8 Mathematics of computing → Graph algorithms
  • Show More...

  • Refine by Keyword
  • 9 online algorithms
  • 6 competitive analysis
  • 5 Scheduling
  • 4 Online
  • 3 Delay
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail